2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <linux/platform_data/edma.h>
31 #include "dmaengine.h"
35 * This will go away when the private EDMA API is folded
36 * into this driver and the platform device(s) are
37 * instantiated in the arch code. We can only get away
38 * with this simplification because DA8XX may not be built
39 * in the same kernel image with other DaVinci parts. This
40 * avoids having to sprinkle dmaengine driver platform devices
41 * and data throughout all the existing board files.
43 #ifdef CONFIG_ARCH_DAVINCI_DA8XX
49 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */
52 * Max of 20 segments per channel to conserve PaRAM slots
53 * Also note that MAX_NR_SG should be atleast the no.of periods
54 * that are required for ASoC, otherwise DMA prep calls will
55 * fail. Today davinci-pcm is the only user of this driver and
56 * requires atleast 17 slots, so we setup the default to 20.
59 #define EDMA_MAX_SLOTS MAX_NR_SG
60 #define EDMA_DESCRIPTORS 16
65 struct edmacc_param param
;
69 struct virt_dma_desc vdesc
;
70 struct list_head node
;
71 enum dma_transfer_direction direction
;
75 struct edma_chan
*echan
;
79 * The following 4 elements are used for residue accounting.
81 * - processed_stat: the number of SG elements we have traversed
82 * so far to cover accounting. This is updated directly to processed
83 * during edma_callback and is always <= processed, because processed
84 * refers to the number of pending transfer (programmed to EDMA
85 * controller), where as processed_stat tracks number of transfers
86 * accounted for so far.
88 * - residue: The amount of bytes we have left to transfer for this desc
90 * - residue_stat: The residue in bytes of data we have covered
91 * so far for accounting. This is updated directly to residue
92 * during callbacks to keep it current.
94 * - sg_len: Tracks the length of the current intermediate transfer,
95 * this is required to update the residue during intermediate transfer
96 * completion callback.
103 struct edma_pset pset
[0];
109 struct virt_dma_chan vchan
;
110 struct list_head node
;
111 struct edma_desc
*edesc
;
115 int slot
[EDMA_MAX_SLOTS
];
117 struct dma_slave_config cfg
;
122 struct dma_device dma_slave
;
123 struct edma_chan slave_chans
[EDMA_CHANS
];
128 static inline struct edma_cc
*to_edma_cc(struct dma_device
*d
)
130 return container_of(d
, struct edma_cc
, dma_slave
);
133 static inline struct edma_chan
*to_edma_chan(struct dma_chan
*c
)
135 return container_of(c
, struct edma_chan
, vchan
.chan
);
138 static inline struct edma_desc
139 *to_edma_desc(struct dma_async_tx_descriptor
*tx
)
141 return container_of(tx
, struct edma_desc
, vdesc
.tx
);
144 static void edma_desc_free(struct virt_dma_desc
*vdesc
)
146 kfree(container_of(vdesc
, struct edma_desc
, vdesc
));
149 /* Dispatch a queued descriptor to the controller (caller holds lock) */
150 static void edma_execute(struct edma_chan
*echan
)
152 struct virt_dma_desc
*vdesc
;
153 struct edma_desc
*edesc
;
154 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
155 int i
, j
, left
, nslots
;
157 /* If either we processed all psets or we're still not started */
159 echan
->edesc
->pset_nr
== echan
->edesc
->processed
) {
161 vdesc
= vchan_next_desc(&echan
->vchan
);
166 list_del(&vdesc
->node
);
167 echan
->edesc
= to_edma_desc(&vdesc
->tx
);
170 edesc
= echan
->edesc
;
172 /* Find out how many left */
173 left
= edesc
->pset_nr
- edesc
->processed
;
174 nslots
