ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / atm / nicstar.c
blobb7e1cc0a97c86aac6c47cb5d459f63313a9beb45
1 /*
2 * nicstar.c
4 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
7 * It was taken from the frle-0.22 device driver.
8 * As the file doesn't have a copyright notice, in the file
9 * nicstarmac.copyright I put the copyright notice from the
10 * frle-0.22 device driver.
11 * Some code is based on the nicstar driver by M. Welsh.
13 * Author: Rui Prior (rprior@inescn.pt)
14 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
17 * (C) INESC 1999
21 * IMPORTANT INFORMATION
23 * There are currently three types of spinlocks:
25 * 1 - Per card interrupt spinlock (to protect structures and such)
26 * 2 - Per SCQ scq spinlock
27 * 3 - Per card resource spinlock (to access registers, etc.)
29 * These must NEVER be grabbed in reverse order.
33 /* Header files */
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/skbuff.h>
38 #include <linux/atmdev.h>
39 #include <linux/atm.h>
40 #include <linux/pci.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/types.h>
43 #include <linux/string.h>
44 #include <linux/delay.h>
45 #include <linux/init.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48 #include <linux/interrupt.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <linux/idr.h>
52 #include <asm/io.h>
53 #include <asm/uaccess.h>
54 #include <linux/atomic.h>
55 #include <linux/etherdevice.h>
56 #include "nicstar.h"
57 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
58 #include "suni.h"
59 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
60 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
61 #include "idt77105.h"
62 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 /* Additional code */
66 #include "nicstarmac.c"
68 /* Configurable parameters */
70 #undef PHY_LOOPBACK
71 #undef TX_DEBUG
72 #undef RX_DEBUG
73 #undef GENERAL_DEBUG
74 #undef EXTRA_DEBUG
76 #undef NS_USE_DESTRUCTORS /* For now keep this undefined unless you know
77 you're going to use only raw ATM */
79 /* Do not touch these */
81 #ifdef TX_DEBUG
82 #define TXPRINTK(args...) printk(args)
83 #else
84 #define TXPRINTK(args...)
85 #endif /* TX_DEBUG */
87 #ifdef RX_DEBUG
88 #define RXPRINTK(args...) printk(args)
89 #else
90 #define RXPRINTK(args...)
91 #endif /* RX_DEBUG */
93 #ifdef GENERAL_DEBUG
94 #define PRINTK(args...) printk(args)
95 #else
96 #define PRINTK(args...)
97 #endif /* GENERAL_DEBUG */
99 #ifdef EXTRA_DEBUG
100 #define XPRINTK(args...) printk(args)
101 #else
102 #define XPRINTK(args...)
103 #endif /* EXTRA_DEBUG */
105 /* Macros */
107 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
109 #define NS_DELAY mdelay(1)
111 #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
113 #ifndef ATM_SKB
114 #define ATM_SKB(s) (&(s)->atm)
115 #endif
117 #define scq_virt_to_bus(scq, p) \
118 (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
120 /* Function declarations */
122 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
123 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
124 int count);
125 static int ns_init_card(int i, struct pci_dev *pcidev);
126 static void ns_init_card_error(ns_dev * card, int error);
127 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
128 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
129 static void push_rxbufs(ns_dev *, struct sk_buff *);
130 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
131 static int ns_open(struct atm_vcc *vcc);
132 static void ns_close(struct atm_vcc *vcc);
133 static void fill_tst(ns_dev * card, int n, vc_map * vc);
134 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
135 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
136 struct sk_buff *skb);
137 static void process_tsq(ns_dev * card);
138 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
139 static void process_rsq(ns_dev * card);
140 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
141 #ifdef NS_USE_DESTRUCTORS
142 static void ns_sb_destructor(struct sk_buff *sb);
143 static void ns_lb_destructor(struct sk_buff *lb);
144 static void ns_hb_destructor(struct sk_buff *hb);
145 #endif /* NS_USE_DESTRUCTORS */
146 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
147 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
148 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
149 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
150 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
151 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
152 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
153 #ifdef EXTRA_DEBUG
154 static void which_list(ns_dev * card, struct sk_buff *skb);
155 #endif
156 static void ns_poll(unsigned long arg);
157 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
158 unsigned long addr);
159 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
161 /* Global variables */
163 static struct ns_dev *cards[NS_MAX_CARDS];
164 static unsigned num_cards;
165 static struct atmdev_ops atm_ops = {
166 .open = ns_open,
167 .close = ns_close,
168 .ioctl = ns_ioctl,
169 .send = ns_send,
170 .phy_put = ns_phy_put,
171 .phy_get = ns_phy_get,
172 .proc_read = ns_proc_read,
173 .owner = THIS_MODULE,
176 static struct timer_list ns_timer;
177 static char *mac[NS_MAX_CARDS];
178 module_param_array(mac, charp, NULL, 0);
179 MODULE_LICENSE("GPL");
181 /* Functions */
183 static int nicstar_init_one(struct pci_dev *pcidev,
184 const struct pci_device_id *ent)
186 static int index = -1;
187 unsigned int error;
189 index++;
190 cards[index] = NULL;
192 error = ns_init_card(index, pcidev);
193 if (error) {
194 cards[index--] = NULL; /* don't increment index */
195 goto err_out;
198 return 0;
199 err_out:
200 return -ENODEV;
203 static void nicstar_remove_one(struct pci_dev *pcidev)
205 int i, j;
206 ns_dev *card = pci_get_drvdata(pcidev);
207 struct sk_buff *hb;
208 struct sk_buff *iovb;
209 struct sk_buff *lb;
210 struct sk_buff *sb;
212 i = card->index;
214 if (cards[i] == NULL)
215 return;
217 if (card->atmdev->phy && card->atmdev->phy->stop)
218 card->atmdev->phy->stop(card->atmdev);
220 /* Stop everything */
221 writel(0x00000000, card->membase + CFG);
223 /* De-register device */
224 atm_dev_deregister(card->atmdev);
226 /* Disable PCI device */
227 pci_disable_device(pcidev);
229 /* Free up resources */
230 j = 0;
231 PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
232 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
233 dev_kfree_skb_any(hb);
234 j++;
236 PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
237 j = 0;
238 PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
239 card->iovpool.count);
240 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
241 dev_kfree_skb_any(iovb);
242 j++;
244 PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
245 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
246 dev_kfree_skb_any(lb);
247 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
248 dev_kfree_skb_any(sb);
249 free_scq(card, card->scq0, NULL);
250 for (j = 0; j < NS_FRSCD_NUM; j++) {
251 if (card->scd2vc[j] != NULL)
252 free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
254 idr_destroy(&card->idr);
255 dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
256 card->rsq.org, card->rsq.dma);
257 dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
258 card->tsq.org, card->tsq.dma);
259 free_irq(card->pcidev->irq, card);
260 iounmap(card->membase);
261 kfree(card);
264 static struct pci_device_id nicstar_pci_tbl[] = {
265 { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
266 {0,} /* terminate list */
269 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
271 static struct pci_driver nicstar_driver = {
272 .name = "nicstar",
273 .id_table = nicstar_pci_tbl,
274 .probe = nicstar_init_one,
275 .remove = nicstar_remove_one,
278 static int __init nicstar_init(void)
280 unsigned error = 0; /* Initialized to remove compile warning */
282 XPRINTK("nicstar: nicstar_init() called.\n");
284 error = pci_register_driver(&nicstar_driver);
286 TXPRINTK("nicstar: TX debug enabled.\n");
287 RXPRINTK("nicstar: RX debug enabled.\n");
288 PRINTK("nicstar: General debug enabled.\n");
289 #ifdef PHY_LOOPBACK
290 printk("nicstar: using PHY loopback.\n");
291 #endif /* PHY_LOOPBACK */
292 XPRINTK("nicstar: nicstar_init() returned.\n");
294 if (!error) {
295 init_timer(&ns_timer);
296 ns_timer.expires = jiffies + NS_POLL_PERIOD;
297 ns_timer.data = 0UL;
298 ns_timer.function = ns_poll;
299 add_timer(&ns_timer);
302 return error;
305 static void __exit nicstar_cleanup(void)
307 XPRINTK("nicstar: nicstar_cleanup() called.\n");
309 del_timer(&ns_timer);
311 pci_unregister_driver(&nicstar_driver);
313 XPRINTK("nicstar: nicstar_cleanup() returned.\n");
316 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
318 unsigned long flags;
319 u32 data;
320 sram_address <<= 2;
321 sram_address &= 0x0007FFFC; /* address must be dword aligned */
322 sram_address |= 0x50000000; /* SRAM read command */
323 spin_lock_irqsave(&card->res_lock, flags);
324 while (CMD_BUSY(card)) ;
325 writel(sram_address, card->membase + CMD);
326 while (CMD_BUSY(card)) ;
327 data = readl(card->membase + DR0);
328 spin_unlock_irqrestore(&card->res_lock, flags);
329 return data;
332 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
333 int count)
335 unsigned long flags;
336 int i, c;
337 count--; /* count range now is 0..3 instead of 1..4 */
338 c = count;
339 c <<= 2; /* to use increments of 4 */
340 spin_lock_irqsave(&card->res_lock, flags);
341 while (CMD_BUSY(card)) ;
342 for (i = 0; i <= c; i += 4)
343 writel(*(value++), card->membase + i);
344 /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
345 so card->membase + DR0 == card->membase */
346 sram_address <<= 2;
347 sram_address &= 0x0007FFFC;
348 sram_address |= (0x40000000 | count);
349 writel(sram_address, card->membase + CMD);
350 spin_unlock_irqrestore(&card->res_lock, flags);
353 static int ns_init_card(int i, struct pci_dev *pcidev)
355 int j;
356 struct ns_dev *card = NULL;
357 unsigned char pci_latency;
358 unsigned error;
359 u32 data;
360 u32 u32d[4];
361 u32 ns_cfg_rctsize;
362 int bcount;
363 unsigned long membase;
365 error = 0;
367 if (pci_enable_device(pcidev)) {
368 printk("nicstar%d: can't enable PCI device\n", i);
369 error = 2;
370 ns_init_card_error(card, error);
371 return error;
373 if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
374 printk(KERN_WARNING
375 "nicstar%d: No suitable DMA available.\n", i);
376 error = 2;
377 ns_init_card_error(card, error);
378 return error;
381 if ((card = kmalloc(sizeof(ns_dev), GFP_KERNEL)) == NULL) {
