2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
34 extern char __hyp_idmap_text_start
[], __hyp_idmap_text_end
[];
36 static pgd_t
*boot_hyp_pgd
;
37 static pgd_t
*hyp_pgd
;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
40 static void *init_bounce_page
;
41 static unsigned long hyp_idmap_start
;
42 static unsigned long hyp_idmap_end
;
43 static phys_addr_t hyp_idmap_vector
;
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x) pud_huge(_x)
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
53 static bool memslot_is_logging(struct kvm_memory_slot
*memslot
)
55 return memslot
->dirty_bitmap
&& !(memslot
->flags
& KVM_MEM_READONLY
);
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
62 * Interface to HYP function to flush all VM TLB entries
64 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
66 kvm_call_hyp(__kvm_tlb_flush_vmid
, kvm
);
69 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
86 static void kvm_flush_dcache_pte(pte_t pte
)
88 __kvm_flush_dcache_pte(pte
);
91 static void kvm_flush_dcache_pmd(pmd_t pmd
)
93 __kvm_flush_dcache_pmd(pmd
);
96 static void kvm_flush_dcache_pud(pud_t pud
)
98 __kvm_flush_dcache_pud(pud
);
102 * stage2_dissolve_pmd() - clear and flush huge PMD entry
103 * @kvm: pointer to kvm structure.
105 * @pmd: pmd pointer for IPA
107 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
108 * pages in the range dirty.
110 static void stage2_dissolve_pmd(struct kvm
*kvm
, phys_addr_t addr
, pmd_t
*pmd
)
112 if (!kvm_pmd_huge(*pmd
))
116 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
117 put_page(virt_to_page(pmd
));
120 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
125 BUG_ON(max
> KVM_NR_MEM_OBJS
);
126 if (cache
->nobjs
>= min
)
128 while (cache
->nobjs
< max
) {
129 page
= (void *)__get_free_page(PGALLOC_GFP
);
132 cache
->objects
[cache
->nobjs
++] = page
;
137 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
140 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
143 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
147 BUG_ON(!mc
|| !mc
->nobjs
);
148 p
= mc
->objects
[--mc
->nobjs
];
152 static void clear_pgd_entry(struct kvm
*kvm
, pgd_t
*pgd
, phys_addr_t addr
)
154 pud_t
*pud_table __maybe_unused
= pud_offset(pgd
, 0);
156 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
157 pud_free(NULL
, pud_table
);
158 put_page(virt_to_page(pgd
));
161 static void clear_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
163 pmd_t
*pmd_table
= pmd_offset(pud
, 0);
164 VM_BUG_ON(pud_huge(*pud
));
166 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
167 pmd_free(NULL
, pmd_table
);
168 put_page(virt_to_page(pud
));
171 static void clear_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
173 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
174 VM_BUG_ON(kvm_pmd_huge(*pmd
));
176 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
177 pte_free_kernel(NULL
, pte_table
);
178 put_page(virt_to_page(pmd
));
182 * Unmapping vs dcache management:
184 * If a guest maps certain memory pages as uncached, all writes will
185 * bypass the data cache and go directly to RAM. However, the CPUs
186 * can still speculate reads (not writes) and fill cache lines with
189 * Those cache lines will be *clean* cache lines though, so a
190 * clean+invalidate operation is equivalent to an invalidate
191 * operation, because no cache lines are marked dirty.
193 * Those clean cache lines could be filled prior to an uncached write
194 * by the guest, and the cache coherent IO subsystem would therefore
195 * end up writing old data to disk.
197 * This is why right after unmapping a page/section and invalidating
198 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
199 * the IO subsystem will never hit in the cache.
201 static void unmap_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
202 phys_addr_t addr
, phys_addr_t end
)
204 phys_addr_t start_addr
= addr
;
205 pte_t
*pte
, *start_pte
;
207 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
209 if (!pte_none(*pte
)) {
210 pte_t old_pte
= *pte
;
212 kvm_set_pte(pte
, __pte(0));
213 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
215 /* No need to invalidate the cache for device mappings */
216 if ((pte_val(old_pte
) & PAGE_S2_DEVICE
) != PAGE_S2_DEVICE
)
217 kvm_flush_dcache_pte(old_pte
);
219 put_page(virt_to_page(pte
));
221 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
223 if (kvm_pte_table_empty(kvm
, start_pte
))
224 clear_pmd_entry(kvm
, pmd
, start_addr
);
227 static void unmap_pmds(struct kvm
*kvm
, pud_t
*pud
,