= min(MAX_NR_SG
, left
);
177 /* Write descriptor PaRAM set(s) */
178 for (i
= 0; i
< nslots
; i
++) {
179 j
= i
+ edesc
->processed
;
180 edma_write_slot(echan
->slot
[i
], &edesc
->pset
[j
].param
);
181 edesc
->sg_len
+= edesc
->pset
[j
].len
;
182 dev_vdbg(echan
->vchan
.chan
.device
->dev
,
194 j
, echan
->ch_num
, echan
->slot
[i
],
195 edesc
->pset
[j
].param
.opt
,
196 edesc
->pset
[j
].param
.src
,
197 edesc
->pset
[j
].param
.dst
,
198 edesc
->pset
[j
].param
.a_b_cnt
,
199 edesc
->pset
[j
].param
.ccnt
,
200 edesc
->pset
[j
].param
.src_dst_bidx
,
201 edesc
->pset
[j
].param
.src_dst_cidx
,
202 edesc
->pset
[j
].param
.link_bcntrld
);
203 /* Link to the previous slot if not the last set */
204 if (i
!= (nslots
- 1))
205 edma_link(echan
->slot
[i
], echan
->slot
[i
+1]);
208 edesc
->processed
+= nslots
;
211 * If this is either the last set in a set of SG-list transactions
212 * then setup a link to the dummy slot, this results in all future
213 * events being absorbed and that's OK because we're done
215 if (edesc
->processed
== edesc
->pset_nr
) {
217 edma_link(echan
->slot
[nslots
-1], echan
->slot
[1]);
219 edma_link(echan
->slot
[nslots
-1],
220 echan
->ecc
->dummy_slot
);
223 if (edesc
->processed
<= MAX_NR_SG
) {
224 dev_dbg(dev
, "first transfer starting on channel %d\n",
226 edma_start(echan
->ch_num
);
228 dev_dbg(dev
, "chan: %d: completed %d elements, resuming\n",
229 echan
->ch_num
, edesc
->processed
);
230 edma_resume(echan
->ch_num
);
234 * This happens due to setup times between intermediate transfers
235 * in long SG lists which have to be broken up into transfers of
239 dev_dbg(dev
, "missed event on channel %d\n", echan
->ch_num
);
240 edma_clean_channel(echan
->ch_num
);
241 edma_stop(echan
->ch_num
);
242 edma_start(echan
->ch_num
);
243 edma_trigger_channel(echan
->ch_num
);
248 static int edma_terminate_all(struct dma_chan
*chan
)
250 struct edma_chan
*echan
= to_edma_chan(chan
);
254 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
257 * Stop DMA activity: we assume the callback will not be called
258 * after edma_dma() returns (even if it does, it will see
259 * echan->edesc is NULL and exit.)
262 int cyclic
= echan
->edesc
->cyclic
;
264 edma_stop(echan
->ch_num
);
265 /* Move the cyclic channel back to default queue */
267 edma_assign_channel_eventq(echan
->ch_num
,
271 vchan_get_all_descriptors(&echan
->vchan
, &head
);
272 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
273 vchan_dma_desc_free_list(&echan
->vchan
, &head
);
278 static int edma_slave_config(struct dma_chan
*chan
,
279 struct dma_slave_config
*cfg
)
281 struct edma_chan
*echan
= to_edma_chan(chan
);
283 if (cfg
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
284 cfg
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
287 memcpy(&echan
->cfg
, cfg
, sizeof(echan
->cfg
));
292 static int edma_dma_pause(struct dma_chan
*chan
)
294 struct edma_chan
*echan
= to_edma_chan(chan
);
296 /* Pause/Resume only allowed with cyclic mode */
297 if (!echan
->edesc
|| !echan
->edesc
->cyclic
)
300 edma_pause(echan
->ch_num
);
304 static int edma_dma_resume(struct dma_chan
*chan
)
306 struct edma_chan
*echan
= to_edma_chan(chan
);
308 /* Pause/Resume only allowed with cyclic mode */
309 if (!echan
->edesc
->cyclic
)
312 edma_resume(echan
->ch_num
);
317 * A PaRAM set configuration abstraction used by other modes
318 * @chan: Channel who's PaRAM set we're configuring
319 * @pset: PaRAM set to initialize and setup.