382 printk
383 ("nicstar%d: can't allocate memory for device structure.\n",
385 error = 2;
386 ns_init_card_error(card, error);
387 return error;
389 cards[i] = card;
390 spin_lock_init(&card->int_lock);
391 spin_lock_init(&card->res_lock);
393 pci_set_drvdata(pcidev, card);
395 card->index = i;
396 card->atmdev = NULL;
397 card->pcidev = pcidev;
398 membase = pci_resource_start(pcidev, 1);
399 card->membase = ioremap(membase, NS_IOREMAP_SIZE);
400 if (!card->membase) {
401 printk("nicstar%d: can't ioremap() membase.\n", i);
402 error = 3;
403 ns_init_card_error(card, error);
404 return error;
406 PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
408 pci_set_master(pcidev);
410 if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
411 printk("nicstar%d: can't read PCI latency timer.\n", i);
412 error = 6;
413 ns_init_card_error(card, error);
414 return error;
416 #ifdef NS_PCI_LATENCY
417 if (pci_latency < NS_PCI_LATENCY) {
418 PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
419 NS_PCI_LATENCY);
420 for (j = 1; j < 4; j++) {
421 if (pci_write_config_byte
422 (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
423 break;
425 if (j == 4) {
426 printk
427 ("nicstar%d: can't set PCI latency timer to %d.\n",
428 i, NS_PCI_LATENCY);
429 error = 7;
430 ns_init_card_error(card, error);
431 return error;
434 #endif /* NS_PCI_LATENCY */
436 /* Clear timer overflow */
437 data = readl(card->membase + STAT);
438 if (data & NS_STAT_TMROF)
439 writel(NS_STAT_TMROF, card->membase + STAT);
441 /* Software reset */
442 writel(NS_CFG_SWRST, card->membase + CFG);
443 NS_DELAY;
444 writel(0x00000000, card->membase + CFG);
446 /* PHY reset */
447 writel(0x00000008, card->membase + GP);
448 NS_DELAY;
449 writel(0x00000001, card->membase + GP);
450 NS_DELAY;
451 while (CMD_BUSY(card)) ;
452 writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
453 NS_DELAY;
455 /* Detect PHY type */
456 while (CMD_BUSY(card)) ;
457 writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
458 while (CMD_BUSY(card)) ;
459 data = readl(card->membase + DR0);
460 switch (data) {
461 case 0x00000009:
462 printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
463 card->max_pcr = ATM_25_PCR;
464 while (CMD_BUSY(card)) ;
465 writel(0x00000008, card->membase + DR0);
466 writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
467 /* Clear an eventual pending interrupt */
468 writel(NS_STAT_SFBQF, card->membase + STAT);
469 #ifdef PHY_LOOPBACK
470 while (CMD_BUSY(card)) ;
471 writel(0x00000022, card->membase + DR0);
472 writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
473 #endif /* PHY_LOOPBACK */
474 break;
475 case 0x00000030:
476 case 0x00000031:
477 printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
478 card->max_pcr = ATM_OC3_PCR;
479 #ifdef PHY_LOOPBACK
480 while (CMD_BUSY(card)) ;
481 writel(0x00000002, card->membase + DR0);
482 writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
483 #endif /* PHY_LOOPBACK */
484 break;
485 default:
486 printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
487 error = 8;
488 ns_init_card_error(card, error);
489 return error;
491 writel(0x00000000, card->membase + GP);
493 /* Determine SRAM size */
494 data = 0x76543210;
495 ns_write_sram(card, 0x1C003, &data, 1);
496 data = 0x89ABCDEF;
497 ns_write_sram(card, 0x14003, &data, 1);
498 if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
499 ns_read_sram(card, 0x1C003) == 0x76543210)
500 card->sram_size = 128;
501 else
502 card->sram_size = 32;
503 PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
505 card->rct_size = NS_MAX_RCTSIZE;
507 #if (NS_MAX_RCTSIZE == 4096)
508 if (card->sram_size == 128)
509 printk
510 ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
512 #elif (NS_MAX_RCTSIZE == 16384)
513 if (card->sram_size == 32) {
514 printk
515 ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
517 card->rct_size = 4096;
519 #else
520 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
521 #endif
523 card->vpibits = NS_VPIBITS;
524 if (card->rct_size == 4096)
525 card->vcibits = 12 - NS_VPIBITS;
526 else /* card->rct_size == 16384 */
527 card->vcibits = 14 - NS_VPIBITS;
529 /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
530 if (mac[i] == NULL)
531 nicstar_init_eprom(card->membase);
533 /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
534 writel(0x00000000, card->membase + VPM);
536 /* Initialize TSQ */
537 card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
538 NS_TSQSIZE + NS_TSQ_ALIGNMENT,
539 &card->tsq.dma, GFP_KERNEL);
540 if (card->tsq.org == NULL) {
541 printk("nicstar%d: can't allocate TSQ.\n", i);
542 error = 10;
543 ns_init_card_error(card, error);
544 return error;
546 card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
547 card->tsq.next = card->tsq.base;
548 card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
549 for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
550 ns_tsi_init(card->tsq.base + j);
551 writel(0x00000000, card->membase + TSQH);
552 writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
553 PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
555 /* Initialize RSQ */
556 card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
557 NS_RSQSIZE + NS_RSQ_ALIGNMENT,
558 &card->rsq.dma, GFP_KERNEL);
559 if (card->rsq.org == NULL) {
560 printk("nicstar%d: can't allocate RSQ.\n", i);
561 error = 11;
562 ns_init_card_error(card, error);
563 return error;
565 card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
566 card->rsq.next = card->rsq.base;
567 card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
568 for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
569 ns_rsqe_init(card->rsq.base + j);
570 writel(0x00000000, card->membase + RSQH);
571 writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
572 PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
574 /* Initialize SCQ0, the only VBR SCQ used */
575 card->scq1 = NULL;
576 card->scq2 = NULL;
577 card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
578 if (card->scq0 == NULL) {
579 printk("nicstar%d: can't get SCQ0.\n", i);
580 error = 12;
581 ns_init_card_error(card, error);
582 return error;
584 u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
585 u32d[1] = (u32) 0x00000000;
586 u32d[2] = (u32) 0xffffffff;
587 u32d[3] = (u32) 0x00000000;
588 ns_write_sram(card, NS_VRSCD0, u32d, 4);
589 ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
590 ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
591 card->scq0->scd = NS_VRSCD0;
592 PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
594 /* Initialize TSTs */
595 card->tst_addr = NS_TST0;
596 card->tst_free_entries = NS_TST_NUM_ENTRIES;
597 data = NS_TST_OPCODE_VARIABLE;
598 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
599 ns_write_sram(card, NS_TST0 + j, &data, 1);
600 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
601 ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
602 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
603 ns_write_sram(card, NS_TST1 + j, &data, 1);
604 data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
605 ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
606 for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
607 card->tste2vc[j] = NULL;
608 writel(NS_TST0 << 2, card->membase + TSTB);
610 /* Initialize RCT. AAL type is set on opening the VC. */
611 #ifdef RCQ_SUPPORT
612 u32d[0] = NS_RCTE_RAWCELLINTEN;
613 #else
614 u32d[0] = 0x00000000;
615 #endif /* RCQ_SUPPORT */
616 u32d[1] = 0x00000000;
617 u32d[2] = 0x00000000;
618 u32d[3] = 0xFFFFFFFF;
619 for (j = 0; j < card->rct_size; j++)
620 ns_write_sram(card, j * 4, u32d, 4);
622 memset(card->vcmap, 0, NS_MAX_RCTSIZE * sizeof(vc_map));
624 for (j = 0; j < NS_FRSCD_NUM; j++)
625 card->scd2vc[j] = NULL;
627 /* Initialize buffer levels */
628 card->sbnr.min = MIN_SB;
629 card->sbnr.init = NUM_SB;
630 card->sbnr.max = MAX_SB;
631 card->lbnr.min = MIN_LB;
632 card->lbnr.init = NUM_LB;
633 card->lbnr.max = MAX_LB;
634 card->iovnr.min = MIN_IOVB;
635 card->iovnr.init = NUM_IOVB;
636 card->iovnr.max = MAX_IOVB;
637 card->hbnr.min = MIN_HB;
638 card->hbnr.init = NUM_HB;
639 card->hbnr.max = MAX_HB;
641 card->sm_handle = NULL;
642 card->sm_addr = 0x00000000;
643 card->lg_handle = NULL;
644 card->lg_addr = 0x00000000;
646 card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
648 idr_init(&card->idr);
650 /* Pre-allocate some huge buffers */
651 skb_queue_head_init(&card->hbpool.queue);
652 card->hbpool.count = 0;
653 for (j = 0; j < NUM_HB; j++) {
654 struct sk_buff *hb;
655 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
656 if (hb == NULL) {
657 printk
658 ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
659 i, j, NUM_HB);
660 error = 13;
661 ns_init_card_error(card, error);
662 return error;
664 NS_PRV_BUFTYPE(hb) = BUF_NONE;
665 skb_queue_tail(&card->hbpool.queue, hb);
666 card->hbpool.count++;
669 /* Allocate large buffers */
670 skb_queue_head_init(&card->lbpool.queue);
671 card->lbpool.count = 0; /* Not used */
672 for (j = 0; j < NUM_LB; j++) {
673 struct sk_buff *lb;
674 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
675 if (lb == NULL) {
676 printk
677 ("nicstar%d: can't allocate %dth of %d large buffers.\n",
678 i, j, NUM_LB);
679 error = 14;
680 ns_init_card_error(card, error);
681 return error;
683 NS_PRV_BUFTYPE(lb) = BUF_LG;
684 skb_queue_tail(&card->lbpool.queue, lb);
685 skb_reserve(lb, NS_SMBUFSIZE);
686 push_rxbufs(card, lb);
687 /* Due to the implementation of push_rxbufs() this is 1, not 0 */
688 if (j == 1) {
689 card->rcbuf = lb;
690 card->rawcell = (struct ns_rcqe *) lb->data;
691 card->rawch = NS_PRV_DMA(lb);
694 /* Test for strange behaviour which leads to crashes */
695 if ((bcount =
696 ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
697 printk
698 ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
699 i, j, bcount);
700 error = 14;
701 ns_init_card_error(card, error);
702 return error;
705 /* Allocate small buffers */
706 skb_queue_head_init(&card->sbpool.queue);
707 card->sbpool.count = 0; /* Not used */
708 for (j = 0; j < NUM_SB; j++) {
709 struct sk_buff *sb;
710 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
711 if (sb == NULL) {
712 printk
713 ("nicstar%d: can't allocate %dth of %d small buffers.\n",
714 i, j, NUM_SB);
715 error = 15;
716 ns_init_card_error(card, error);
717 return error;
719 NS_PRV_BUFTYPE(sb) = BUF_SM;
720 skb_queue_tail(&card->sbpool.queue, sb);
721 skb_reserve(sb, NS_AAL0_HEADER);
722 push_rxbufs(card, sb);
724 /* Test for strange behaviour which leads to crashes */