228 phys_addr_t addr
, phys_addr_t end
)
230 phys_addr_t next
, start_addr
= addr
;
231 pmd_t
*pmd
, *start_pmd
;
233 start_pmd
= pmd
= pmd_offset(pud
, addr
);
235 next
= kvm_pmd_addr_end(addr
, end
);
236 if (!pmd_none(*pmd
)) {
237 if (kvm_pmd_huge(*pmd
)) {
238 pmd_t old_pmd
= *pmd
;
241 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
243 kvm_flush_dcache_pmd(old_pmd
);
245 put_page(virt_to_page(pmd
));
247 unmap_ptes(kvm
, pmd
, addr
, next
);
250 } while (pmd
++, addr
= next
, addr
!= end
);
252 if (kvm_pmd_table_empty(kvm
, start_pmd
))
253 clear_pud_entry(kvm
, pud
, start_addr
);
256 static void unmap_puds(struct kvm
*kvm
, pgd_t
*pgd
,
257 phys_addr_t addr
, phys_addr_t end
)
259 phys_addr_t next
, start_addr
= addr
;
260 pud_t
*pud
, *start_pud
;
262 start_pud
= pud
= pud_offset(pgd
, addr
);
264 next
= kvm_pud_addr_end(addr
, end
);
265 if (!pud_none(*pud
)) {
266 if (pud_huge(*pud
)) {
267 pud_t old_pud
= *pud
;
270 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
272 kvm_flush_dcache_pud(old_pud
);
274 put_page(virt_to_page(pud
));
276 unmap_pmds(kvm
, pud
, addr
, next
);
279 } while (pud
++, addr
= next
, addr
!= end
);
281 if (kvm_pud_table_empty(kvm
, start_pud
))
282 clear_pgd_entry(kvm
, pgd
, start_addr
);
286 static void unmap_range(struct kvm
*kvm
, pgd_t
*pgdp
,
287 phys_addr_t start
, u64 size
)
290 phys_addr_t addr
= start
, end
= start
+ size
;
293 pgd
= pgdp
+ pgd_index(addr
);
295 next
= kvm_pgd_addr_end(addr
, end
);
297 unmap_puds(kvm
, pgd
, addr
, next
);
298 } while (pgd
++, addr
= next
, addr
!= end
);
301 static void stage2_flush_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
302 phys_addr_t addr
, phys_addr_t end
)
306 pte
= pte_offset_kernel(pmd
, addr
);
308 if (!pte_none(*pte
) &&
309 (pte_val(*pte
) & PAGE_S2_DEVICE
) != PAGE_S2_DEVICE
)
310 kvm_flush_dcache_pte(*pte
);
311 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
314 static void stage2_flush_pmds(struct kvm
*kvm
, pud_t
*pud
,
315 phys_addr_t addr
, phys_addr_t end
)
320 pmd
= pmd_offset(pud
, addr
);
322 next
= kvm_pmd_addr_end(addr
, end
);
323 if (!pmd_none(*pmd
)) {
324 if (kvm_pmd_huge(*pmd
))
325 kvm_flush_dcache_pmd(*pmd
);
327 stage2_flush_ptes(kvm
, pmd
, addr
, next
);
329 } while (pmd
++, addr
= next
, addr
!= end
);
332 static void stage2_flush_puds(struct kvm
*kvm
, pgd_t
*pgd
,
333 phys_addr_t addr
, phys_addr_t end
)
338 pud
= pud_offset(pgd
, addr
);
340 next
= kvm_pud_addr_end(addr
, end
);
341 if (!pud_none(*pud
)) {
343 kvm_flush_dcache_pud(*pud
);
345 stage2_flush_pmds(kvm
, pud
, addr
, next
);
347 } while (pud
++, addr
= next
, addr
!= end
);
350 static void stage2_flush_memslot(struct kvm
*kvm
,
351 struct kvm_memory_slot
*memslot
)
353 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
354 phys_addr_t end
= addr
+ PAGE_SIZE
* memslot
->npages
;
358 pgd
= kvm
->arch
.pgd
+ pgd_index(addr
);
360 next
= kvm_pgd_addr_end(addr
, end
);
361 stage2_flush_puds(kvm
, pgd
, addr
, next
);
362 } while (pgd
++, addr
= next
, addr
!= end
);
366 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
367 * @kvm: The struct kvm pointer
369 * Go through the stage 2 page tables and invalidate any cache lines
370 * backing memory already mapped to the VM.
372 static void stage2_flush_vm(struct kvm
*kvm
)
374 struct kvm_memslots
*slots
;
375 struct kvm_memory_slot
*memslot
;
378 idx
= srcu_read_lock(&kvm
->srcu
);
379 spin_lock(&kvm
->mmu_lock
);
381 slots
= kvm_memslots(kvm
);
382 kvm_for_each_memslot(memslot
, slots
)
383 stage2_flush_memslot(kvm
, memslot
);
385 spin_unlock(&kvm
->mmu_lock
);
386 srcu_read_unlock(&kvm
->srcu
, idx
);
390 * free_boot_hyp_pgd - free HYP boot page tables
392 * Free the HYP boot page tables. The bounce page is also freed.
394 void free_boot_hyp_pgd(void)
396 mutex_lock(&kvm_hyp_pgd_mutex
);
399 unmap_range(NULL
, boot_hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
400 unmap_range(NULL
, boot_hyp_pgd
, TRAMPOLINE_VA
, PAGE_SIZE
);
401 free_pages((unsigned long)boot_hyp_pgd
, hyp_pgd_order
);
406 unmap_range(NULL
, hyp_pgd
, TRAMPOLINE_VA
, PAGE_SIZE
);
408 free_page((unsigned long)init_bounce_page
);
409 init_bounce_page
= NULL
;
411 mutex_unlock(&kvm_hyp_pgd_mutex
);
415 * free_hyp_pgds - free Hyp-mode page tables
417 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
418 * therefore contains either mappings in the kernel memory area (above
419 * PAGE_OFFSET), or device mappings in the vmalloc range (from
420 * VMALLOC_START to VMALLOC_END).
422 * boot_hyp_pgd should only map two pages for the init code.
