4 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
6 * based on amba-pl08x.c
8 * Copyright (c) 2006 ARM Ltd.
9 * Copyright (c) 2010 ST-Ericsson SA
11 * Author: Peter Pearse <peter.pearse@arm.com>
12 * Author: Linus Walleij <linus.walleij@stericsson.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option)
19 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
20 * that can be routed to any of the 4 to 8 hardware-channels.
22 * Therefore on these DMA controllers the number of channels
23 * and the number of incoming DMA signals are two totally different things.
24 * It is usually not possible to theoretically handle all physical signals,
25 * so a multiplexing scheme with possible denial of use is necessary.
31 #include <linux/platform_device.h>
32 #include <linux/types.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/interrupt.h>
36 #include <linux/clk.h>
37 #include <linux/module.h>
38 #include <linux/slab.h>
39 #include <linux/platform_data/dma-s3c24xx.h>
41 #include "dmaengine.h"
44 #define MAX_DMA_CHANNELS 8
46 #define S3C24XX_DISRC 0x00
47 #define S3C24XX_DISRCC 0x04
48 #define S3C24XX_DISRCC_INC_INCREMENT 0
49 #define S3C24XX_DISRCC_INC_FIXED BIT(0)
50 #define S3C24XX_DISRCC_LOC_AHB 0
51 #define S3C24XX_DISRCC_LOC_APB BIT(1)
53 #define S3C24XX_DIDST 0x08
54 #define S3C24XX_DIDSTC 0x0c
55 #define S3C24XX_DIDSTC_INC_INCREMENT 0
56 #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
57 #define S3C24XX_DIDSTC_LOC_AHB 0
58 #define S3C24XX_DIDSTC_LOC_APB BIT(1)
59 #define S3C24XX_DIDSTC_INT_TC0 0
60 #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
62 #define S3C24XX_DCON 0x10
64 #define S3C24XX_DCON_TC_MASK 0xfffff
65 #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
66 #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
67 #define S3C24XX_DCON_DSZ_WORD (2 << 20)
68 #define S3C24XX_DCON_DSZ_MASK (3 << 20)
69 #define S3C24XX_DCON_DSZ_SHIFT 20
70 #define S3C24XX_DCON_AUTORELOAD 0
71 #define S3C24XX_DCON_NORELOAD BIT(22)
72 #define S3C24XX_DCON_HWTRIG BIT(23)
73 #define S3C24XX_DCON_HWSRC_SHIFT 24
74 #define S3C24XX_DCON_SERV_SINGLE 0
75 #define S3C24XX_DCON_SERV_WHOLE BIT(27)
76 #define S3C24XX_DCON_TSZ_UNIT 0
77 #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
78 #define S3C24XX_DCON_INT BIT(29)
79 #define S3C24XX_DCON_SYNC_PCLK 0
80 #define S3C24XX_DCON_SYNC_HCLK BIT(30)
81 #define S3C24XX_DCON_DEMAND 0
82 #define S3C24XX_DCON_HANDSHAKE BIT(31)
84 #define S3C24XX_DSTAT 0x14
85 #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
86 #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
88 #define S3C24XX_DMASKTRIG 0x20
89 #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
90 #define S3C24XX_DMASKTRIG_ON BIT(1)
91 #define S3C24XX_DMASKTRIG_STOP BIT(2)
93 #define S3C24XX_DMAREQSEL 0x24
94 #define S3C24XX_DMAREQSEL_HW BIT(0)
97 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
98 * for a DMA source. Instead only specific channels are valid.
99 * All of these SoCs have 4 physical channels and the number of request
100 * source bits is 3. Additionally we also need 1 bit to mark the channel
102 * Therefore we separate the chansel element of the channel data into 4
103 * parts of 4 bits each, to hold the information if the channel is valid
104 * and the hw request source to use.