725 if ((bcount =
726 ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
727 printk
728 ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
729 i, j, bcount);
730 error = 15;
731 ns_init_card_error(card, error);
732 return error;
735 /* Allocate iovec buffers */
736 skb_queue_head_init(&card->iovpool.queue);
737 card->iovpool.count = 0;
738 for (j = 0; j < NUM_IOVB; j++) {
739 struct sk_buff *iovb;
740 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
741 if (iovb == NULL) {
742 printk
743 ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
744 i, j, NUM_IOVB);
745 error = 16;
746 ns_init_card_error(card, error);
747 return error;
749 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
750 skb_queue_tail(&card->iovpool.queue, iovb);
751 card->iovpool.count++;
754 /* Configure NICStAR */
755 if (card->rct_size == 4096)
756 ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
757 else /* (card->rct_size == 16384) */
758 ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
760 card->efbie = 1;
762 card->intcnt = 0;
763 if (request_irq
764 (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
765 printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
766 error = 9;
767 ns_init_card_error(card, error);
768 return error;
771 /* Register device */
772 card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
773 -1, NULL);
774 if (card->atmdev == NULL) {
775 printk("nicstar%d: can't register device.\n", i);
776 error = 17;
777 ns_init_card_error(card, error);
778 return error;
781 if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
782 nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
783 card->atmdev->esi, 6);
784 if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
785 nicstar_read_eprom(card->membase,
786 NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
787 card->atmdev->esi, 6);
791 printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
793 card->atmdev->dev_data = card;
794 card->atmdev->ci_range.vpi_bits = card->vpibits;
795 card->atmdev->ci_range.vci_bits = card->vcibits;
796 card->atmdev->link_rate = card->max_pcr;
797 card->atmdev->phy = NULL;
799 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
800 if (card->max_pcr == ATM_OC3_PCR)
801 suni_init(card->atmdev);
802 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
804 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
805 if (card->max_pcr == ATM_25_PCR)
806 idt77105_init(card->atmdev);
807 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
809 if (card->atmdev->phy && card->atmdev->phy->start)
810 card->atmdev->phy->start(card->atmdev);
812 writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
813 NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
814 NS_CFG_PHYIE, card->membase + CFG);
816 num_cards++;
818 return error;
821 static void ns_init_card_error(ns_dev *card, int error)
823 if (error >= 17) {
824 writel(0x00000000, card->membase + CFG);
826 if (error >= 16) {
827 struct sk_buff *iovb;
828 while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
829 dev_kfree_skb_any(iovb);
831 if (error >= 15) {
832 struct sk_buff *sb;
833 while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
834 dev_kfree_skb_any(sb);
835 free_scq(card, card->scq0, NULL);
837 if (error >= 14) {
838 struct sk_buff *lb;
839 while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
840 dev_kfree_skb_any(lb);
842 if (error >= 13) {
843 struct sk_buff *hb;
844 while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
845 dev_kfree_skb_any(hb);
847 if (error >= 12) {
848 kfree(card->rsq.org);
850 if (error >= 11) {
851 kfree(card->tsq.org);
853 if (error >= 10) {
854 free_irq(card->pcidev->irq, card);
856 if (error >= 4) {
857 iounmap(card->membase);
859 if (error >= 3) {
860 pci_disable_device(card->pcidev);
861 kfree(card);
865 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
867 scq_info *scq;
868 int i;
870 if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
871 return NULL;
873 scq = kmalloc(sizeof(scq_info), GFP_KERNEL);
874 if (!scq)
875 return NULL;
876 scq->org = dma_alloc_coherent(&card->pcidev->dev,
877 2 * size, &scq->dma, GFP_KERNEL);
878 if (!scq->org) {
879 kfree(scq);
880 return NULL;
882 scq->skb = kmalloc(sizeof(struct sk_buff *) *
883 (size / NS_SCQE_SIZE), GFP_KERNEL);
884 if (!scq->skb) {
885 kfree(scq->org);
886 kfree(scq);
887 return NULL;
889 scq->num_entries = size / NS_SCQE_SIZE;
890 scq->base = PTR_ALIGN(scq->org, size);
891 scq->next = scq->base;
892 scq->last = scq->base + (scq->num_entries - 1);
893 scq->tail = scq->last;
894 scq->scd = scd;
895 scq->num_entries = size / NS_SCQE_SIZE;
896 scq->tbd_count = 0;
897 init_waitqueue_head(&scq->scqfull_waitq);
898 scq->full = 0;
899 spin_lock_init(&scq->lock);
901 for (i = 0; i < scq->num_entries; i++)
902 scq->skb[i] = NULL;
904 return scq;
907 /* For variable rate SCQ vcc must be NULL */
908 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
910 int i;
912 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
913 for (i = 0; i < scq->num_entries; i++) {
914 if (scq->skb[i] != NULL) {
915 vcc = ATM_SKB(scq->skb[i])->vcc;
916 if (vcc->pop != NULL)
917 vcc->pop(vcc, scq->skb[i]);
918 else
919 dev_kfree_skb_any(scq->skb[i]);
921 } else { /* vcc must be != NULL */
923 if (vcc == NULL) {
924 printk
925 ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
926 for (i = 0; i < scq->num_entries; i++)
927 dev_kfree_skb_any(scq->skb[i]);
928 } else
929 for (i = 0; i < scq->num_entries; i++) {
930 if (scq->skb[i] != NULL) {
931 if (vcc->pop != NULL)
932 vcc->pop(vcc, scq->skb[i]);
933 else
934 dev_kfree_skb_any(scq->skb[i]);
938 kfree(scq->skb);
939 dma_free_coherent(&card->pcidev->dev,
940 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
941 VBR_SCQSIZE : CBR_SCQSIZE),
942 scq->org, scq->dma);
943 kfree(scq);
946 /* The handles passed must be pointers to the sk_buff containing the small
947 or large buffer(s) cast to u32. */
948 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
950 struct sk_buff *handle1, *handle2;
951 int id1, id2;
952 u32 addr1, addr2;
953 u32 stat;
954 unsigned long flags;
956 /* *BARF* */
957 handle2 = NULL;
958 addr2 = 0;
959 handle1 = skb;
960 addr1 = dma_map_single(&card->pcidev->dev,
961 skb->data,
962 (NS_PRV_BUFTYPE(skb) == BUF_SM
963 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
964 DMA_TO_DEVICE);
965 NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
967 #ifdef GENERAL_DEBUG
968 if (!addr1)
969 printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
970 card->index);
971 #endif /* GENERAL_DEBUG */
973 stat = readl(card->membase + STAT);
974 card->sbfqc = ns_stat_sfbqc_get(stat);
975 card->lbfqc = ns_stat_lfbqc_get(stat);
976 if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
977 if (!addr2) {
978 if (card->sm_addr) {
979 addr2 = card->sm_addr;
980 handle2 = card->sm_handle;
981 card->sm_addr = 0x00000000;
982 card->sm_handle = NULL;
983 } else { /* (!sm_addr) */
985 card->sm_addr = addr1;
986 card->sm_handle = handle1;
989 } else { /* buf_type == BUF_LG */
991 if (!addr2) {
992 if (card->lg_addr) {
993 addr2 = card->lg_addr;
994 handle2 = card->lg_handle;
995 card->lg_addr = 0x00000000;
996 card->lg_handle = NULL;
997 } else { /* (!lg_addr) */
999 card->lg_addr = addr1;
1000 card->lg_handle = handle1;
1005 if (addr2) {
1006 if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1007 if (card->sbfqc >= card->sbnr.max) {
1008 skb_unlink(handle1, &card->sbpool.queue);
1009 dev_kfree_skb_any(handle1);
1010 skb_unlink(handle2, &card->sbpool.queue);
1011 dev_kfree_skb_any(handle2);
1012 return;
1013 } else
1014 card->sbfqc += 2;
1015 } else { /* (buf_type == BUF_LG) */
1017 if (card->lbfqc >= card->lbnr.max) {
1018 skb_unlink(handle1, &card->lbpool.queue);
1019 dev_kfree_skb_any(handle1);
1020 skb_unlink(handle2, &card->lbpool.queue);
1021 dev_kfree_skb_any(handle2);
1022 return;
1023 } else
1024 card->lbfqc += 2;
1027 id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1028 if (id1 < 0)
1029 goto out;
1031 id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1032 if (id2 < 0)
1033 goto out;
1035 spin_lock_irqsave(&card->res_lock, flags);
1036 while (CMD_BUSY(card)) ;
1037 writel(addr2, card->membase + DR3);
1038 writel(id2, card->membase + DR2);
1039 writel(addr1, card->membase + DR1);
1040 writel(id1, card->membase + DR0);
1041 writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1042 card->membase + CMD);
1043 spin_unlock_irqrestore(&card->res_lock, flags);
1045 XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1046 card->index,
1047 (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1048 addr1, addr2);
1051 if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1052 card->lbfqc >= card->lbnr.min) {
1053 card->efbie = 1;
1054 writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1055 card->membase + CFG);
1058 out:
1059 return;
1062 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1064 u32 stat_r;
1065 ns_dev *card;
1066 struct atm_dev *dev;
1067 unsigned long flags;
1069 card = (ns_dev *) dev_id;
1070 dev = card->atmdev;
1071 card->intcnt++;
1073 PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1075 spin_lock_irqsave(&card->int_lock, flags);
1077 stat_r = readl(card->membase + STAT);
1079 /* Transmit Status Indicator has been written to T. S. Queue */
1080 if (stat_r & NS_STAT_TSIF) {
1081 TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1082 process_tsq(card);
1083 writel(NS_STAT_TSIF, card->membase + STAT);
1086 /* Incomplete CS-PDU has been transmitted */
1087 if (stat_r & NS_STAT_TXICP) {
1088 writel(NS_STAT_TXICP, card->membase + STAT);
1089 TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1090 card->index);
1093 /* Transmit Status Queue 7/8 full */
1094 if (stat_r & NS_STAT_TSQF) {
1095 writel(NS_STAT_TSQF, card->membase + STAT);
1096 PRINTK("nicstar%d: TSQ full.\n", card->index);
1097 process_tsq(card);
1100 /* Timer overflow */
1101 if (stat_r & NS_STAT_TMROF) {
1102 writel(NS_STAT_TMROF, card->membase + STAT);
1103 PRINTK("nicstar%d: Timer overflow.\n", card->index);
1106 /* PHY device interrupt signal active */
1107 if (stat_r & NS_STAT_PHYI) {
1108 writel(NS_STAT_PHYI, card->membase + STAT);
1109 PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1110 if (dev->phy && dev->phy->interrupt) {
1111 dev->phy->interrupt(dev);
1115 /* Small Buffer Queue is full */
1116 if (stat_r & NS_STAT_SFBQF) {
1117 writel(NS_STAT_SFBQF, card->membase + STAT);
1118 printk("nicstar%d: Small free buffer queue is full.\n",
1119 card->index);
1122 /* Large Buffer Queue is full */
1123 if (stat_r & NS_STAT_LFBQF) {