424 void free_hyp_pgds(void)
430 mutex_lock(&kvm_hyp_pgd_mutex
);
433 for (addr
= PAGE_OFFSET
; virt_addr_valid(addr
); addr
+= PGDIR_SIZE
)
434 unmap_range(NULL
, hyp_pgd
, KERN_TO_HYP(addr
), PGDIR_SIZE
);
435 for (addr
= VMALLOC_START
; is_vmalloc_addr((void*)addr
); addr
+= PGDIR_SIZE
)
436 unmap_range(NULL
, hyp_pgd
, KERN_TO_HYP(addr
), PGDIR_SIZE
);
438 free_pages((unsigned long)hyp_pgd
, hyp_pgd_order
);
442 mutex_unlock(&kvm_hyp_pgd_mutex
);
445 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
446 unsigned long end
, unsigned long pfn
,
454 pte
= pte_offset_kernel(pmd
, addr
);
455 kvm_set_pte(pte
, pfn_pte(pfn
, prot
));
456 get_page(virt_to_page(pte
));
457 kvm_flush_dcache_to_poc(pte
, sizeof(*pte
));
459 } while (addr
+= PAGE_SIZE
, addr
!= end
);
462 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
463 unsigned long end
, unsigned long pfn
,
468 unsigned long addr
, next
;
472 pmd
= pmd_offset(pud
, addr
);
474 BUG_ON(pmd_sect(*pmd
));
476 if (pmd_none(*pmd
)) {
477 pte
= pte_alloc_one_kernel(NULL
, addr
);
479 kvm_err("Cannot allocate Hyp pte\n");
482 pmd_populate_kernel(NULL
, pmd
, pte
);
483 get_page(virt_to_page(pmd
));
484 kvm_flush_dcache_to_poc(pmd
, sizeof(*pmd
));
487 next
= pmd_addr_end(addr
, end
);
489 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
490 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
491 } while (addr
= next
, addr
!= end
);
496 static int create_hyp_pud_mappings(pgd_t
*pgd
, unsigned long start
,
497 unsigned long end
, unsigned long pfn
,
502 unsigned long addr
, next
;
507 pud
= pud_offset(pgd
, addr
);
509 if (pud_none_or_clear_bad(pud
)) {
510 pmd
= pmd_alloc_one(NULL
, addr
);
512 kvm_err("Cannot allocate Hyp pmd\n");
515 pud_populate(NULL
, pud
, pmd
);
516 get_page(virt_to_page(pud
));
517 kvm_flush_dcache_to_poc(pud
, sizeof(*pud
));
520 next
= pud_addr_end(addr
, end
);
521 ret
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
524 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
525 } while (addr
= next
, addr
!= end
);
530 static int __create_hyp_mappings(pgd_t
*pgdp
,
531 unsigned long start
, unsigned long end
,
532 unsigned long pfn
, pgprot_t prot
)
536 unsigned long addr
, next
;
539 mutex_lock(&kvm_hyp_pgd_mutex
);
540 addr
= start
& PAGE_MASK
;
541 end
= PAGE_ALIGN(end
);
543 pgd
= pgdp
+ pgd_index(addr
);
545 if (pgd_none(*pgd
)) {
546 pud
= pud_alloc_one(NULL
, addr
);
548 kvm_err("Cannot allocate Hyp pud\n");
552 pgd_populate(NULL
, pgd
, pud
);
553 get_page(virt_to_page(pgd
));
554 kvm_flush_dcache_to_poc(pgd
, sizeof(*pgd
));
557 next
= pgd_addr_end(addr
, end
);
558 err
= create_hyp_pud_mappings(pgd
, addr
, next
, pfn
, prot
);
561 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
562 } while (addr
= next
, addr
!= end
);
564 mutex_unlock(&kvm_hyp_pgd_mutex
);
568 static phys_addr_t
kvm_kaddr_to_phys(void *kaddr
)
570 if (!is_vmalloc_addr(kaddr
)) {
571 BUG_ON(!virt_addr_valid(kaddr
));
574 return page_to_phys(vmalloc_to_page(kaddr
)) +
575 offset_in_page(kaddr
);
580 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
581 * @from: The virtual kernel start address of the range
582 * @to: The virtual kernel end address of the range (exclusive)
584 * The same virtual address as the kernel virtual address is also used
585 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
588 int create_hyp_mappings(void *from
, void *to
)
590 phys_addr_t phys_addr
;
591 unsigned long virt_addr
;
592 unsigned long start
= KERN_TO_HYP((unsigned long)from
);
593 unsigned long end
= KERN_TO_HYP((unsigned long)to
);
595 start
= start
& PAGE_MASK
;
596 end
= PAGE_ALIGN(end
);
598 for (virt_addr
= start
; virt_addr
< end
; virt_addr
+= PAGE_SIZE
) {
601 phys_addr
= kvm_kaddr_to_phys(from
+ virt_addr
- start
);
602 err
= __create_hyp_mappings(hyp_pgd
, virt_addr
,
603 virt_addr
+ PAGE_SIZE
,
604 __phys_to_pfn(phys_addr
),
614 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
615 * @from: The kernel start VA of the range
616 * @to: The kernel end VA of the range (exclusive)
617 * @phys_addr: The physical start address which gets mapped
619 * The resulting HYP VA is the same as the kernel VA, modulo
622 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t phys_addr
)
624 unsigned long start
= KERN_TO_HYP((unsigned long)from
);
625 unsigned long end
= KERN_TO_HYP((unsigned long)to
);
627 /* Check for a valid kernel IO mapping */
628 if (!is_vmalloc_addr(from
) || !is_vmalloc_addr(to
- 1))
631 return __create_hyp_mappings(hyp_pgd
, start
, end
,
632 __phys_to_pfn(phys_addr
), PAGE_HYP_DEVICE
);
636 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
637 * @kvm: The KVM struct pointer for the VM.
639 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
640 * support either full 40-bit input addresses or limited to 32-bit input
641 * addresses). Clears the allocated pages.
643 * Note we don't need locking here as this is only called when the VM is
644 * created, which can only be done once.
646 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
651 if (kvm
->arch
.pgd
!= NULL
) {
652 kvm_err("kvm_arch already initialized?\n");
656 if (KVM_PREALLOC_LEVEL
> 0) {
658 * Allocate fake pgd for the page table manipulation macros to
659 * work. This is not used by the hardware and we have no
660 * alignment requirement for this allocation.
662 pgd
= (pgd_t
*)kmalloc(PTRS_PER_S2_PGD
* sizeof(pgd_t
),
663 GFP_KERNEL
| __GFP_ZERO
);
666 * Allocate actual first-level Stage-2 page table used by the
667 * hardware for Stage-2 page table walks.
669 pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, S2_PGD_ORDER
);
675 ret
= kvm_prealloc_hwpgd(kvm
, pgd
);
683 if (KVM_PREALLOC_LEVEL
> 0)
686 free_pages((unsigned long)pgd
, S2_PGD_ORDER
);
691 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
692 * @kvm: The VM pointer
693 * @start: The intermediate physical base address of the range to unmap
694 * @size: The size of the area to unmap
696 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
697 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
698 * destroying the VM), otherwise another faulting VCPU may come in and mess
699 * with things behind our backs.