320 * @src_addr: Source address of the DMA
321 * @dst_addr: Destination address of the DMA
322 * @burst: In units of dev_width, how much to send
323 * @dev_width: How much is the dev_width
324 * @dma_length: Total length of the DMA transfer
325 * @direction: Direction of the transfer
327 static int edma_config_pset(struct dma_chan
*chan
, struct edma_pset
*epset
,
328 dma_addr_t src_addr
, dma_addr_t dst_addr
, u32 burst
,
329 enum dma_slave_buswidth dev_width
, unsigned int dma_length
,
330 enum dma_transfer_direction direction
)
332 struct edma_chan
*echan
= to_edma_chan(chan
);
333 struct device
*dev
= chan
->device
->dev
;
334 struct edmacc_param
*param
= &epset
->param
;
335 int acnt
, bcnt
, ccnt
, cidx
;
336 int src_bidx
, dst_bidx
, src_cidx
, dst_cidx
;
341 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
345 * If the maxburst is equal to the fifo width, use
346 * A-synced transfers. This allows for large contiguous
347 * buffer transfers using only one PaRAM set.
351 * For the A-sync case, bcnt and ccnt are the remainder
352 * and quotient respectively of the division of:
353 * (dma_length / acnt) by (SZ_64K -1). This is so
354 * that in case bcnt over flows, we have ccnt to use.
355 * Note: In A-sync tranfer only, bcntrld is used, but it
356 * only applies for sg_dma_len(sg) >= SZ_64K.
357 * In this case, the best way adopted is- bccnt for the
358 * first frame will be the remainder below. Then for
359 * every successive frame, bcnt will be SZ_64K-1. This
360 * is assured as bcntrld = 0xffff in end of function.
363 ccnt
= dma_length
/ acnt
/ (SZ_64K
- 1);
364 bcnt
= dma_length
/ acnt
- ccnt
* (SZ_64K
- 1);
366 * If bcnt is non-zero, we have a remainder and hence an
367 * extra frame to transfer, so increment ccnt.
376 * If maxburst is greater than the fifo address_width,
377 * use AB-synced transfers where A count is the fifo
378 * address_width and B count is the maxburst. In this
379 * case, we are limited to transfers of C count frames
380 * of (address_width * maxburst) where C count is limited
381 * to SZ_64K-1. This places an upper bound on the length
382 * of an SG segment that can be handled.
386 ccnt
= dma_length
/ (acnt
* bcnt
);
387 if (ccnt
> (SZ_64K
- 1)) {
388 dev_err(dev
, "Exceeded max SG segment size\n");
394 epset
->len
= dma_length
;
396 if (direction
== DMA_MEM_TO_DEV
) {
401 epset
->addr
= src_addr
;
402 } else if (direction
== DMA_DEV_TO_MEM
) {
407 epset
->addr
= dst_addr
;
408 } else if (direction
== DMA_MEM_TO_MEM
) {
414 dev_err(dev
, "%s: direction not implemented yet\n", __func__
);
418 param
->opt
= EDMA_TCC(EDMA_CHAN_SLOT(echan
->ch_num
));
419 /* Configure A or AB synchronized transfers */
421 param
->opt
|= SYNCDIM
;
423 param
->src
= src_addr
;
424 param
->dst
= dst_addr
;
426 param
->src_dst_bidx
= (dst_bidx
<< 16) | src_bidx
;
427 param
->src_dst_cidx
= (dst_cidx
<< 16) | src_cidx
;
429 param
->a_b_cnt
= bcnt
<< 16 | acnt
;
432 * Only time when (bcntrld) auto reload is required is for
433 * A-sync case, and in this case, a requirement of reload value
434 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
435 * and then later will be populated by edma_execute.