1124 writel(NS_STAT_LFBQF, card->membase + STAT);
1125 printk("nicstar%d: Large free buffer queue is full.\n",
1126 card->index);
1129 /* Receive Status Queue is full */
1130 if (stat_r & NS_STAT_RSQF) {
1131 writel(NS_STAT_RSQF, card->membase + STAT);
1132 printk("nicstar%d: RSQ full.\n", card->index);
1133 process_rsq(card);
1136 /* Complete CS-PDU received */
1137 if (stat_r & NS_STAT_EOPDU) {
1138 RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1139 process_rsq(card);
1140 writel(NS_STAT_EOPDU, card->membase + STAT);
1143 /* Raw cell received */
1144 if (stat_r & NS_STAT_RAWCF) {
1145 writel(NS_STAT_RAWCF, card->membase + STAT);
1146 #ifndef RCQ_SUPPORT
1147 printk("nicstar%d: Raw cell received and no support yet...\n",
1148 card->index);
1149 #endif /* RCQ_SUPPORT */
1150 /* NOTE: the following procedure may keep a raw cell pending until the
1151 next interrupt. As this preliminary support is only meant to
1152 avoid buffer leakage, this is not an issue. */
1153 while (readl(card->membase + RAWCT) != card->rawch) {
1155 if (ns_rcqe_islast(card->rawcell)) {
1156 struct sk_buff *oldbuf;
1158 oldbuf = card->rcbuf;
1159 card->rcbuf = idr_find(&card->idr,
1160 ns_rcqe_nextbufhandle(card->rawcell));
1161 card->rawch = NS_PRV_DMA(card->rcbuf);
1162 card->rawcell = (struct ns_rcqe *)
1163 card->rcbuf->data;
1164 recycle_rx_buf(card, oldbuf);
1165 } else {
1166 card->rawch += NS_RCQE_SIZE;
1167 card->rawcell++;
1172 /* Small buffer queue is empty */
1173 if (stat_r & NS_STAT_SFBQE) {
1174 int i;
1175 struct sk_buff *sb;
1177 writel(NS_STAT_SFBQE, card->membase + STAT);
1178 printk("nicstar%d: Small free buffer queue empty.\n",
1179 card->index);
1180 for (i = 0; i < card->sbnr.min; i++) {
1181 sb = dev_alloc_skb(NS_SMSKBSIZE);
1182 if (sb == NULL) {
1183 writel(readl(card->membase + CFG) &
1184 ~NS_CFG_EFBIE, card->membase + CFG);
1185 card->efbie = 0;
1186 break;
1188 NS_PRV_BUFTYPE(sb) = BUF_SM;
1189 skb_queue_tail(&card->sbpool.queue, sb);
1190 skb_reserve(sb, NS_AAL0_HEADER);
1191 push_rxbufs(card, sb);
1193 card->sbfqc = i;
1194 process_rsq(card);
1197 /* Large buffer queue empty */
1198 if (stat_r & NS_STAT_LFBQE) {
1199 int i;
1200 struct sk_buff *lb;
1202 writel(NS_STAT_LFBQE, card->membase + STAT);
1203 printk("nicstar%d: Large free buffer queue empty.\n",
1204 card->index);
1205 for (i = 0; i < card->lbnr.min; i++) {
1206 lb = dev_alloc_skb(NS_LGSKBSIZE);
1207 if (lb == NULL) {
1208 writel(readl(card->membase + CFG) &
1209 ~NS_CFG_EFBIE, card->membase + CFG);
1210 card->efbie = 0;
1211 break;
1213 NS_PRV_BUFTYPE(lb) = BUF_LG;
1214 skb_queue_tail(&card->lbpool.queue, lb);
1215 skb_reserve(lb, NS_SMBUFSIZE);
1216 push_rxbufs(card, lb);
1218 card->lbfqc = i;
1219 process_rsq(card);
1222 /* Receive Status Queue is 7/8 full */
1223 if (stat_r & NS_STAT_RSQAF) {
1224 writel(NS_STAT_RSQAF, card->membase + STAT);
1225 RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1226 process_rsq(card);
1229 spin_unlock_irqrestore(&card->int_lock, flags);
1230 PRINTK("nicstar%d: end of interrupt service\n", card->index);
1231 return IRQ_HANDLED;
1234 static int ns_open(struct atm_vcc *vcc)
1236 ns_dev *card;
1237 vc_map *vc;
1238 unsigned long tmpl, modl;
1239 int tcr, tcra; /* target cell rate, and absolute value */
1240 int n = 0; /* Number of entries in the TST. Initialized to remove
1241 the compiler warning. */
1242 u32 u32d[4];
1243 int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
1244 warning. How I wish compilers were clever enough to
1245 tell which variables can truly be used
1246 uninitialized... */
1247 int inuse; /* tx or rx vc already in use by another vcc */
1248 short vpi = vcc->vpi;
1249 int vci = vcc->vci;
1251 card = (ns_dev *) vcc->dev->dev_data;
1252 PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1253 vci);
1254 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1255 PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1256 return -EINVAL;
1259 vc = &(card->vcmap[vpi << card->vcibits | vci]);
1260 vcc->dev_data = vc;
1262 inuse = 0;
1263 if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1264 inuse = 1;
1265 if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1266 inuse += 2;
1267 if (inuse) {
1268 printk("nicstar%d: %s vci already in use.\n", card->index,
1269 inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1270 return -EINVAL;
1273 set_bit(ATM_VF_ADDR, &vcc->flags);
1275 /* NOTE: You are not allowed to modify an open connection's QOS. To change
1276 that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1277 needed to do that. */
1278 if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1279 scq_info *scq;
1281 set_bit(ATM_VF_PARTIAL, &vcc->flags);
1282 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1283 /* Check requested cell rate and availability of SCD */
1284 if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1285 && vcc->qos.txtp.min_pcr == 0) {
1286 PRINTK
1287 ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1288 card->index);
1289 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1290 clear_bit(ATM_VF_ADDR, &vcc->flags);
1291 return -EINVAL;
1294 tcr = atm_pcr_goal(&(vcc->qos.txtp));
1295 tcra = tcr >= 0 ? tcr : -tcr;
1297 PRINTK("nicstar%d: target cell rate = %d.\n",
1298 card->index, vcc->qos.txtp.max_pcr);
1300 tmpl =
1301 (unsigned long)tcra *(unsigned long)
1302 NS_TST_NUM_ENTRIES;
1303 modl = tmpl % card->max_pcr;
1305 n = (int)(tmpl / card->max_pcr);
1306 if (tcr > 0) {
1307 if (modl > 0)
1308 n++;
1309 } else if (tcr == 0) {
1310 if ((n =
1311 (card->tst_free_entries -
1312 NS_TST_RESERVED)) <= 0) {
1313 PRINTK
1314 ("nicstar%d: no CBR bandwidth free.\n",
1315 card->index);
1316 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1317 clear_bit(ATM_VF_ADDR, &vcc->flags);
1318 return -EINVAL;
1322 if (n == 0) {
1323 printk
1324 ("nicstar%d: selected bandwidth < granularity.\n",
1325 card->index);
1326 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1327 clear_bit(ATM_VF_ADDR, &vcc->flags);
1328 return -EINVAL;
1331 if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1332 PRINTK
1333 ("nicstar%d: not enough free CBR bandwidth.\n",
1334 card->index);
1335 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1336 clear_bit(ATM_VF_ADDR, &vcc->flags);
1337 return -EINVAL;
1338 } else
1339 card->tst_free_entries -= n;
1341 XPRINTK("nicstar%d: writing %d tst entries.\n",
1342 card->index, n);
1343 for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1344 if (card->scd2vc[frscdi] == NULL) {
1345 card->scd2vc[frscdi] = vc;
1346 break;
1349 if (frscdi == NS_FRSCD_NUM) {
1350 PRINTK
1351 ("nicstar%d: no SCD available for CBR channel.\n",
1352 card->index);
1353 card->tst_free_entries += n;
1354 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1355 clear_bit(ATM_VF_ADDR, &vcc->flags);
1356 return -EBUSY;
1359 vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1361 scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1362 if (scq == NULL) {
1363 PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1364 card->index);
1365 card->scd2vc[frscdi] = NULL;
1366 card->tst_free_entries += n;
1367 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1368 clear_bit(ATM_VF_ADDR, &vcc->flags);
1369 return -ENOMEM;
1371 vc->scq = scq;
1372 u32d[0] = scq_virt_to_bus(scq, scq->base);
1373 u32d[1] = (u32) 0x00000000;
1374 u32d[2] = (u32) 0xffffffff;
1375 u32d[3] = (u32) 0x00000000;
1376 ns_write_sram(card, vc->cbr_scd, u32d, 4);
1378 fill_tst(card, n, vc);
1379 } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1380 vc->cbr_scd = 0x00000000;
1381 vc->scq = card->scq0;
1384 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1385 vc->tx = 1;
1386 vc->tx_vcc = vcc;
1387 vc->tbd_count = 0;
1389 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1390 u32 status;
1392 vc->rx = 1;
1393 vc->rx_vcc = vcc;
1394 vc->rx_iov = NULL;
1396 /* Open the connection in hardware */
1397 if (vcc->qos.aal == ATM_AAL5)
1398 status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1399 else /* vcc->qos.aal == ATM_AAL0 */
1400 status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1401 #ifdef RCQ_SUPPORT
1402 status |= NS_RCTE_RAWCELLINTEN;
1403 #endif /* RCQ_SUPPORT */
1404 ns_write_sram(card,
1405 NS_RCT +
1406 (vpi << card->vcibits | vci) *
1407 NS_RCT_ENTRY_SIZE, &status, 1);
1412 set_bit(ATM_VF_READY, &vcc->flags);
1413 return 0;
1416 static void ns_close(struct atm_vcc *vcc)
1418 vc_map *vc;
1419 ns_dev *card;
1420 u32 data;
1421 int i;
1423 vc = vcc->dev_data;
1424 card = vcc->dev->dev_data;
1425 PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1426 (int)vcc->vpi, vcc->vci);
1428 clear_bit(ATM_VF_READY, &vcc->flags);
1430 if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1431 u32 addr;
1432 unsigned long flags;
1434 addr =
1435 NS_RCT +
1436 (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1437 spin_lock_irqsave(&card->res_lock, flags);
1438 while (CMD_BUSY(card)) ;
1439 writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1440 card->membase + CMD);
1441 spin_unlock_irqrestore(&card->res_lock, flags);
1443 vc->rx = 0;
1444 if (vc->rx_iov != NULL) {
1445 struct sk_buff *iovb;
1446 u32 stat;
1448 stat = readl(card->membase + STAT);
1449 card->sbfqc = ns_stat_sfbqc_get(stat);
1450 card->lbfqc = ns_stat_lfbqc_get(stat);
1452 PRINTK
1453 ("nicstar%d: closing a VC with pending rx buffers.\n",
1454 card->index);
1455 iovb = vc->rx_iov;
1456 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1457 NS_PRV_IOVCNT(iovb));
1458 NS_PRV_IOVCNT(iovb) = 0;
1459 spin_lock_irqsave(&card->int_lock, flags);
1460 recycle_iov_buf(card, iovb);
1461 spin_unlock_irqrestore(&card->int_lock, flags);
1462 vc->rx_iov = NULL;
1466 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1467 vc->tx = 0;
1470 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1471 unsigned long flags;
1472 ns_scqe *scqep;
1473 scq_info *scq;
1475 scq = vc->scq;
1477 for (;;) {
1478 spin_lock_irqsave(&scq->lock, flags);
1479 scqep = scq->next;
1480 if (scqep == scq->base)
1481 scqep = scq->last;
1482 else
1483 scqep--;
1484 if (scqep == scq->tail) {
1485 spin_unlock_irqrestore(&scq->lock, flags);
1486 break;
1488 /* If the last entry is not a TSR, place one in the SCQ in order to
1489 be able to completely drain it and then close. */
1490 if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1491 ns_scqe tsr;
1492 u32 scdi, scqi;
1493 u32 data;
1494 int index;
1496 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1497 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1498 scqi = scq->next - scq->base;
1499 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1500 tsr.word_3 = 0x00000000;