107 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108 * For it the chansel field would look like
110 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112 * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
114 #define S3C24XX_CHANSEL_WIDTH 4
115 #define S3C24XX_CHANSEL_VALID BIT(3)
116 #define S3C24XX_CHANSEL_REQ_MASK 7
119 * struct soc_data - vendor-specific config parameters for individual SoCs
120 * @stride: spacing between the registers of each channel
121 * @has_reqsel: does the controller use the newer requestselection mechanism
122 * @has_clocks: are controllable dma-clocks present
131 * enum s3c24xx_dma_chan_state - holds the virtual channel states
132 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134 * channel and is running a transfer on it
135 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136 * channel to become available (only pertains to memcpy channels)
138 enum s3c24xx_dma_chan_state
{
139 S3C24XX_DMA_CHAN_IDLE
,
140 S3C24XX_DMA_CHAN_RUNNING
,
141 S3C24XX_DMA_CHAN_WAITING
,
145 * struct s3c24xx_sg - structure containing data per sg
146 * @src_addr: src address of sg
147 * @dst_addr: dst address of sg
148 * @len: transfer len in bytes
149 * @node: node for txd's dsg_list
155 struct list_head node
;
159 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160 * @vd: virtual DMA descriptor
161 * @dsg_list: list of children sg's
162 * @at: sg currently being transfered
163 * @width: transfer width
164 * @disrcc: value for source control register
165 * @didstc: value for destination control register
166 * @dcon: base value for dcon register
167 * @cyclic: indicate cyclic transfer
170 struct virt_dma_desc vd
;
171 struct list_head dsg_list
;
172 struct list_head
*at
;
180 struct s3c24xx_dma_chan
;
183 * struct s3c24xx_dma_phy - holder for the physical channels
184 * @id: physical index to this channel
185 * @valid: does the channel have all required elements
186 * @base: virtual memory base (remapped) for the this channel
187 * @irq: interrupt for this channel
188 * @clk: clock for this channel
189 * @lock: a lock to use when altering an instance of this struct
190 * @serving: virtual channel currently being served by this physicalchannel
191 * @host: a pointer to the host (internal use)
193 struct s3c24xx_dma_phy
{
200 struct s3c24xx_dma_chan
*serving
;
201 struct s3c24xx_dma_engine
*host
;
205 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
206 * @id: the id of the channel
207 * @name: name of the channel
208 * @vc: wrappped virtual channel
209 * @phy: the physical channel utilized by this channel, if there is one
210 * @runtime_addr: address for RX/TX according to the runtime config
211 * @at: active transaction on this channel
212 * @lock: a lock for this channel data
213 * @host: a pointer to the host (internal use)
214 * @state: whether the channel is idle, running etc
215 * @slave: whether this channel is a device (slave) or for memcpy
217 struct s3c24xx_dma_chan
{
220 struct virt_dma_chan vc
;
221 struct s3c24xx_dma_phy
*phy
;
222 struct dma_slave_config cfg
;
223 struct s3c24xx_txd
*at
;
224 struct s3c24xx_dma_engine
*host
;
225 enum s3c24xx_dma_chan_state state
;
230 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
231 * @pdev: the corresponding platform device
232 * @pdata: platform data passed in from the platform/machine
233 * @base: virtual memory base (remapped)
234 * @slave: slave engine for this instance
235 * @memcpy: memcpy engine for this instance
236 * @phy_chans: array of data for the physical channels
238 struct s3c24xx_dma_engine
{
239 struct platform_device
*pdev
;
240 const struct s3c24xx_dma_platdata
*pdata
;
241 struct soc_data
*sdata
;
243 struct dma_device slave
;
244 struct dma_device memcpy
;
245 struct s3c24xx_dma_phy
*phy_chans
;
249 * Physical channel handling
253 * Check whether a certain channel is busy or not.
255 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy
*phy
)
257 unsigned int val
= readl(phy
->base
+ S3C24XX_DSTAT
);
258 return val
& S3C24XX_DSTAT_STAT_BUSY
;
261 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan
*s3cchan
,
262 struct s3c24xx_dma_phy
*phy
)
264 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
265 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
266 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
269 /* every phy is valid for memcopy channels */
273 /* On newer variants all phys can be used for all virtual channels */
274 if (s3cdma
->sdata
->has_reqsel
)
277 phyvalid
= (cdata
->chansel
>> (phy
->id
* S3C24XX_CHANSEL_WIDTH
));
278 return (phyvalid
& S3C24XX_CHANSEL_VALID
) ? true : false;
282 * Allocate a physical channel for a virtual channel
284 * Try to locate a physical channel to be used for this transfer. If all
285 * are taken return NULL and the requester will have to cope by using
286 * some fallback PIO mode or retrying later.