437 param
->link_bcntrld
= 0xffffffff;
441 static struct dma_async_tx_descriptor
*edma_prep_slave_sg(
442 struct dma_chan
*chan
, struct scatterlist
*sgl
,
443 unsigned int sg_len
, enum dma_transfer_direction direction
,
444 unsigned long tx_flags
, void *context
)
446 struct edma_chan
*echan
= to_edma_chan(chan
);
447 struct device
*dev
= chan
->device
->dev
;
448 struct edma_desc
*edesc
;
449 dma_addr_t src_addr
= 0, dst_addr
= 0;
450 enum dma_slave_buswidth dev_width
;
452 struct scatterlist
*sg
;
455 if (unlikely(!echan
|| !sgl
|| !sg_len
))
458 if (direction
== DMA_DEV_TO_MEM
) {
459 src_addr
= echan
->cfg
.src_addr
;
460 dev_width
= echan
->cfg
.src_addr_width
;
461 burst
= echan
->cfg
.src_maxburst
;
462 } else if (direction
== DMA_MEM_TO_DEV
) {
463 dst_addr
= echan
->cfg
.dst_addr
;
464 dev_width
= echan
->cfg
.dst_addr_width
;
465 burst
= echan
->cfg
.dst_maxburst
;
467 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
471 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
472 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
476 edesc
= kzalloc(sizeof(*edesc
) + sg_len
*
477 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
479 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
483 edesc
->pset_nr
= sg_len
;
485 edesc
->direction
= direction
;
486 edesc
->echan
= echan
;
488 /* Allocate a PaRAM slot, if needed */
489 nslots
= min_t(unsigned, MAX_NR_SG
, sg_len
);
491 for (i
= 0; i
< nslots
; i
++) {
492 if (echan
->slot
[i
] < 0) {
494 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
496 if (echan
->slot
[i
] < 0) {
498 dev_err(dev
, "%s: Failed to allocate slot\n",
505 /* Configure PaRAM sets for each SG */
506 for_each_sg(sgl
, sg
, sg_len
, i
) {
507 /* Get address for each SG */
508 if (direction
== DMA_DEV_TO_MEM
)
509 dst_addr
= sg_dma_address(sg
);
511 src_addr
= sg_dma_address(sg
);
513 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
514 dst_addr
, burst
, dev_width
,
515 sg_dma_len(sg
), direction
);
522 edesc
->residue
+= sg_dma_len(sg
);
524 /* If this is the last in a current SG set of transactions,
525 enable interrupts so that next set is processed */
526 if (!((i
+1) % MAX_NR_SG
))
527 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
529 /* If this is the last set, enable completion interrupt flag */
531 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
533 edesc
->residue_stat
= edesc
->residue
;
535 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
538 static struct dma_async_tx_descriptor
*edma_prep_dma_memcpy(
539 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
540 size_t len
, unsigned long tx_flags
)
543 struct edma_desc
*edesc
;
544 struct device
*dev
= chan
->device
->dev
;
545 struct edma_chan
*echan
= to_edma_chan(chan
);
547 if (unlikely(!echan
|| !len
))
550 edesc
= kzalloc(sizeof(*edesc
) + sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
552 dev_dbg(dev
, "Failed to allocate a descriptor\n");
558 ret
= edma_config_pset(chan
, &edesc
->pset
[0], src
, dest
, 1,
559 DMA_SLAVE_BUSWIDTH_4_BYTES
, len
, DMA_MEM_TO_MEM
);
566 * Enable intermediate transfer chaining to re-trigger channel
567 * on completion of every TR, and enable transfer-completion
568 * interrupt on completion of the whole transfer.