1501 tsr.word_4 = 0x00000000;
1502 *scq->next = tsr;
1503 index = (int)scqi;
1504 scq->skb[index] = NULL;
1505 if (scq->next == scq->last)
1506 scq->next = scq->base;
1507 else
1508 scq->next++;
1509 data = scq_virt_to_bus(scq, scq->next);
1510 ns_write_sram(card, scq->scd, &data, 1);
1512 spin_unlock_irqrestore(&scq->lock, flags);
1513 schedule();
1516 /* Free all TST entries */
1517 data = NS_TST_OPCODE_VARIABLE;
1518 for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1519 if (card->tste2vc[i] == vc) {
1520 ns_write_sram(card, card->tst_addr + i, &data,
1522 card->tste2vc[i] = NULL;
1523 card->tst_free_entries++;
1527 card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1528 free_scq(card, vc->scq, vcc);
1531 /* remove all references to vcc before deleting it */
1532 if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1533 unsigned long flags;
1534 scq_info *scq = card->scq0;
1536 spin_lock_irqsave(&scq->lock, flags);
1538 for (i = 0; i < scq->num_entries; i++) {
1539 if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1540 ATM_SKB(scq->skb[i])->vcc = NULL;
1541 atm_return(vcc, scq->skb[i]->truesize);
1542 PRINTK
1543 ("nicstar: deleted pending vcc mapping\n");
1547 spin_unlock_irqrestore(&scq->lock, flags);
1550 vcc->dev_data = NULL;
1551 clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1552 clear_bit(ATM_VF_ADDR, &vcc->flags);
1554 #ifdef RX_DEBUG
1556 u32 stat, cfg;
1557 stat = readl(card->membase + STAT);
1558 cfg = readl(card->membase + CFG);
1559 printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
1560 printk
1561 ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
1562 card->tsq.base, card->tsq.next,
1563 card->tsq.last, readl(card->membase + TSQT));
1564 printk
1565 ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
1566 card->rsq.base, card->rsq.next,
1567 card->rsq.last, readl(card->membase + RSQT));
1568 printk("Empty free buffer queue interrupt %s \n",
1569 card->efbie ? "enabled" : "disabled");
1570 printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
1571 ns_stat_sfbqc_get(stat), card->sbpool.count,
1572 ns_stat_lfbqc_get(stat), card->lbpool.count);
1573 printk("hbpool.count = %d iovpool.count = %d \n",
1574 card->hbpool.count, card->iovpool.count);
1576 #endif /* RX_DEBUG */
1579 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1581 u32 new_tst;
1582 unsigned long cl;
1583 int e, r;
1584 u32 data;
1586 /* It would be very complicated to keep the two TSTs synchronized while
1587 assuring that writes are only made to the inactive TST. So, for now I
1588 will use only one TST. If problems occur, I will change this again */
1590 new_tst = card->tst_addr;
1592 /* Fill procedure */
1594 for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1595 if (card->tste2vc[e] == NULL)
1596 break;
1598 if (e == NS_TST_NUM_ENTRIES) {
1599 printk("nicstar%d: No free TST entries found. \n", card->index);
1600 return;
1603 r = n;
1604 cl = NS_TST_NUM_ENTRIES;
1605 data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1607 while (r > 0) {
1608 if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1609 card->tste2vc[e] = vc;
1610 ns_write_sram(card, new_tst + e, &data, 1);
1611 cl -= NS_TST_NUM_ENTRIES;
1612 r--;
1615 if (++e == NS_TST_NUM_ENTRIES) {
1616 e = 0;
1618 cl += n;
1621 /* End of fill procedure */
1623 data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1624 ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1625 ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1626 card->tst_addr = new_tst;
1629 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1631 ns_dev *card;
1632 vc_map *vc;
1633 scq_info *scq;
1634 unsigned long buflen;
1635 ns_scqe scqe;
1636 u32 flags; /* TBD flags, not CPU flags */
1638 card = vcc->dev->dev_data;
1639 TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1640 if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1641 printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1642 card->index);
1643 atomic_inc(&vcc->stats->tx_err);
1644 dev_kfree_skb_any(skb);
1645 return -EINVAL;
1648 if (!vc->tx) {
1649 printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1650 card->index);
1651 atomic_inc(&vcc->stats->tx_err);
1652 dev_kfree_skb_any(skb);
1653 return -EINVAL;
1656 if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1657 printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1658 card->index);
1659 atomic_inc(&vcc->stats->tx_err);
1660 dev_kfree_skb_any(skb);
1661 return -EINVAL;
1664 if (skb_shinfo(skb)->nr_frags != 0) {
1665 printk("nicstar%d: No scatter-gather yet.\n", card->index);
1666 atomic_inc(&vcc->stats->tx_err);
1667 dev_kfree_skb_any(skb);
1668 return -EINVAL;
1671 ATM_SKB(skb)->vcc = vcc;
1673 NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1674 skb->len, DMA_TO_DEVICE);
1676 if (vcc->qos.aal == ATM_AAL5) {
1677 buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
1678 flags = NS_TBD_AAL5;
1679 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1680 scqe.word_3 = cpu_to_le32(skb->len);
1681 scqe.word_4 =
1682 ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1683 ATM_SKB(skb)->
1684 atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1685 flags |= NS_TBD_EOPDU;
1686 } else { /* (vcc->qos.aal == ATM_AAL0) */
1688 buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
1689 flags = NS_TBD_AAL0;
1690 scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1691 scqe.word_3 = cpu_to_le32(0x00000000);
1692 if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
1693 flags |= NS_TBD_EOPDU;
1694 scqe.word_4 =
1695 cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1696 /* Force the VPI/VCI to be the same as in VCC struct */
1697 scqe.word_4 |=
1698 cpu_to_le32((((u32) vcc->
1699 vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1700 vci) <<
1701 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1704 if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1705 scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1706 scq = ((vc_map *) vcc->dev_data)->scq;
1707 } else {
1708 scqe.word_1 =
1709 ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1710 scq = card->scq0;
1713 if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
1714 atomic_inc(&vcc->stats->tx_err);
1715 dev_kfree_skb_any(skb);
1716 return -EIO;
1718 atomic_inc(&vcc->stats->tx);
1720 return 0;
1723 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1724 struct sk_buff *skb)
1726 unsigned long flags;
1727 ns_scqe tsr;
1728 u32 scdi, scqi;
1729 int scq_is_vbr;
1730 u32 data;
1731 int index;
1733 spin_lock_irqsave(&scq->lock, flags);
1734 while (scq->tail == scq->next) {
1735 if (in_interrupt()) {
1736 spin_unlock_irqrestore(&scq->lock, flags);
1737 printk("nicstar%d: Error pushing TBD.\n", card->index);
1738 return 1;
1741 scq->full = 1;
1742 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1743 scq->tail != scq->next,
1744 scq->lock,
1745 SCQFULL_TIMEOUT);
1747 if (scq->full) {
1748 spin_unlock_irqrestore(&scq->lock, flags);
1749 printk("nicstar%d: Timeout pushing TBD.\n",
1750 card->index);
1751 return 1;
1754 *scq->next = *tbd;
1755 index = (int)(scq->next - scq->base);
1756 scq->skb[index] = skb;
1757 XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1758 card->index, skb, index);
1759 XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1760 card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1761 le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1762 scq->next);
1763 if (scq->next == scq->last)
1764 scq->next = scq->base;
1765 else
1766 scq->next++;
1768 vc->tbd_count++;
1769 if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1770 scq->tbd_count++;
1771 scq_is_vbr = 1;
1772 } else
1773 scq_is_vbr = 0;
1775 if (vc->tbd_count >= MAX_TBD_PER_VC
1776 || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1777 int has_run = 0;
1779 while (scq->tail == scq->next) {
1780 if (in_interrupt()) {
1781 data = scq_virt_to_bus(scq, scq->next);
1782 ns_write_sram(card, scq->scd, &data, 1);
1783 spin_unlock_irqrestore(&scq->lock, flags);
1784 printk("nicstar%d: Error pushing TSR.\n",
1785 card->index);
1786 return 0;
1789 scq->full = 1;
1790 if (has_run++)
1791 break;
1792 wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1793 scq->tail != scq->next,
1794 scq->lock,
1795 SCQFULL_TIMEOUT);
1798 if (!scq->full) {
1799 tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1800 if (scq_is_vbr)
1801 scdi = NS_TSR_SCDISVBR;
1802 else
1803 scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1804 scqi = scq->next - scq->base;
1805 tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1806 tsr.word_3 = 0x00000000;
1807 tsr.word_4 = 0x00000000;
1809 *scq->next = tsr;
1810 index = (int)scqi;
1811 scq->skb[index] = NULL;
1812 XPRINTK
1813 ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1814 card->index, le32_to_cpu(tsr.word_1),
1815 le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1816 le32_to_cpu(tsr.word_4), scq->next);
1817 if (scq->next == scq->last)
1818 scq->next = scq->base;
1819 else
1820 scq->next++;
1821 vc->tbd_count = 0;
1822 scq->tbd_count = 0;
1823 } else
1824 PRINTK("nicstar%d: Timeout pushing TSR.\n",
1825 card->index);
1827 data = scq_virt_to_bus(scq, scq->next);
1828 ns_write_sram(card, scq->scd, &data, 1);
1830 spin_unlock_irqrestore(&scq->lock, flags);
1832 return 0;
1835 static void process_tsq(ns_dev * card)
1837 u32 scdi;
1838 scq_info *scq;
1839 ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1840 int serviced_entries; /* flag indicating at least on entry was serviced */
1842 serviced_entries = 0;
1844 if (card->tsq.next == card->tsq.last)
1845 one_ahead = card->tsq.base;
1846 else
1847 one_ahead = card->tsq.next + 1;
1849 if (one_ahead == card->tsq.last)
1850 two_ahead = card->tsq.base;
1851 else
1852 two_ahead = one_ahead + 1;
1854 while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1855 !ns_tsi_isempty(two_ahead))
1856 /* At most two empty, as stated in the 77201 errata */
1858 serviced_entries = 1;
1860 /* Skip the one or two possible empty entries */
1861 while (ns_tsi_isempty(card->tsq.next)) {
1862 if (card->tsq.next == card->tsq.last)
1863 card->tsq.next = card->tsq.base;
1864 else
1865 card->tsq.next++;
1868 if (!ns_tsi_tmrof(card->tsq.next)) {
1869 scdi = ns_tsi_getscdindex(card->tsq.next);
1870 if (scdi == NS_TSI_SCDISVBR)
1871 scq = card->scq0;
1872 else {
1873 if (card->scd2vc[scdi] == NULL) {
1874 printk
1875 ("nicstar%d: could not find VC from SCD index.\n",
1876 card->index);
1877 ns_tsi_init(card->tsq.next);
1878 return;
1880 scq = card->scd2vc[scdi]->scq;