701 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
703 unmap_range(kvm
, kvm
->arch
.pgd
, start
, size
);
706 static void stage2_unmap_memslot(struct kvm
*kvm
,
707 struct kvm_memory_slot
*memslot
)
709 hva_t hva
= memslot
->userspace_addr
;
710 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
711 phys_addr_t size
= PAGE_SIZE
* memslot
->npages
;
712 hva_t reg_end
= hva
+ size
;
715 * A memory region could potentially cover multiple VMAs, and any holes
716 * between them, so iterate over all of them to find out if we should
719 * +--------------------------------------------+
720 * +---------------+----------------+ +----------------+
721 * | : VMA 1 | VMA 2 | | VMA 3 : |
722 * +---------------+----------------+ +----------------+
724 * +--------------------------------------------+
727 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
728 hva_t vm_start
, vm_end
;
730 if (!vma
|| vma
->vm_start
>= reg_end
)
734 * Take the intersection of this VMA with the memory region
736 vm_start
= max(hva
, vma
->vm_start
);
737 vm_end
= min(reg_end
, vma
->vm_end
);
739 if (!(vma
->vm_flags
& VM_PFNMAP
)) {
740 gpa_t gpa
= addr
+ (vm_start
- memslot
->userspace_addr
);
741 unmap_stage2_range(kvm
, gpa
, vm_end
- vm_start
);
744 } while (hva
< reg_end
);
748 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
749 * @kvm: The struct kvm pointer
751 * Go through the memregions and unmap any reguler RAM
752 * backing memory already mapped to the VM.
754 void stage2_unmap_vm(struct kvm
*kvm
)
756 struct kvm_memslots
*slots
;
757 struct kvm_memory_slot
*memslot
;
760 idx
= srcu_read_lock(&kvm
->srcu
);
761 spin_lock(&kvm
->mmu_lock
);
763 slots
= kvm_memslots(kvm
);
764 kvm_for_each_memslot(memslot
, slots
)
765 stage2_unmap_memslot(kvm
, memslot
);
767 spin_unlock(&kvm
->mmu_lock
);
768 srcu_read_unlock(&kvm
->srcu
, idx
);
772 * kvm_free_stage2_pgd - free all stage-2 tables
773 * @kvm: The KVM struct pointer for the VM.
775 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
776 * underlying level-2 and level-3 tables before freeing the actual level-1 table
777 * and setting the struct pointer to NULL.
779 * Note we don't need locking here as this is only called when the VM is
780 * destroyed, which can only be done once.
782 void kvm_free_stage2_pgd(struct kvm
*kvm
)
784 if (kvm
->arch
.pgd
== NULL
)
787 unmap_stage2_range(kvm
, 0, KVM_PHYS_SIZE
);
789 if (KVM_PREALLOC_LEVEL
> 0)
790 kfree(kvm
->arch
.pgd
);
792 free_pages((unsigned long)kvm
->arch
.pgd
, S2_PGD_ORDER
);
793 kvm
->arch
.pgd
= NULL
;
796 static pud_t
*stage2_get_pud(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
802 pgd
= kvm
->arch
.pgd
+ pgd_index(addr
);
803 if (WARN_ON(pgd_none(*pgd
))) {
806 pud
= mmu_memory_cache_alloc(cache
);
807 pgd_populate(NULL
, pgd
, pud
);
808 get_page(virt_to_page(pgd
));
811 return pud_offset(pgd
, addr
);
814 static pmd_t
*stage2_get_pmd(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
820 pud
= stage2_get_pud(kvm
, cache
, addr
);
821 if (pud_none(*pud
)) {
824 pmd
= mmu_memory_cache_alloc(cache
);
825 pud_populate(NULL
, pud
, pmd
);
826 get_page(virt_to_page(pud
));
829 return pmd_offset(pud
, addr
);
832 static int stage2_set_pmd_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
833 *cache
, phys_addr_t addr
, const pmd_t
*new_pmd
)
837 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
841 * Mapping in huge pages should only happen through a fault. If a
842 * page is merged into a transparent huge page, the individual
843 * subpages of that huge page should be unmapped through MMU
844 * notifiers before we get here.
846 * Merging of CompoundPages is not supported; they should become
847 * splitting first, unmapped, merged, and mapped back in on-demand.
849 VM_BUG_ON(pmd_present(*pmd
) && pmd_pfn(*pmd
) != pmd_pfn(*new_pmd
));
852 kvm_set_pmd(pmd
, *new_pmd
);
853 if (pmd_present(old_pmd
))
854 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
856 get_page(virt_to_page(pmd
));
860 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
861 phys_addr_t addr
, const pte_t
*new_pte
,
866 bool iomap
= flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
867 bool logging_active
= flags
& KVM_S2_FLAG_LOGGING_ACTIVE
;
869 VM_BUG_ON(logging_active
&& !cache
);
871 /* Create stage-2 page table mapping - Levels 0 and 1 */
872 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
875 * Ignore calls from kvm_set_spte_hva for unallocated
882 * While dirty page logging - dissolve huge PMD, then continue on to
886 stage2_dissolve_pmd(kvm
, addr
, pmd
);
888 /* Create stage-2 page mappings - Level 2 */
889 if (pmd_none(*pmd
)) {
891 return 0; /* ignore calls from kvm_set_spte_hva */
892 pte
= mmu_memory_cache_alloc(cache
);
894 pmd_populate_kernel(NULL
, pmd
, pte
);
895 get_page(virt_to_page(pmd
));
898 pte
= pte_offset_kernel(pmd
, addr
);
900 if (iomap
&& pte_present(*pte
))
903 /* Create 2nd stage page table mapping - Level 3 */
905 kvm_set_pte(pte
, *new_pte
);
906 if (pte_present(old_pte
))
907 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
909 get_page(virt_to_page(pte
));
915 * kvm_phys_addr_ioremap - map a device range to guest IPA
917 * @kvm: The KVM pointer
918 * @guest_ipa: The IPA at which to insert the mapping
919 * @pa: The physical address of the device
920 * @size: The size of the mapping
922 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
923 phys_addr_t pa
, unsigned long size
, bool writable
)
925 phys_addr_t addr
, end
;
928 struct kvm_mmu_memory_cache cache
= { 0, };
930 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
931 pfn
= __phys_to_pfn(pa
);
933 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
934 pte_t pte
= pfn_pte(pfn
, PAGE_S2_DEVICE
);
937 kvm_set_s2pte_writable(&pte
);
939 ret
= mmu_topup_memory_cache(&cache
, KVM_MMU_CACHE_MIN_PAGES
,
943 spin_lock(&kvm
->mmu_lock
);
944 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
,
945 KVM_S2PTE_FLAG_IS_IOMAP
);
946 spin_unlock(&kvm
->mmu_lock
);
954 mmu_free_memory_cache(&cache
);
958 static bool transparent_hugepage_adjust(pfn_t
*pfnp
, phys_addr_t
*ipap
)
961 gfn_t gfn
= *ipap
>> PAGE_SHIFT
;
963 if (PageTransCompound(pfn_to_page(pfn
))) {
966 * The address we faulted on is backed by a transparent huge
967 * page. However, because we map the compound huge page and
968 * not the individual tail page, we need to transfer the
969 * refcount to the head page. We have to be careful that the
970 * THP doesn't start to split while we are adjusting the
973 * We are sure this doesn't happen, because mmu_notifier_retry
974 * was successful and we are holding the mmu_lock, so if this
975 * THP is trying to split, it will be blocked in the mmu
976 * notifier before touching any of the pages, specifically
977 * before being able to call __split_huge_page_refcount().