570 edesc
->pset
[0].param
.opt
|= ITCCHEN
;
571 edesc
->pset
[0].param
.opt
|= TCINTEN
;
573 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
576 static struct dma_async_tx_descriptor
*edma_prep_dma_cyclic(
577 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
578 size_t period_len
, enum dma_transfer_direction direction
,
579 unsigned long tx_flags
)
581 struct edma_chan
*echan
= to_edma_chan(chan
);
582 struct device
*dev
= chan
->device
->dev
;
583 struct edma_desc
*edesc
;
584 dma_addr_t src_addr
, dst_addr
;
585 enum dma_slave_buswidth dev_width
;
589 if (unlikely(!echan
|| !buf_len
|| !period_len
))
592 if (direction
== DMA_DEV_TO_MEM
) {
593 src_addr
= echan
->cfg
.src_addr
;
595 dev_width
= echan
->cfg
.src_addr_width
;
596 burst
= echan
->cfg
.src_maxburst
;
597 } else if (direction
== DMA_MEM_TO_DEV
) {
599 dst_addr
= echan
->cfg
.dst_addr
;
600 dev_width
= echan
->cfg
.dst_addr_width
;
601 burst
= echan
->cfg
.dst_maxburst
;
603 dev_err(dev
, "%s: bad direction: %d\n", __func__
, direction
);
607 if (dev_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) {
608 dev_err(dev
, "%s: Undefined slave buswidth\n", __func__
);
612 if (unlikely(buf_len
% period_len
)) {
613 dev_err(dev
, "Period should be multiple of Buffer length\n");
617 nslots
= (buf_len
/ period_len
) + 1;
620 * Cyclic DMA users such as audio cannot tolerate delays introduced
621 * by cases where the number of periods is more than the maximum
622 * number of SGs the EDMA driver can handle at a time. For DMA types
623 * such as Slave SGs, such delays are tolerable and synchronized,
624 * but the synchronization is difficult to achieve with Cyclic and
625 * cannot be guaranteed, so we error out early.
627 if (nslots
> MAX_NR_SG
)
630 edesc
= kzalloc(sizeof(*edesc
) + nslots
*
631 sizeof(edesc
->pset
[0]), GFP_ATOMIC
);
633 dev_err(dev
, "%s: Failed to allocate a descriptor\n", __func__
);
638 edesc
->pset_nr
= nslots
;
639 edesc
->residue
= edesc
->residue_stat
= buf_len
;
640 edesc
->direction
= direction
;
641 edesc
->echan
= echan
;
643 dev_dbg(dev
, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
644 __func__
, echan
->ch_num
, nslots
, period_len
, buf_len
);
646 for (i
= 0; i
< nslots
; i
++) {
647 /* Allocate a PaRAM slot, if needed */
648 if (echan
->slot
[i
] < 0) {
650 edma_alloc_slot(EDMA_CTLR(echan
->ch_num
),
652 if (echan
->slot
[i
] < 0) {
654 dev_err(dev
, "%s: Failed to allocate slot\n",
660 if (i
== nslots
- 1) {
661 memcpy(&edesc
->pset
[i
], &edesc
->pset
[0],
662 sizeof(edesc
->pset
[0]));
666 ret
= edma_config_pset(chan
, &edesc
->pset
[i
], src_addr
,
667 dst_addr
, burst
, dev_width
, period_len
,
674 if (direction
== DMA_DEV_TO_MEM
)
675 dst_addr
+= period_len
;
677 src_addr
+= period_len
;
679 dev_vdbg(dev
, "%s: Configure period %d of buf:\n", __func__
, i
);
692 i
, echan
->ch_num
, echan
->slot
[i
],
693 edesc
->pset
[i
].param
.opt
,
694 edesc
->pset
[i
].param
.src
,
695 edesc
->pset
[i
].param
.dst
,
696 edesc
->pset
[i
].param
.a_b_cnt
,
697 edesc
->pset
[i
].param
.ccnt
,
698 edesc
->pset
[i
].param
.src_dst_bidx
,
699 edesc
->pset
[i
].param
.src_dst_cidx
,
700 edesc
->pset
[i
].param
.link_bcntrld
);
705 * Enable period interrupt only if it is requested
707 if (tx_flags
& DMA_PREP_INTERRUPT
)
708 edesc
->pset
[i
].param
.opt
|= TCINTEN
;
711 /* Place the cyclic channel to highest priority queue */
712 edma_assign_channel_eventq(echan
->ch_num
, EVENTQ_0
);
714 return vchan_tx_prep(&echan
->vchan
, &edesc
->vdesc
, tx_flags
);
717 static void edma_callback(unsigned ch_num
, u16 ch_status
, void *data
)
719 struct edma_chan
*echan
= data
;
720 struct device
*dev
= echan
->vchan
.chan
.device
->dev
;
721 struct edma_desc
*edesc
;
722 struct edmacc_param p