1882 drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1883 scq->full = 0;
1884 wake_up_interruptible(&(scq->scqfull_waitq));
1887 ns_tsi_init(card->tsq.next);
1888 previous = card->tsq.next;
1889 if (card->tsq.next == card->tsq.last)
1890 card->tsq.next = card->tsq.base;
1891 else
1892 card->tsq.next++;
1894 if (card->tsq.next == card->tsq.last)
1895 one_ahead = card->tsq.base;
1896 else
1897 one_ahead = card->tsq.next + 1;
1899 if (one_ahead == card->tsq.last)
1900 two_ahead = card->tsq.base;
1901 else
1902 two_ahead = one_ahead + 1;
1905 if (serviced_entries)
1906 writel(PTR_DIFF(previous, card->tsq.base),
1907 card->membase + TSQH);
1910 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1912 struct atm_vcc *vcc;
1913 struct sk_buff *skb;
1914 int i;
1915 unsigned long flags;
1917 XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1918 card->index, scq, pos);
1919 if (pos >= scq->num_entries) {
1920 printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1921 return;
1924 spin_lock_irqsave(&scq->lock, flags);
1925 i = (int)(scq->tail - scq->base);
1926 if (++i == scq->num_entries)
1927 i = 0;
1928 while (i != pos) {
1929 skb = scq->skb[i];
1930 XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1931 card->index, skb, i);
1932 if (skb != NULL) {
1933 dma_unmap_single(&card->pcidev->dev,
1934 NS_PRV_DMA(skb),
1935 skb->len,
1936 DMA_TO_DEVICE);
1937 vcc = ATM_SKB(skb)->vcc;
1938 if (vcc && vcc->pop != NULL) {
1939 vcc->pop(vcc, skb);
1940 } else {
1941 dev_kfree_skb_irq(skb);
1943 scq->skb[i] = NULL;
1945 if (++i == scq->num_entries)
1946 i = 0;
1948 scq->tail = scq->base + pos;
1949 spin_unlock_irqrestore(&scq->lock, flags);
1952 static void process_rsq(ns_dev * card)
1954 ns_rsqe *previous;
1956 if (!ns_rsqe_valid(card->rsq.next))
1957 return;
1958 do {
1959 dequeue_rx(card, card->rsq.next);
1960 ns_rsqe_init(card->rsq.next);
1961 previous = card->rsq.next;
1962 if (card->rsq.next == card->rsq.last)
1963 card->rsq.next = card->rsq.base;
1964 else
1965 card->rsq.next++;
1966 } while (ns_rsqe_valid(card->rsq.next));
1967 writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1970 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1972 u32 vpi, vci;
1973 vc_map *vc;
1974 struct sk_buff *iovb;
1975 struct iovec *iov;
1976 struct atm_vcc *vcc;
1977 struct sk_buff *skb;
1978 unsigned short aal5_len;
1979 int len;
1980 u32 stat;
1981 u32 id;
1983 stat = readl(card->membase + STAT);
1984 card->sbfqc = ns_stat_sfbqc_get(stat);
1985 card->lbfqc = ns_stat_lfbqc_get(stat);
1987 id = le32_to_cpu(rsqe->buffer_handle);
1988 skb = idr_find(&card->idr, id);
1989 if (!skb) {
1990 RXPRINTK(KERN_ERR
1991 "nicstar%d: idr_find() failed!\n", card->index);
1992 return;
1994 idr_remove(&card->idr, id);
1995 dma_sync_single_for_cpu(&card->pcidev->dev,
1996 NS_PRV_DMA(skb),
1997 (NS_PRV_BUFTYPE(skb) == BUF_SM
1998 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1999 DMA_FROM_DEVICE);
2000 dma_unmap_single(&card->pcidev->dev,
2001 NS_PRV_DMA(skb),
2002 (NS_PRV_BUFTYPE(skb) == BUF_SM
2003 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
2004 DMA_FROM_DEVICE);
2005 vpi = ns_rsqe_vpi(rsqe);
2006 vci = ns_rsqe_vci(rsqe);
2007 if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2008 printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2009 card->index, vpi, vci);
2010 recycle_rx_buf(card, skb);
2011 return;
2014 vc = &(card->vcmap[vpi << card->vcibits | vci]);
2015 if (!vc->rx) {
2016 RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2017 card->index, vpi, vci);
2018 recycle_rx_buf(card, skb);
2019 return;
2022 vcc = vc->rx_vcc;
2024 if (vcc->qos.aal == ATM_AAL0) {
2025 struct sk_buff *sb;
2026 unsigned char *cell;
2027 int i;
2029 cell = skb->data;
2030 for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2031 if ((sb = dev_alloc_skb(NS_SMSKBSIZE)) == NULL) {
2032 printk
2033 ("nicstar%d: Can't allocate buffers for aal0.\n",
2034 card->index);
2035 atomic_add(i, &vcc->stats->rx_drop);
2036 break;
2038 if (!atm_charge(vcc, sb->truesize)) {
2039 RXPRINTK
2040 ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2041 card->index);
2042 atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
2043 dev_kfree_skb_any(sb);
2044 break;
2046 /* Rebuild the header */
2047 *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2048 (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2049 if (i == 1 && ns_rsqe_eopdu(rsqe))
2050 *((u32 *) sb->data) |= 0x00000002;
2051 skb_put(sb, NS_AAL0_HEADER);
2052 memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2053 skb_put(sb, ATM_CELL_PAYLOAD);
2054 ATM_SKB(sb)->vcc = vcc;
2055 __net_timestamp(sb);
2056 vcc->push(vcc, sb);
2057 atomic_inc(&vcc->stats->rx);
2058 cell += ATM_CELL_PAYLOAD;
2061 recycle_rx_buf(card, skb);
2062 return;
2065 /* To reach this point, the AAL layer can only be AAL5 */
2067 if ((iovb = vc->rx_iov) == NULL) {
2068 iovb = skb_dequeue(&(card->iovpool.queue));
2069 if (iovb == NULL) { /* No buffers in the queue */
2070 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2071 if (iovb == NULL) {
2072 printk("nicstar%d: Out of iovec buffers.\n",
2073 card->index);
2074 atomic_inc(&vcc->stats->rx_drop);
2075 recycle_rx_buf(card, skb);
2076 return;
2078 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2079 } else if (--card->iovpool.count < card->iovnr.min) {
2080 struct sk_buff *new_iovb;
2081 if ((new_iovb =
2082 alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2083 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2084 skb_queue_tail(&card->iovpool.queue, new_iovb);
2085 card->iovpool.count++;
2088 vc->rx_iov = iovb;
2089 NS_PRV_IOVCNT(iovb) = 0;
2090 iovb->len = 0;
2091 iovb->data = iovb->head;
2092 skb_reset_tail_pointer(iovb);
2093 /* IMPORTANT: a pointer to the sk_buff containing the small or large
2094 buffer is stored as iovec base, NOT a pointer to the
2095 small or large buffer itself. */
2096 } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2097 printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2098 atomic_inc(&vcc->stats->rx_err);
2099 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2100 NS_MAX_IOVECS);
2101 NS_PRV_IOVCNT(iovb) = 0;
2102 iovb->len = 0;
2103 iovb->data = iovb->head;
2104 skb_reset_tail_pointer(iovb);
2106 iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2107 iov->iov_base = (void *)skb;
2108 iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2109 iovb->len += iov->iov_len;
2111 #ifdef EXTRA_DEBUG
2112 if (NS_PRV_IOVCNT(iovb) == 1) {
2113 if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2114 printk
2115 ("nicstar%d: Expected a small buffer, and this is not one.\n",
2116 card->index);
2117 which_list(card, skb);
2118 atomic_inc(&vcc->stats->rx_err);
2119 recycle_rx_buf(card, skb);
2120 vc->rx_iov = NULL;
2121 recycle_iov_buf(card, iovb);
2122 return;
2124 } else { /* NS_PRV_IOVCNT(iovb) >= 2 */
2126 if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2127 printk
2128 ("nicstar%d: Expected a large buffer, and this is not one.\n",
2129 card->index);
2130 which_list(card, skb);
2131 atomic_inc(&vcc->stats->rx_err);
2132 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2133 NS_PRV_IOVCNT(iovb));
2134 vc->rx_iov = NULL;
2135 recycle_iov_buf(card, iovb);
2136 return;
2139 #endif /* EXTRA_DEBUG */
2141 if (ns_rsqe_eopdu(rsqe)) {
2142 /* This works correctly regardless of the endianness of the host */
2143 unsigned char *L1L2 = (unsigned char *)
2144 (skb->data + iov->iov_len - 6);
2145 aal5_len = L1L2[0] << 8 | L1L2[1];
2146 len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2147 if (ns_rsqe_crcerr(rsqe) ||
2148 len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2149 printk("nicstar%d: AAL5 CRC error", card->index);
2150 if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2151 printk(" - PDU size mismatch.\n");
2152 else
2153 printk(".\n");
2154 atomic_inc(&vcc->stats->rx_err);
2155 recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2156 NS_PRV_IOVCNT(iovb));
2157 vc->rx_iov = NULL;
2158 recycle_iov_buf(card, iovb);
2159 return;
2162 /* By this point we (hopefully) have a complete SDU without errors. */
2164 if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
2165 /* skb points to a small buffer */
2166 if (!atm_charge(vcc, skb->truesize)) {
2167 push_rxbufs(card, skb);
2168 atomic_inc(&vcc->stats->rx_drop);
2169 } else {
2170 skb_put(skb, len);
2171 dequeue_sm_buf(card, skb);
2172 #ifdef NS_USE_DESTRUCTORS
2173 skb->destructor = ns_sb_destructor;
2174 #endif /* NS_USE_DESTRUCTORS */
2175 ATM_SKB(skb)->vcc = vcc;
2176 __net_timestamp(skb);
2177 vcc->push(vcc, skb);
2178 atomic_inc(&vcc->stats->rx);
2180 } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
2181 struct sk_buff *sb;
2183 sb = (struct sk_buff *)(iov - 1)->iov_base;
2184 /* skb points to a large buffer */
2186 if (len <= NS_SMBUFSIZE) {
2187 if (!atm_charge(vcc, sb->truesize)) {
2188 push_rxbufs(card, sb);
2189 atomic_inc(&vcc->stats->rx_drop);
2190 } else {
2191 skb_put(sb, len);
2192 dequeue_sm_buf(card, sb);
2193 #ifdef NS_USE_DESTRUCTORS
2194 sb->destructor = ns_sb_destructor;
2195 #endif /* NS_USE_DESTRUCTORS */
2196 ATM_SKB(sb)->vcc = vcc;
2197 __net_timestamp(sb);
2198 vcc->push(vcc, sb);
2199 atomic_inc(&vcc->stats->rx);
2202 push_rxbufs(card, skb);
2204 } else { /* len > NS_SMBUFSIZE, the usual case */
2206 if (!atm_charge(vcc, skb->truesize)) {
2207 push_rxbufs(card, skb);
2208 atomic_inc(&vcc->stats->rx_drop);
2209 } else {
2210 dequeue_lg_buf(card, skb);
2211 #ifdef NS_USE_DESTRUCTORS
2212 skb->destructor = ns_lb_destructor;
2213 #endif /* NS_USE_DESTRUCTORS */
2214 skb_push(skb, NS_SMBUFSIZE);
2215 skb_copy_from_linear_data(sb, skb->data,
2216 NS_SMBUFSIZE);
2217 skb_put(skb, len - NS_SMBUFSIZE);
2218 ATM_SKB(skb)->vcc = vcc;
2219 __net_timestamp(skb);
2220 vcc->push(vcc, skb);
2221 atomic_inc(&vcc->stats->rx);
2224 push_rxbufs(card, sb);
2228 } else { /* Must push a huge buffer */
2230 struct sk_buff *hb, *sb, *lb;
2231 int remaining, tocopy;
2232 int j;
2234 hb = skb_dequeue(&(card->hbpool.queue));
2235 if (hb == NULL) { /* No buffers in the queue */
2237 hb = dev_alloc_skb(NS_HBUFSIZE);
2238 if (hb == NULL) {
2239 printk
2240 ("nicstar%d: Out of huge buffers.\n",
2241 card->index);
2242 atomic_inc(&vcc->stats->rx_drop);
2243 recycle_iovec_rx_bufs(card,
2244 (struct iovec *)
2245 iovb->data,
2246 NS_PRV_IOVCNT(iovb));
2247 vc->rx_iov = NULL;
2248 recycle_iov_buf(card, iovb);
2249 return;
2250 } else if (card->hbpool.count < card->hbnr.min) {
2251 struct sk_buff *new_hb;
2252 if ((new_hb =
2253 dev_alloc_skb(NS_HBUFSIZE)) !=
2254 NULL) {
2255 skb_queue_tail(&card->hbpool.