289 struct s3c24xx_dma_phy
*s3c24xx_dma_get_phy(struct s3c24xx_dma_chan
*s3cchan
)
291 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
292 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
293 struct s3c24xx_dma_channel
*cdata
;
294 struct s3c24xx_dma_phy
*phy
= NULL
;
300 cdata
= &pdata
->channels
[s3cchan
->id
];
302 for (i
= 0; i
< s3cdma
->pdata
->num_phy_channels
; i
++) {
303 phy
= &s3cdma
->phy_chans
[i
];
308 if (!s3c24xx_dma_phy_valid(s3cchan
, phy
))
311 spin_lock_irqsave(&phy
->lock
, flags
);
314 phy
->serving
= s3cchan
;
315 spin_unlock_irqrestore(&phy
->lock
, flags
);
319 spin_unlock_irqrestore(&phy
->lock
, flags
);
322 /* No physical channel available, cope with it */
323 if (i
== s3cdma
->pdata
->num_phy_channels
) {
324 dev_warn(&s3cdma
->pdev
->dev
, "no phy channel available\n");
328 /* start the phy clock */
329 if (s3cdma
->sdata
->has_clocks
) {
330 ret
= clk_enable(phy
->clk
);
332 dev_err(&s3cdma
->pdev
->dev
, "could not enable clock for channel %d, err %d\n",
343 * Mark the physical channel as free.
345 * This drops the link between the physical and virtual channel.
347 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy
*phy
)
349 struct s3c24xx_dma_engine
*s3cdma
= phy
->host
;
351 if (s3cdma
->sdata
->has_clocks
)
352 clk_disable(phy
->clk
);
358 * Stops the channel by writing the stop bit.
359 * This should not be used for an on-going transfer, but as a method of
360 * shutting down a channel (eg, when it's no longer used) or terminating a
363 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy
*phy
)
365 writel(S3C24XX_DMASKTRIG_STOP
, phy
->base
+ S3C24XX_DMASKTRIG
);
369 * Virtual channel handling
373 struct s3c24xx_dma_chan
*to_s3c24xx_dma_chan(struct dma_chan
*chan
)
375 return container_of(chan
, struct s3c24xx_dma_chan
, vc
.chan
);
378 static u32
s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan
*s3cchan
)
380 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
381 struct s3c24xx_txd
*txd
= s3cchan
->at
;
382 u32 tc
= readl(phy
->base
+ S3C24XX_DSTAT
) & S3C24XX_DSTAT_CURRTC_MASK
;
384 return tc
* txd
->width
;
387 static int s3c24xx_dma_set_runtime_config(struct dma_chan
*chan
,
388 struct dma_slave_config
*config
)
390 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
394 /* Reject definitely invalid configurations */
395 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
396 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
399 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
401 if (!s3cchan
->slave
) {
406 s3cchan
->cfg
= *config
;
409 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
418 struct s3c24xx_txd
*to_s3c24xx_txd(struct dma_async_tx_descriptor
*tx
)
420 return container_of(tx
, struct s3c24xx_txd
, vd
.tx
);
423 static struct s3c24xx_txd
*s3c24xx_dma_get_txd(void)
425 struct s3c24xx_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
428 INIT_LIST_HEAD(&txd
->dsg_list
);
429 txd
->dcon
= S3C24XX_DCON_INT
| S3C24XX_DCON_NORELOAD
;
435 static void s3c24xx_dma_free_txd(struct s3c24xx_txd
*txd
)
437 struct s3c24xx_sg
*dsg
, *_dsg
;
439 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
440 list_del(&dsg
->node
);
447 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan
*s3cchan
,
448 struct s3c24xx_txd
*txd
)