979 * We can therefore safely transfer the refcount from PG_tail
980 * to PG_head and switch the pfn from a tail page to the head
983 mask
= PTRS_PER_PMD
- 1;
984 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
987 kvm_release_pfn_clean(pfn
);
999 static bool kvm_is_write_fault(struct kvm_vcpu
*vcpu
)
1001 if (kvm_vcpu_trap_is_iabt(vcpu
))
1004 return kvm_vcpu_dabt_iswrite(vcpu
);
1007 static bool kvm_is_device_pfn(unsigned long pfn
)
1009 return !pfn_valid(pfn
);
1013 * stage2_wp_ptes - write protect PMD range
1014 * @pmd: pointer to pmd entry
1015 * @addr: range start address
1016 * @end: range end address
1018 static void stage2_wp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
1022 pte
= pte_offset_kernel(pmd
, addr
);
1024 if (!pte_none(*pte
)) {
1025 if (!kvm_s2pte_readonly(pte
))
1026 kvm_set_s2pte_readonly(pte
);
1028 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1032 * stage2_wp_pmds - write protect PUD range
1033 * @pud: pointer to pud entry
1034 * @addr: range start address
1035 * @end: range end address
1037 static void stage2_wp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
1042 pmd
= pmd_offset(pud
, addr
);
1045 next
= kvm_pmd_addr_end(addr
, end
);
1046 if (!pmd_none(*pmd
)) {
1047 if (kvm_pmd_huge(*pmd
)) {
1048 if (!kvm_s2pmd_readonly(pmd
))
1049 kvm_set_s2pmd_readonly(pmd
);
1051 stage2_wp_ptes(pmd
, addr
, next
);
1054 } while (pmd
++, addr
= next
, addr
!= end
);
1058 * stage2_wp_puds - write protect PGD range
1059 * @pgd: pointer to pgd entry
1060 * @addr: range start address
1061 * @end: range end address
1063 * Process PUD entries, for a huge PUD we cause a panic.
1065 static void stage2_wp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
1070 pud
= pud_offset(pgd
, addr
);
1072 next
= kvm_pud_addr_end(addr
, end
);
1073 if (!pud_none(*pud
)) {
1074 /* TODO:PUD not supported, revisit later if supported */
1075 BUG_ON(kvm_pud_huge(*pud
));
1076 stage2_wp_pmds(pud
, addr
, next
);
1078 } while (pud
++, addr
= next
, addr
!= end
);
1082 * stage2_wp_range() - write protect stage2 memory region range
1083 * @kvm: The KVM pointer
1084 * @addr: Start address of range
1085 * @end: End address of range
1087 static void stage2_wp_range(struct kvm
*kvm
, phys_addr_t addr
, phys_addr_t end
)
1092 pgd
= kvm
->arch
.pgd
+ pgd_index(addr
);
1095 * Release kvm_mmu_lock periodically if the memory region is
1096 * large. Otherwise, we may see kernel panics with
1097 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1098 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1099 * will also starve other vCPUs.
1101 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
))
1102 cond_resched_lock(&kvm
->mmu_lock
);
1104 next
= kvm_pgd_addr_end(addr
, end
);
1105 if (pgd_present(*pgd
))
1106 stage2_wp_puds(pgd
, addr
, next
);
1107 } while (pgd
++, addr
= next
, addr
!= end
);
1111 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1112 * @kvm: The KVM pointer
1113 * @slot: The memory slot to write protect
1115 * Called to start logging dirty pages after memory region
1116 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1117 * all present PMD and PTEs are write protected in the memory region.
1118 * Afterwards read of dirty page log can be called.
1120 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1121 * serializing operations for VM memory regions.
1123 void kvm_mmu_wp_memory_region(struct kvm
*kvm
, int slot
)
1125 struct kvm_memory_slot
*memslot
= id_to_memslot(kvm
->memslots
, slot
);
1126 phys_addr_t start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1127 phys_addr_t end
= (memslot
->base_gfn
+ memslot
->npages
) << PAGE_SHIFT
;
1129 spin_lock(&kvm
->mmu_lock
);
1130 stage2_wp_range(kvm
, start
, end
);
1131 spin_unlock(&kvm
->mmu_lock
);
1132 kvm_flush_remote_tlbs(kvm
);
1136 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1137 * @kvm: The KVM pointer
1138 * @slot: The memory slot associated with mask
1139 * @gfn_offset: The gfn offset in memory slot
1140 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1141 * slot to be write protected
1143 * Walks bits set in mask write protects the associated pte's. Caller must
1144 * acquire kvm_mmu_lock.
1146 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1147 struct kvm_memory_slot
*slot
,
1148 gfn_t gfn_offset
, unsigned long mask
)
1150 phys_addr_t base_gfn
= slot
->base_gfn
+ gfn_offset
;
1151 phys_addr_t start
= (base_gfn
+ __ffs(mask
)) << PAGE_SHIFT
;
1152 phys_addr_t end
= (base_gfn
+ __fls(mask
) + 1) << PAGE_SHIFT
;
1154 stage2_wp_range(kvm
, start
, end
);
1158 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1161 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1162 * enable dirty logging for them.