2256 queue, new_hb);
2257 card->hbpool.count++;
2260 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2261 } else if (--card->hbpool.count < card->hbnr.min) {
2262 struct sk_buff *new_hb;
2263 if ((new_hb =
2264 dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2265 NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2266 skb_queue_tail(&card->hbpool.queue,
2267 new_hb);
2268 card->hbpool.count++;
2270 if (card->hbpool.count < card->hbnr.min) {
2271 if ((new_hb =
2272 dev_alloc_skb(NS_HBUFSIZE)) !=
2273 NULL) {
2274 NS_PRV_BUFTYPE(new_hb) =
2275 BUF_NONE;
2276 skb_queue_tail(&card->hbpool.
2277 queue, new_hb);
2278 card->hbpool.count++;
2283 iov = (struct iovec *)iovb->data;
2285 if (!atm_charge(vcc, hb->truesize)) {
2286 recycle_iovec_rx_bufs(card, iov,
2287 NS_PRV_IOVCNT(iovb));
2288 if (card->hbpool.count < card->hbnr.max) {
2289 skb_queue_tail(&card->hbpool.queue, hb);
2290 card->hbpool.count++;
2291 } else
2292 dev_kfree_skb_any(hb);
2293 atomic_inc(&vcc->stats->rx_drop);
2294 } else {
2295 /* Copy the small buffer to the huge buffer */
2296 sb = (struct sk_buff *)iov->iov_base;
2297 skb_copy_from_linear_data(sb, hb->data,
2298 iov->iov_len);
2299 skb_put(hb, iov->iov_len);
2300 remaining = len - iov->iov_len;
2301 iov++;
2302 /* Free the small buffer */
2303 push_rxbufs(card, sb);
2305 /* Copy all large buffers to the huge buffer and free them */
2306 for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2307 lb = (struct sk_buff *)iov->iov_base;
2308 tocopy =
2309 min_t(int, remaining, iov->iov_len);
2310 skb_copy_from_linear_data(lb,
2311 skb_tail_pointer
2312 (hb), tocopy);
2313 skb_put(hb, tocopy);
2314 iov++;
2315 remaining -= tocopy;
2316 push_rxbufs(card, lb);
2318 #ifdef EXTRA_DEBUG
2319 if (remaining != 0 || hb->len != len)
2320 printk
2321 ("nicstar%d: Huge buffer len mismatch.\n",
2322 card->index);
2323 #endif /* EXTRA_DEBUG */
2324 ATM_SKB(hb)->vcc = vcc;
2325 #ifdef NS_USE_DESTRUCTORS
2326 hb->destructor = ns_hb_destructor;
2327 #endif /* NS_USE_DESTRUCTORS */
2328 __net_timestamp(hb);
2329 vcc->push(vcc, hb);
2330 atomic_inc(&vcc->stats->rx);
2334 vc->rx_iov = NULL;
2335 recycle_iov_buf(card, iovb);
2340 #ifdef NS_USE_DESTRUCTORS
2342 static void ns_sb_destructor(struct sk_buff *sb)
2344 ns_dev *card;
2345 u32 stat;
2347 card = (ns_dev *) ATM_SKB(sb)->vcc->dev->dev_data;
2348 stat = readl(card->membase + STAT);
2349 card->sbfqc = ns_stat_sfbqc_get(stat);
2350 card->lbfqc = ns_stat_lfbqc_get(stat);
2352 do {
2353 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2354 if (sb == NULL)
2355 break;
2356 NS_PRV_BUFTYPE(sb) = BUF_SM;
2357 skb_queue_tail(&card->sbpool.queue, sb);
2358 skb_reserve(sb, NS_AAL0_HEADER);
2359 push_rxbufs(card, sb);
2360 } while (card->sbfqc < card->sbnr.min);
2363 static void ns_lb_destructor(struct sk_buff *lb)
2365 ns_dev *card;
2366 u32 stat;
2368 card = (ns_dev *) ATM_SKB(lb)->vcc->dev->dev_data;
2369 stat = readl(card->membase + STAT);
2370 card->sbfqc = ns_stat_sfbqc_get(stat);
2371 card->lbfqc = ns_stat_lfbqc_get(stat);
2373 do {
2374 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2375 if (lb == NULL)
2376 break;
2377 NS_PRV_BUFTYPE(lb) = BUF_LG;
2378 skb_queue_tail(&card->lbpool.queue, lb);
2379 skb_reserve(lb, NS_SMBUFSIZE);
2380 push_rxbufs(card, lb);
2381 } while (card->lbfqc < card->lbnr.min);
2384 static void ns_hb_destructor(struct sk_buff *hb)
2386 ns_dev *card;
2388 card = (ns_dev *) ATM_SKB(hb)->vcc->dev->dev_data;
2390 while (card->hbpool.count < card->hbnr.init) {
2391 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2392 if (hb == NULL)
2393 break;
2394 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2395 skb_queue_tail(&card->hbpool.queue, hb);
2396 card->hbpool.count++;
2400 #endif /* NS_USE_DESTRUCTORS */
2402 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2404 if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2405 printk("nicstar%d: What kind of rx buffer is this?\n",
2406 card->index);
2407 dev_kfree_skb_any(skb);
2408 } else
2409 push_rxbufs(card, skb);
2412 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2414 while (count-- > 0)
2415 recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2418 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2420 if (card->iovpool.count < card->iovnr.max) {
2421 skb_queue_tail(&card->iovpool.queue, iovb);
2422 card->iovpool.count++;
2423 } else
2424 dev_kfree_skb_any(iovb);
2427 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2429 skb_unlink(sb, &card->sbpool.queue);
2430 #ifdef NS_USE_DESTRUCTORS
2431 if (card->sbfqc < card->sbnr.min)
2432 #else
2433 if (card->sbfqc < card->sbnr.init) {
2434 struct sk_buff *new_sb;
2435 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2436 NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2437 skb_queue_tail(&card->sbpool.queue, new_sb);
2438 skb_reserve(new_sb, NS_AAL0_HEADER);
2439 push_rxbufs(card, new_sb);
2442 if (card->sbfqc < card->sbnr.init)
2443 #endif /* NS_USE_DESTRUCTORS */
2445 struct sk_buff *new_sb;
2446 if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2447 NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2448 skb_queue_tail(&card->sbpool.queue, new_sb);
2449 skb_reserve(new_sb, NS_AAL0_HEADER);
2450 push_rxbufs(card, new_sb);
2455 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2457 skb_unlink(lb, &card->lbpool.queue);
2458 #ifdef NS_USE_DESTRUCTORS
2459 if (card->lbfqc < card->lbnr.min)
2460 #else
2461 if (card->lbfqc < card->lbnr.init) {
2462 struct sk_buff *new_lb;
2463 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2464 NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2465 skb_queue_tail(&card->lbpool.queue, new_lb);
2466 skb_reserve(new_lb, NS_SMBUFSIZE);
2467 push_rxbufs(card, new_lb);
2470 if (card->lbfqc < card->lbnr.init)
2471 #endif /* NS_USE_DESTRUCTORS */
2473 struct sk_buff *new_lb;
2474 if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2475 NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2476 skb_queue_tail(&card->lbpool.queue, new_lb);
2477 skb_reserve(new_lb, NS_SMBUFSIZE);
2478 push_rxbufs(card, new_lb);
2483 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2485 u32 stat;
2486 ns_dev *card;
2487 int left;
2489 left = (int)*pos;
2490 card = (ns_dev *) dev->dev_data;
2491 stat = readl(card->membase + STAT);
2492 if (!left--)
2493 return sprintf(page, "Pool count min init max \n");
2494 if (!left--)
2495 return sprintf(page, "Small %5d %5d %5d %5d \n",
2496 ns_stat_sfbqc_get(stat), card->sbnr.min,
2497 card->sbnr.init, card->sbnr.max);
2498 if (!left--)
2499 return sprintf(page, "Large %5d %5d %5d %5d \n",
2500 ns_stat_lfbqc_get(stat), card->lbnr.min,
2501 card->lbnr.init, card->lbnr.max);
2502 if (!left--)
2503 return sprintf(page, "Huge %5d %5d %5d %5d \n",
2504 card->hbpool.count, card->hbnr.min,
2505 card->hbnr.init, card->hbnr.max);
2506 if (!left--)
2507 return sprintf(page, "Iovec %5d %5d %5d %5d \n",
2508 card->iovpool.count, card->iovnr.min,
2509 card->iovnr.init, card->iovnr.max);
2510 if (!left--) {
2511 int retval;
2512 retval =
2513 sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2514 card->intcnt = 0;
2515 return retval;
2517 #if 0
2518 /* Dump 25.6 Mbps PHY registers */
2519 /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2520 here just in case it's needed for debugging. */
2521 if (card->max_pcr == ATM_25_PCR && !left--) {
2522 u32 phy_regs[4];
2523 u32 i;
2525 for (i = 0; i < 4; i++) {
2526 while (CMD_BUSY(card)) ;
2527 writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2528 card->membase + CMD);
2529 while (CMD_BUSY(card)) ;
2530 phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2533 return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2534 phy_regs[0], phy_regs[1], phy_regs[2],
2535 phy_regs[3]);