;
724 edesc
= echan
->edesc
;
726 /* Pause the channel for non-cyclic */
727 if (!edesc
|| (edesc
&& !edesc
->cyclic
))
728 edma_pause(echan
->ch_num
);
731 case EDMA_DMA_COMPLETE
:
732 spin_lock(&echan
->vchan
.lock
);
736 vchan_cyclic_callback(&edesc
->vdesc
);
737 } else if (edesc
->processed
== edesc
->pset_nr
) {
738 dev_dbg(dev
, "Transfer complete, stopping channel %d\n", ch_num
);
740 edma_stop(echan
->ch_num
);
741 vchan_cookie_complete(&edesc
->vdesc
);
744 dev_dbg(dev
, "Intermediate transfer complete on channel %d\n", ch_num
);
746 /* Update statistics for tx_status */
747 edesc
->residue
-= edesc
->sg_len
;
748 edesc
->residue_stat
= edesc
->residue
;
749 edesc
->processed_stat
= edesc
->processed
;
755 spin_unlock(&echan
->vchan
.lock
);
758 case EDMA_DMA_CC_ERROR
:
759 spin_lock(&echan
->vchan
.lock
);
761 edma_read_slot(EDMA_CHAN_SLOT(echan
->slot
[0]), &p
);
764 * Issue later based on missed flag which will be sure
766 * (1) we finished transmitting an intermediate slot and
767 * edma_execute is coming up.
768 * (2) or we finished current transfer and issue will
771 * Important note: issuing can be dangerous here and
772 * lead to some nasty recursion when we are in a NULL
773 * slot. So we avoid doing so and set the missed flag.
775 if (p
.a_b_cnt
== 0 && p
.ccnt
== 0) {
776 dev_dbg(dev
, "Error occurred, looks like slot is null, just setting miss\n");
780 * The slot is already programmed but the event got
781 * missed, so its safe to issue it here.
783 dev_dbg(dev
, "Error occurred but slot is non-null, TRIGGERING\n");
784 edma_clean_channel(echan
->ch_num
);
785 edma_stop(echan
->ch_num
);
786 edma_start(echan
->ch_num
);
787 edma_trigger_channel(echan
->ch_num
);
790 spin_unlock(&echan
->vchan
.lock
);
798 /* Alloc channel resources */
799 static int edma_alloc_chan_resources(struct dma_chan
*chan
)
801 struct edma_chan
*echan
= to_edma_chan(chan
);
802 struct device
*dev
= chan
->device
->dev
;
807 a_ch_num
= edma_alloc_channel(echan
->ch_num
, edma_callback
,
808 chan
, EVENTQ_DEFAULT
);
815 if (a_ch_num
!= echan
->ch_num
) {
816 dev_err(dev
, "failed to allocate requested channel %u:%u\n",
817 EDMA_CTLR(echan
->ch_num
),
818 EDMA_CHAN_SLOT(echan
->ch_num
));
823 echan
->alloced
= true;
824 echan
->slot
[0] = echan
->ch_num
;
826 dev_dbg(dev
, "allocated channel %d for %u:%u\n", echan
->ch_num
,
827 EDMA_CTLR(echan
->ch_num
), EDMA_CHAN_SLOT(echan
->ch_num
));
832 edma_free_channel(a_ch_num
);
837 /* Free channel resources */
838 static void edma_free_chan_resources(struct dma_chan
*chan
)
840 struct edma_chan
*echan
= to_edma_chan(chan
);
841 struct device
*dev
= chan
->device
->dev
;
844 /* Terminate transfers */
845 edma_stop(echan
->ch_num
);
847 vchan_free_chan_resources(&echan
->vchan
);
849 /* Free EDMA PaRAM slots */
850 for (i
= 1; i
< EDMA_MAX_SLOTS
; i
++) {
851 if (echan
->slot
[i
] >= 0) {
852 edma_free_slot(echan
->slot
[i
]);
857 /* Free EDMA channel */
858 if (echan
->alloced
) {
859 edma_free_channel(echan
->ch_num
);
860 echan
->alloced
= false;
863 dev_dbg(dev
, "freeing channel for %u\n", echan
->ch_num
);
866 /* Send pending descriptor to hardware */
867 static void edma_issue_pending(struct dma_chan
*chan
)
869 struct edma_chan
*echan
= to_edma_chan(chan
);
872 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
873 if (vchan_issue_pending(&echan
->vchan
) && !echan
->edesc
)
875 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
878 static u32
edma_residue(struct edma_desc
*edesc
)
880 bool dst
= edesc
->direction
== DMA_DEV_TO_MEM
;
881 struct edma_pset
*pset
= edesc
->pset
;
882 dma_addr_t done
, pos
;
886 * We always read the dst/src position from the first RamPar
887 * pset. That's the one which is active now.