1164 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1165 struct kvm_memory_slot
*slot
,
1166 gfn_t gfn_offset
, unsigned long mask
)
1168 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1171 static void coherent_cache_guest_page(struct kvm_vcpu
*vcpu
, pfn_t pfn
,
1172 unsigned long size
, bool uncached
)
1174 __coherent_cache_guest_page(vcpu
, pfn
, size
, uncached
);
1177 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
1178 struct kvm_memory_slot
*memslot
, unsigned long hva
,
1179 unsigned long fault_status
)
1182 bool write_fault
, writable
, hugetlb
= false, force_pte
= false;
1183 unsigned long mmu_seq
;
1184 gfn_t gfn
= fault_ipa
>> PAGE_SHIFT
;
1185 struct kvm
*kvm
= vcpu
->kvm
;
1186 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
1187 struct vm_area_struct
*vma
;
1189 pgprot_t mem_type
= PAGE_S2
;
1190 bool fault_ipa_uncached
;
1191 bool logging_active
= memslot_is_logging(memslot
);
1192 unsigned long flags
= 0;
1194 write_fault
= kvm_is_write_fault(vcpu
);
1195 if (fault_status
== FSC_PERM
&& !write_fault
) {
1196 kvm_err("Unexpected L2 read permission error\n");
1200 /* Let's check if we will get back a huge page backed by hugetlbfs */
1201 down_read(¤t
->mm
->mmap_sem
);
1202 vma
= find_vma_intersection(current
->mm
, hva
, hva
+ 1);
1203 if (unlikely(!vma
)) {
1204 kvm_err("Failed to find VMA for hva 0x%lx\n", hva
);
1205 up_read(¤t
->mm
->mmap_sem
);
1209 if (is_vm_hugetlb_page(vma
) && !logging_active
) {
1211 gfn
= (fault_ipa
& PMD_MASK
) >> PAGE_SHIFT
;
1214 * Pages belonging to memslots that don't have the same
1215 * alignment for userspace and IPA cannot be mapped using
1216 * block descriptors even if the pages belong to a THP for
1217 * the process, because the stage-2 block descriptor will
1218 * cover more than a single THP and we loose atomicity for
1219 * unmapping, updates, and splits of the THP or other pages
1220 * in the stage-2 block range.
1222 if ((memslot
->userspace_addr
& ~PMD_MASK
) !=
1223 ((memslot
->base_gfn
<< PAGE_SHIFT
) & ~PMD_MASK
))
1226 up_read(¤t
->mm
->mmap_sem
);
1228 /* We need minimum second+third level pages */
1229 ret
= mmu_topup_memory_cache(memcache
, KVM_MMU_CACHE_MIN_PAGES
,
1234 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1236 * Ensure the read of mmu_notifier_seq happens before we call
1237 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1238 * the page we just got a reference to gets unmapped before we have a
1239 * chance to grab the mmu_lock, which ensure that if the page gets
1240 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1241 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1242 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1246 pfn
= gfn_to_pfn_prot(kvm
, gfn
, write_fault
, &writable
);
1247 if (is_error_pfn(pfn
))
1250 if (kvm_is_device_pfn(pfn
)) {
1251 mem_type
= PAGE_S2_DEVICE
;
1252 flags
|= KVM_S2PTE_FLAG_IS_IOMAP
;
1253 } else if (logging_active
) {
1255 * Faults on pages in a memslot with logging enabled
1256 * should not be mapped with huge pages (it introduces churn
1257 * and performance degradation), so force a pte mapping.
1260 flags
|= KVM_S2_FLAG_LOGGING_ACTIVE
;
1263 * Only actually map the page as writable if this was a write
1270 spin_lock(&kvm
->mmu_lock
);
1271 if (mmu_notifier_retry(kvm
, mmu_seq
))
1274 if (!hugetlb
&& !force_pte
)
1275 hugetlb
= transparent_hugepage_adjust(&pfn
, &fault_ipa
);
1277 fault_ipa_uncached
= memslot
->flags
& KVM_MEMSLOT_INCOHERENT
;
1280 pmd_t new_pmd
= pfn_pmd(pfn
, mem_type
);
1281 new_pmd
= pmd_mkhuge(new_pmd
);
1283 kvm_set_s2pmd_writable(&new_pmd
);
1284 kvm_set_pfn_dirty(pfn
);
1286 coherent_cache_guest_page(vcpu
, pfn
, PMD_SIZE
, fault_ipa_uncached
);
1287 ret
= stage2_set_pmd_huge(kvm
, memcache
, fault_ipa
, &new_pmd
);
1289 pte_t new_pte
= pfn_pte(pfn
, mem_type
);
1292 kvm_set_s2pte_writable(&new_pte
);
1293 kvm_set_pfn_dirty(pfn
);
1294 mark_page_dirty(kvm
, gfn
);
1296 coherent_cache_guest_page(vcpu
, pfn
, PAGE_SIZE
, fault_ipa_uncached
);
1297 ret
= stage2_set_pte(kvm
, memcache
, fault_ipa
, &new_pte
, flags
);
1301 spin_unlock(&kvm
->mmu_lock
);
1302 kvm_release_pfn_clean(pfn
);
1307 * kvm_handle_guest_abort - handles all 2nd stage aborts
1308 * @vcpu: the VCPU pointer
1309 * @run: the kvm_run structure
1311 * Any abort that gets to the host is almost guaranteed to be caused by a
1312 * missing second stage translation table entry, which can mean that either the
1313 * guest simply needs more memory and we must allocate an appropriate page or it
1314 * can mean that the guest tried to access I/O memory, which is emulated by user
1315 * space. The distinction is based on the IPA causing the fault and whether this
1316 * memory region has been registered as standard RAM by user space.