2537 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2538 #if 0
2539 /* Dump TST */
2540 if (left-- < NS_TST_NUM_ENTRIES) {
2541 if (card->tste2vc[left + 1] == NULL)
2542 return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2543 else
2544 return sprintf(page, "%5d - %d %d \n", left + 1,
2545 card->tste2vc[left + 1]->tx_vcc->vpi,
2546 card->tste2vc[left + 1]->tx_vcc->vci);
2548 #endif /* 0 */
2549 return 0;
2552 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2554 ns_dev *card;
2555 pool_levels pl;
2556 long btype;
2557 unsigned long flags;
2559 card = dev->dev_data;
2560 switch (cmd) {
2561 case NS_GETPSTAT:
2562 if (get_user
2563 (pl.buftype, &((pool_levels __user *) arg)->buftype))
2564 return -EFAULT;
2565 switch (pl.buftype) {
2566 case NS_BUFTYPE_SMALL:
2567 pl.count =
2568 ns_stat_sfbqc_get(readl(card->membase + STAT));
2569 pl.level.min = card->sbnr.min;
2570 pl.level.init = card->sbnr.init;
2571 pl.level.max = card->sbnr.max;
2572 break;
2574 case NS_BUFTYPE_LARGE:
2575 pl.count =
2576 ns_stat_lfbqc_get(readl(card->membase + STAT));
2577 pl.level.min = card->lbnr.min;
2578 pl.level.init = card->lbnr.init;
2579 pl.level.max = card->lbnr.max;
2580 break;
2582 case NS_BUFTYPE_HUGE:
2583 pl.count = card->hbpool.count;
2584 pl.level.min = card->hbnr.min;
2585 pl.level.init = card->hbnr.init;
2586 pl.level.max = card->hbnr.max;
2587 break;
2589 case NS_BUFTYPE_IOVEC:
2590 pl.count = card->iovpool.count;
2591 pl.level.min = card->iovnr.min;
2592 pl.level.init = card->iovnr.init;
2593 pl.level.max = card->iovnr.max;
2594 break;
2596 default:
2597 return -ENOIOCTLCMD;
2600 if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2601 return (sizeof(pl));
2602 else
2603 return -EFAULT;
2605 case NS_SETBUFLEV:
2606 if (!capable(CAP_NET_ADMIN))
2607 return -EPERM;
2608 if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2609 return -EFAULT;
2610 if (pl.level.min >= pl.level.init
2611 || pl.level.init >= pl.level.max)
2612 return -EINVAL;
2613 if (pl.level.min == 0)
2614 return -EINVAL;
2615 switch (pl.buftype) {
2616 case NS_BUFTYPE_SMALL:
2617 if (pl.level.max > TOP_SB)
2618 return -EINVAL;
2619 card->sbnr.min = pl.level.min;
2620 card->sbnr.init = pl.level.init;
2621 card->sbnr.max = pl.level.max;
2622 break;
2624 case NS_BUFTYPE_LARGE:
2625 if (pl.level.max > TOP_LB)
2626 return -EINVAL;
2627 card->lbnr.min = pl.level.min;
2628 card->lbnr.init = pl.level.init;
2629 card->lbnr.max = pl.level.max;
2630 break;
2632 case NS_BUFTYPE_HUGE:
2633 if (pl.level.max > TOP_HB)
2634 return -EINVAL;
2635 card->hbnr.min = pl.level.min;
2636 card->hbnr.init = pl.level.init;
2637 card->hbnr.max = pl.level.max;
2638 break;
2640 case NS_BUFTYPE_IOVEC:
2641 if (pl.level.max > TOP_IOVB)
2642 return -EINVAL;
2643 card->iovnr.min = pl.level.min;
2644 card->iovnr.init = pl.level.init;
2645 card->iovnr.max = pl.level.max;
2646 break;
2648 default:
2649 return -EINVAL;
2652 return 0;
2654 case NS_ADJBUFLEV:
2655 if (!capable(CAP_NET_ADMIN))
2656 return -EPERM;
2657 btype = (long)arg; /* a long is the same size as a pointer or bigger */
2658 switch (btype) {
2659 case NS_BUFTYPE_SMALL:
2660 while (card->sbfqc < card->sbnr.init) {
2661 struct sk_buff *sb;
2663 sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2664 if (sb == NULL)
2665 return -ENOMEM;
2666 NS_PRV_BUFTYPE(sb) = BUF_SM;
2667 skb_queue_tail(&card->sbpool.queue, sb);
2668 skb_reserve(sb, NS_AAL0_HEADER);
2669 push_rxbufs(card, sb);
2671 break;
2673 case NS_BUFTYPE_LARGE:
2674 while (card->lbfqc < card->lbnr.init) {
2675 struct sk_buff *lb;
2677 lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2678 if (lb == NULL)
2679 return -ENOMEM;
2680 NS_PRV_BUFTYPE(lb) = BUF_LG;
2681 skb_queue_tail(&card->lbpool.queue, lb);
2682 skb_reserve(lb, NS_SMBUFSIZE);
2683 push_rxbufs(card, lb);
2685 break;
2687 case NS_BUFTYPE_HUGE:
2688 while (card->hbpool.count > card->hbnr.init) {
2689 struct sk_buff *hb;
2691 spin_lock_irqsave(&card->int_lock, flags);
2692 hb = skb_dequeue(&card->hbpool.queue);
2693 card->hbpool.count--;
2694 spin_unlock_irqrestore(&card->int_lock, flags);
2695 if (hb == NULL)
2696 printk
2697 ("nicstar%d: huge buffer count inconsistent.\n",
2698 card->index);
2699 else
2700 dev_kfree_skb_any(hb);
2703 while (card->hbpool.count < card->hbnr.init) {
2704 struct sk_buff *hb;
2706 hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2707 if (hb == NULL)
2708 return -ENOMEM;
2709 NS_PRV_BUFTYPE(hb) = BUF_NONE;
2710 spin_lock_irqsave(&card->int_lock, flags);
2711 skb_queue_tail(&card->hbpool.queue, hb);
2712 card->hbpool.count++;
2713 spin_unlock_irqrestore(&card->int_lock, flags);
2715 break;
2717 case NS_BUFTYPE_IOVEC:
2718 while (card->iovpool.count > card->iovnr.init) {
2719 struct sk_buff *iovb;
2721 spin_lock_irqsave(&card->int_lock, flags);
2722 iovb = skb_dequeue(&card->iovpool.queue);
2723 card->iovpool.count--;
2724 spin_unlock_irqrestore(&card->int_lock, flags);
2725 if (iovb == NULL)
2726 printk
2727 ("nicstar%d: iovec buffer count inconsistent.\n",
2728 card->index);
2729 else
2730 dev_kfree_skb_any(iovb);
2733 while (card->iovpool.count < card->iovnr.init) {
2734 struct sk_buff *iovb;
2736 iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2737 if (iovb == NULL)
2738 return -ENOMEM;
2739 NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2740 spin_lock_irqsave(&card->int_lock, flags);
2741 skb_queue_tail(&card->iovpool.queue, iovb);
2742 card->iovpool.count++;
2743 spin_unlock_irqrestore(&card->int_lock, flags);
2745 break;
2747 default:
2748 return -EINVAL;
2751 return 0;
2753 default:
2754 if (dev->phy && dev->phy->ioctl) {
2755 return dev->phy->ioctl(dev, cmd, arg);
2756 } else {
2757 printk("nicstar%d: %s == NULL \n", card->index,
2758 dev->phy ? "dev->phy->ioctl" : "dev->phy");
2759 return -ENOIOCTLCMD;
2764 #ifdef EXTRA_DEBUG
2765 static void which_list(ns_dev * card, struct sk_buff *skb)
2767 printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2769 #endif /* EXTRA_DEBUG */
2771 static void ns_poll(unsigned long arg)
2773 int i;
2774 ns_dev *card;
2775 unsigned long flags;
2776 u32 stat_r, stat_w;
2778 PRINTK("nicstar: Entering ns_poll().\n");
2779 for (i = 0; i < num_cards; i++) {
2780 card = cards[i];
2781 if (spin_is_locked(&card->int_lock)) {
2782 /* Probably it isn't worth spinning */
2783 continue;
2785 spin_lock_irqsave(&card->int_lock, flags);
2787 stat_w = 0;
2788 stat_r = readl(card->membase + STAT);
2789 if (stat_r & NS_STAT_TSIF)
2790 stat_w |= NS_STAT_TSIF;
2791 if (stat_r & NS_STAT_EOPDU)
2792 stat_w |= NS_STAT_EOPDU;
2794 process_tsq(card);
2795 process_rsq(card);
2797 writel(stat_w, card->membase + STAT);
2798 spin_unlock_irqrestore(&card->int_lock, flags);
2800 mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2801 PRINTK("nicstar: Leaving ns_poll().\n");
2804 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2805 unsigned long addr)
2807 ns_dev *card;
2808 unsigned long flags;
2810 card = dev->dev_data;
2811 spin_lock_irqsave(&card->res_lock, flags);
2812 while (CMD_BUSY(card)) ;
2813 writel((u32) value, card->membase + DR0);
2814 writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2815 card->membase + CMD);
2816 spin_unlock_irqrestore(&card->res_lock, flags);
2819 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2821 ns_dev *card;
2822 unsigned long flags;
2823 u32 data;
2825 card = dev->dev_data;
2826 spin_lock_irqsave(&card->res_lock, flags);
2827 while (CMD_BUSY(card)) ;
2828 writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2829 card->membase + CMD);
2830 while (CMD_BUSY(card)) ;
2831 data = readl(card->membase + DR0) & 0x000000FF;
2832 spin_unlock_irqrestore(&card->res_lock, flags);
2833 return (unsigned char)data;
2836 module_init(nicstar_init);
2837 module_exit(nicstar_cleanup);