889 pos
= edma_get_position(edesc
->echan
->slot
[0], dst
);
892 * Cyclic is simple. Just subtract pset[0].addr from pos.
894 * We never update edesc->residue in the cyclic case, so we
895 * can tell the remaining room to the end of the circular
899 done
= pos
- pset
->addr
;
900 edesc
->residue_stat
= edesc
->residue
- done
;
901 return edesc
->residue_stat
;
905 * For SG operation we catch up with the last processed
908 pset
+= edesc
->processed_stat
;
910 for (i
= edesc
->processed_stat
; i
< edesc
->processed
; i
++, pset
++) {
912 * If we are inside this pset address range, we know
913 * this is the active one. Get the current delta and
914 * stop walking the psets.
916 if (pos
>= pset
->addr
&& pos
< pset
->addr
+ pset
->len
)
917 return edesc
->residue_stat
- (pos
- pset
->addr
);
919 /* Otherwise mark it done and update residue_stat. */
920 edesc
->processed_stat
++;
921 edesc
->residue_stat
-= pset
->len
;
923 return edesc
->residue_stat
;
926 /* Check request completion status */
927 static enum dma_status
edma_tx_status(struct dma_chan
*chan
,
929 struct dma_tx_state
*txstate
)
931 struct edma_chan
*echan
= to_edma_chan(chan
);
932 struct virt_dma_desc
*vdesc
;
936 ret
= dma_cookie_status(chan
, cookie
, txstate
);
937 if (ret
== DMA_COMPLETE
|| !txstate
)
940 spin_lock_irqsave(&echan
->vchan
.lock
, flags
);
941 if (echan
->edesc
&& echan
->edesc
->vdesc
.tx
.cookie
== cookie
)
942 txstate
->residue
= edma_residue(echan
->edesc
);
943 else if ((vdesc
= vchan_find_desc(&echan
->vchan
, cookie
)))
944 txstate
->residue
= to_edma_desc(&vdesc
->tx
)->residue
;
945 spin_unlock_irqrestore(&echan
->vchan
.lock
, flags
);
950 static void __init
edma_chan_init(struct edma_cc
*ecc
,
951 struct dma_device
*dma
,
952 struct edma_chan
*echans
)
956 for (i
= 0; i
< EDMA_CHANS
; i
++) {
957 struct edma_chan
*echan
= &echans
[i
];
958 echan
->ch_num
= EDMA_CTLR_CHAN(ecc
->ctlr
, i
);
960 echan
->vchan
.desc_free
= edma_desc_free
;
962 vchan_init(&echan
->vchan
, dma
);
964 INIT_LIST_HEAD(&echan
->node
);
965 for (j
= 0; j
< EDMA_MAX_SLOTS
; j
++)
970 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
971 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
972 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
973 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
975 static void edma_dma_init(struct edma_cc
*ecc
, struct dma_device
*dma
,
978 dma
->device_prep_slave_sg
= edma_prep_slave_sg
;
979 dma
->device_prep_dma_cyclic
= edma_prep_dma_cyclic
;
980 dma
->device_prep_dma_memcpy
= edma_prep_dma_memcpy
;
981 dma
->device_alloc_chan_resources
= edma_alloc_chan_resources
;
982 dma
->device_free_chan_resources
= edma_free_chan_resources
;
983 dma
->device_issue_pending
= edma_issue_pending
;
984 dma
->device_tx_status
= edma_tx_status
;
985 dma
->device_config
= edma_slave_config
;
986 dma
->device_pause
= edma_dma_pause
;
987 dma
->device_resume
= edma_dma_resume
;
988 dma
->device_terminate_all
= edma_terminate_all
;
990 dma
->src_addr_widths
= EDMA_DMA_BUSWIDTHS
;
991 dma
->dst_addr_widths
= EDMA_DMA_BUSWIDTHS
;
992 dma
->directions
= BIT(DMA_DEV_TO_MEM
) | BIT(DMA_MEM_TO_DEV
);
993 dma
->residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
998 * code using dma memcpy must make sure alignment of
999 * length is at dma->copy_align boundary.