1318 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1320 unsigned long fault_status
;
1321 phys_addr_t fault_ipa
;
1322 struct kvm_memory_slot
*memslot
;
1324 bool is_iabt
, write_fault
, writable
;
1328 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
1329 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
1331 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
1332 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
1334 /* Check the stage-2 fault is trans. fault or write fault */
1335 fault_status
= kvm_vcpu_trap_get_fault_type(vcpu
);
1336 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
) {
1337 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1338 kvm_vcpu_trap_get_class(vcpu
),
1339 (unsigned long)kvm_vcpu_trap_get_fault(vcpu
),
1340 (unsigned long)kvm_vcpu_get_hsr(vcpu
));
1344 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1346 gfn
= fault_ipa
>> PAGE_SHIFT
;
1347 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
1348 hva
= gfn_to_hva_memslot_prot(memslot
, gfn
, &writable
);
1349 write_fault
= kvm_is_write_fault(vcpu
);
1350 if (kvm_is_error_hva(hva
) || (write_fault
&& !writable
)) {
1352 /* Prefetch Abort on I/O address */
1353 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
1359 * The IPA is reported as [MAX:12], so we need to
1360 * complement it with the bottom 12 bits from the
1361 * faulting VA. This is always 12 bits, irrespective
1364 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
1365 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
1369 /* Userspace should not be able to register out-of-bounds IPAs */
1370 VM_BUG_ON(fault_ipa
>= KVM_PHYS_SIZE
);
1372 ret
= user_mem_abort(vcpu
, fault_ipa
, memslot
, hva
, fault_status
);
1376 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1380 static void handle_hva_to_gpa(struct kvm
*kvm
,
1381 unsigned long start
,
1383 void (*handler
)(struct kvm
*kvm
,
1384 gpa_t gpa
, void *data
),
1387 struct kvm_memslots
*slots
;
1388 struct kvm_memory_slot
*memslot
;
1390 slots
= kvm_memslots(kvm
);
1392 /* we only care about the pages that the guest sees */
1393 kvm_for_each_memslot(memslot
, slots
) {
1394 unsigned long hva_start
, hva_end
;
1397 hva_start
= max(start
, memslot
->userspace_addr
);
1398 hva_end
= min(end
, memslot
->userspace_addr
+
1399 (memslot
->npages
<< PAGE_SHIFT
));
1400 if (hva_start
>= hva_end
)
1404 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1405 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1407 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
1408 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1410 for (; gfn
< gfn_end
; ++gfn
) {
1411 gpa_t gpa
= gfn
<< PAGE_SHIFT
;
1412 handler(kvm
, gpa
, data
);
1417 static void kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1419 unmap_stage2_range(kvm
, gpa
, PAGE_SIZE
);
1422 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1424 unsigned long end
= hva
+ PAGE_SIZE
;
1429 trace_kvm_unmap_hva(hva
);
1430 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_unmap_hva_handler
, NULL
);
1434 int kvm_unmap_hva_range(struct kvm
*kvm
,
1435 unsigned long start
, unsigned long end
)
1440 trace_kvm_unmap_hva_range(start
, end
);
1441 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
1445 static void kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1447 pte_t
*pte
= (pte_t
*)data
;
1450 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1451 * flag clear because MMU notifiers will have unmapped a huge PMD before
1452 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1453 * therefore stage2_set_pte() never needs to clear out a huge PMD
1454 * through this calling path.
1456 stage2_set_pte(kvm
, NULL
, gpa
, pte
, 0);
1460 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1462 unsigned long end
= hva
+ PAGE_SIZE
;
1468 trace_kvm_set_spte_hva(hva
);
1469 stage2_pte
= pfn_pte(pte_pfn(pte
), PAGE_S2
);
1470 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
1473 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
1475 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
1478 phys_addr_t
kvm_mmu_get_httbr(void)
1480 return virt_to_phys(hyp_pgd
);
1483 phys_addr_t
kvm_mmu_get_boot_httbr(void)
1485 return virt_to_phys(boot_hyp_pgd
);
1488 phys_addr_t
kvm_get_idmap_vector(void)
1490 return hyp_idmap_vector
;
1493 int kvm_mmu_init(void)
1497 hyp_idmap_start
= kvm_virt_to_phys(__hyp_idmap_text_start
);
1498 hyp_idmap_end
= kvm_virt_to_phys(__hyp_idmap_text_end
);
1499 hyp_idmap_vector
= kvm_virt_to_phys(__kvm_hyp_init
);
1501 if ((hyp_idmap_start
^ hyp_idmap_end
) & PAGE_MASK
) {
1503 * Our init code is crossing a page boundary. Allocate
1504 * a bounce page, copy the code over and use that.
1506 size_t len
= __hyp_idmap_text_end
- __hyp_idmap_text_start
;
1507 phys_addr_t phys_base
;
1509 init_bounce_page
= (void *)__get_free_page(GFP_KERNEL
);
1510 if (!init_bounce_page
) {
1511 kvm_err("Couldn't allocate HYP init bounce page\n");
1516 memcpy(init_bounce_page
, __hyp_idmap_text_start
, len
);
1518 * Warning: the code we just copied to the bounce page
1519 * must be flushed to the point of coherency.
1520 * Otherwise, the data may be sitting in L2, and HYP
1521 * mode won't be able to observe it as it runs with
1522 * caches off at that point.
1524 kvm_flush_dcache_to_poc(init_bounce_page
, len
);
1526 phys_base
= kvm_virt_to_phys(init_bounce_page
);
1527 hyp_idmap_vector
+= phys_base
- hyp_idmap_start
;
1528 hyp_idmap_start
= phys_base
;
1529 hyp_idmap_end
= phys_base
+ len
;
1531 kvm_info("Using HYP init bounce page @%lx\n",
1532 (unsigned long)phys_base
);
1535 hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1536 boot_hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1538 if (!hyp_pgd
|| !boot_hyp_pgd
) {
1539 kvm_err("Hyp mode PGD not allocated\n");
1544 /* Create the idmap in the boot page tables */
1545 err
= __create_hyp_mappings(boot_hyp_pgd
,
1546 hyp_idmap_start
, hyp_idmap_end
,
1547 __phys_to_pfn(hyp_idmap_start
),
1551 kvm_err("Failed to idmap %lx-%lx\n",
1552 hyp_idmap_start
, hyp_idmap_end
);
1556 /* Map the very same page at the trampoline VA */
1557 err
= __create_hyp_mappings(boot_hyp_pgd
,
1558 TRAMPOLINE_VA
, TRAMPOLINE_VA
+ PAGE_SIZE
,
1559 __phys_to_pfn(hyp_idmap_start
),
1562 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1567 /* Map the same page again into the runtime page tables */
1568 err
= __create_hyp_mappings(hyp_pgd
,
1569 TRAMPOLINE_VA
, TRAMPOLINE_VA
+ PAGE_SIZE
,
1570 __phys_to_pfn(hyp_idmap_start
),
1573 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1584 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
1585 struct kvm_userspace_memory_region
*mem
,
1586 const struct kvm_memory_slot
*old
,
1587 enum kvm_mr_change change
)
1590 * At this point memslot has been committed and there is an
1591 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1592 * memory slot is write protected.
1594 if (change
!= KVM_MR_DELETE
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1595 kvm_mmu_wp_memory_region(kvm
, mem
->slot
);
1598 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
1599 struct kvm_memory_slot
*memslot
,
1600 struct kvm_userspace_memory_region
*mem
,
1601 enum kvm_mr_change change
)
1603 hva_t hva
= mem
->userspace_addr
;
1604 hva_t reg_end
= hva
+ mem
->memory_size
;
1605 bool writable
= !(mem
->flags
& KVM_MEM_READONLY
);
1608 if (change
!= KVM_MR_CREATE
&& change
!= KVM_MR_MOVE
&&
1609 change
!= KVM_MR_FLAGS_ONLY
)
1613 * Prevent userspace from creating a memory region outside of the IPA
1614 * space addressable by the KVM guest IPA space.
1616 if (memslot
->base_gfn
+ memslot
->npages
>=
1617 (KVM_PHYS_SIZE
>> PAGE_SHIFT
))
1621 * A memory region could potentially cover multiple VMAs, and any holes
1622 * between them, so iterate over all of them to find out if we can map
1623 * any of them right now.
1625 * +--------------------------------------------+
1626 * +---------------+----------------+ +----------------+
1627 * | : VMA 1 | VMA 2 | | VMA 3 : |
1628 * +---------------+----------------+ +----------------+
1630 * +--------------------------------------------+
1633 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
1634 hva_t vm_start
, vm_end
;
1636 if (!vma
|| vma
->vm_start
>= reg_end
)
1640 * Mapping a read-only VMA is only allowed if the
1641 * memory region is configured as read-only.
1643 if (writable
&& !(vma
->vm_flags
& VM_WRITE
)) {
1649 * Take the intersection of this VMA with the memory region
1651 vm_start
= max(hva
, vma
->vm_start
);
1652 vm_end
= min(reg_end
, vma
->vm_end
);
1654 if (vma
->vm_flags
& VM_PFNMAP
) {
1655 gpa_t gpa
= mem
->guest_phys_addr
+
1656 (vm_start
- mem
->userspace_addr
);
1657 phys_addr_t pa
= (vma
->vm_pgoff
<< PAGE_SHIFT
) +
1658 vm_start
- vma
->vm_start
;
1660 /* IO region dirty page logging not allowed */
1661 if (memslot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1664 ret
= kvm_phys_addr_ioremap(kvm
, gpa
, pa
,
1671 } while (hva
< reg_end
);
1673 if (change
== KVM_MR_FLAGS_ONLY
)
1676 spin_lock(&kvm
->mmu_lock
);
1678 unmap_stage2_range(kvm
, mem
->guest_phys_addr
, mem
->memory_size
);
1680 stage2_flush_memslot(kvm
, memslot
);
1681 spin_unlock(&kvm
->mmu_lock
);
1685 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
1686 struct kvm_memory_slot
*dont
)
1690 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
1691 unsigned long npages
)
1694 * Readonly memslots are not incoherent with the caches by definition,
1695 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1696 * that the guest may consider devices and hence map as uncached.
1697 * To prevent incoherency issues in these cases, tag all readonly
1698 * regions as incoherent.
1700 if (slot
->flags
& KVM_MEM_READONLY
)
1701 slot
->flags
|= KVM_MEMSLOT_INCOHERENT
;
1705 void kvm_arch_memslots_updated(struct kvm
*kvm
)
1709 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
1713 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
1714 struct kvm_memory_slot
*slot
)
1716 gpa_t gpa
= slot
->base_gfn
<< PAGE_SHIFT
;
1717 phys_addr_t size
= slot
->npages
<< PAGE_SHIFT
;
1719 spin_lock(&kvm
->mmu_lock
);
1720 unmap_stage2_range(kvm
, gpa
, size
);
1721 spin_unlock(&kvm
->mmu_lock
);
1725 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1728 * - S/W ops are local to a CPU (not broadcast)
1729 * - We have line migration behind our back (speculation)
1730 * - System caches don't support S/W at all (damn!)
1732 * In the face of the above, the best we can do is to try and convert
1733 * S/W ops to VA ops. Because the guest is not allowed to infer the
1734 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1735 * which is a rather good thing for us.
1737 * Also, it is only used when turning caches on/off ("The expected
1738 * usage of the cache maintenance instructions that operate by set/way
1739 * is associated with the cache maintenance instructions associated
1740 * with the powerdown and powerup of caches, if this is required by
1741 * the implementation.").
1743 * We use the following policy:
1745 * - If we trap a S/W operation, we enable VM trapping to detect
1746 * caches being turned on/off, and do a full clean.
1748 * - We flush the caches on both caches being turned on and off.
1750 * - Once the caches are enabled, we stop trapping VM ops.
1752 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
)
1754 unsigned long hcr
= vcpu_get_hcr(vcpu
);
1757 * If this is the first time we do a S/W operation
1758 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1761 * Otherwise, rely on the VM trapping to wait for the MMU +
1762 * Caches to be turned off. At that point, we'll be able to
1763 * clean the caches again.
1765 if (!(hcr
& HCR_TVM
)) {
1766 trace_kvm_set_way_flush(*vcpu_pc(vcpu
),
1767 vcpu_has_cache_enabled(vcpu
));
1768 stage2_flush_vm(vcpu
->kvm
);
1769 vcpu_set_hcr(vcpu
, hcr
| HCR_TVM
);
1773 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
)
1775 bool now_enabled
= vcpu_has_cache_enabled(vcpu
);
1778 * If switching the MMU+caches on, need to invalidate the caches.
1779 * If switching it off, need to clean the caches.
1780 * Clean + invalidate does the trick always.
1782 if (now_enabled
!= was_enabled
)
1783 stage2_flush_vm(vcpu
->kvm
);
1785 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1787 vcpu_set_hcr(vcpu
, vcpu_get_hcr(vcpu
) & ~HCR_TVM
);
1789 trace_kvm_toggle_cache(*vcpu_pc(vcpu
), was_enabled
, now_enabled
);