1001 dma
->copy_align
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1003 INIT_LIST_HEAD(&dma
->channels
);
1006 static int edma_probe(struct platform_device
*pdev
)
1008 struct edma_cc
*ecc
;
1011 ret
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
1015 ecc
= devm_kzalloc(&pdev
->dev
, sizeof(*ecc
), GFP_KERNEL
);
1017 dev_err(&pdev
->dev
, "Can't allocate controller\n");
1021 ecc
->ctlr
= pdev
->id
;
1022 ecc
->dummy_slot
= edma_alloc_slot(ecc
->ctlr
, EDMA_SLOT_ANY
);
1023 if (ecc
->dummy_slot
< 0) {
1024 dev_err(&pdev
->dev
, "Can't allocate PaRAM dummy slot\n");
1025 return ecc
->dummy_slot
;
1028 dma_cap_zero(ecc
->dma_slave
.cap_mask
);
1029 dma_cap_set(DMA_SLAVE
, ecc
->dma_slave
.cap_mask
);
1030 dma_cap_set(DMA_CYCLIC
, ecc
->dma_slave
.cap_mask
);
1031 dma_cap_set(DMA_MEMCPY
, ecc
->dma_slave
.cap_mask
);
1033 edma_dma_init(ecc
, &ecc
->dma_slave
, &pdev
->dev
);
1035 edma_chan_init(ecc
, &ecc
->dma_slave
, ecc
->slave_chans
);
1037 ret
= dma_async_device_register(&ecc
->dma_slave
);
1041 platform_set_drvdata(pdev
, ecc
);
1043 dev_info(&pdev
->dev
, "TI EDMA DMA engine driver\n");
1048 edma_free_slot(ecc
->dummy_slot
);
1052 static int edma_remove(struct platform_device
*pdev
)
1054 struct device
*dev
= &pdev
->dev
;
1055 struct edma_cc
*ecc
= dev_get_drvdata(dev
);
1057 dma_async_device_unregister(&ecc
->dma_slave
);
1058 edma_free_slot(ecc
->dummy_slot
);
1063 static struct platform_driver edma_driver
= {
1064 .probe
= edma_probe
,
1065 .remove
= edma_remove
,
1067 .name
= "edma-dma-engine",
1071 bool edma_filter_fn(struct dma_chan
*chan
, void *param
)
1073 if (chan
->device
->dev
->driver
== &edma_driver
.driver
) {
1074 struct edma_chan
*echan
= to_edma_chan(chan
);
1075 unsigned ch_req
= *(unsigned *)param
;
1076 return ch_req
== echan
->ch_num
;
1080 EXPORT_SYMBOL(edma_filter_fn
);
1082 static int edma_init(void)
1084 return platform_driver_register(&edma_driver
);
1086 subsys_initcall(edma_init
);
1088 static void __exit
edma_exit(void)
1090 platform_driver_unregister(&edma_driver
);
1092 module_exit(edma_exit
);
1094 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
1095 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
1096 MODULE_LICENSE("GPL v2");