450 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
451 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
452 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
453 struct s3c24xx_sg
*dsg
= list_entry(txd
->at
, struct s3c24xx_sg
, node
);
454 u32 dcon
= txd
->dcon
;
457 /* transfer-size and -count from len and width */
458 switch (txd
->width
) {
460 dcon
|= S3C24XX_DCON_DSZ_BYTE
| dsg
->len
;
463 dcon
|= S3C24XX_DCON_DSZ_HALFWORD
| (dsg
->len
/ 2);
466 dcon
|= S3C24XX_DCON_DSZ_WORD
| (dsg
->len
/ 4);
470 if (s3cchan
->slave
) {
471 struct s3c24xx_dma_channel
*cdata
=
472 &pdata
->channels
[s3cchan
->id
];
474 if (s3cdma
->sdata
->has_reqsel
) {
475 writel_relaxed((cdata
->chansel
<< 1) |
476 S3C24XX_DMAREQSEL_HW
,
477 phy
->base
+ S3C24XX_DMAREQSEL
);
479 int csel
= cdata
->chansel
>> (phy
->id
*
480 S3C24XX_CHANSEL_WIDTH
);
482 csel
&= S3C24XX_CHANSEL_REQ_MASK
;
483 dcon
|= csel
<< S3C24XX_DCON_HWSRC_SHIFT
;
484 dcon
|= S3C24XX_DCON_HWTRIG
;
487 if (s3cdma
->sdata
->has_reqsel
)
488 writel_relaxed(0, phy
->base
+ S3C24XX_DMAREQSEL
);
491 writel_relaxed(dsg
->src_addr
, phy
->base
+ S3C24XX_DISRC
);
492 writel_relaxed(txd
->disrcc
, phy
->base
+ S3C24XX_DISRCC
);
493 writel_relaxed(dsg
->dst_addr
, phy
->base
+ S3C24XX_DIDST
);
494 writel_relaxed(txd
->didstc
, phy
->base
+ S3C24XX_DIDSTC
);
495 writel_relaxed(dcon
, phy
->base
+ S3C24XX_DCON
);
497 val
= readl_relaxed(phy
->base
+ S3C24XX_DMASKTRIG
);
498 val
&= ~S3C24XX_DMASKTRIG_STOP
;
499 val
|= S3C24XX_DMASKTRIG_ON
;
501 /* trigger the dma operation for memcpy transfers */
503 val
|= S3C24XX_DMASKTRIG_SWTRIG
;
505 writel(val
, phy
->base
+ S3C24XX_DMASKTRIG
);
509 * Set the initial DMA register values and start first sg.
511 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan
*s3cchan
)
513 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
514 struct virt_dma_desc
*vd
= vchan_next_desc(&s3cchan
->vc
);
515 struct s3c24xx_txd
*txd
= to_s3c24xx_txd(&vd
->tx
);
517 list_del(&txd
->vd
.node
);
521 /* Wait for channel inactive */
522 while (s3c24xx_dma_phy_busy(phy
))
525 /* point to the first element of the sg list */
526 txd
->at
= txd
->dsg_list
.next
;
527 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
530 static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine
*s3cdma
,
531 struct s3c24xx_dma_chan
*s3cchan
)
535 vchan_get_all_descriptors(&s3cchan
->vc
, &head
);
536 vchan_dma_desc_free_list(&s3cchan
->vc
, &head
);
540 * Try to allocate a physical channel. When successful, assign it to
541 * this virtual channel, and initiate the next descriptor. The
542 * virtual channel lock must be held at this point.
544 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan
*s3cchan
)
546 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
547 struct s3c24xx_dma_phy
*phy
;
549 phy
= s3c24xx_dma_get_phy(s3cchan
);
551 dev_dbg(&s3cdma
->pdev
->dev
, "no physical channel available for xfer on %s\n",
553 s3cchan
->state
= S3C24XX_DMA_CHAN_WAITING
;
557 dev_dbg(&s3cdma
->pdev
->dev
, "allocated physical channel %d for xfer on %s\n",
558 phy
->id
, s3cchan
->name
);
561 s3cchan
->state
= S3C24XX_DMA_CHAN_RUNNING
;
563 s3c24xx_dma_start_next_txd(s3cchan
);
566 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy
*phy
,
567 struct s3c24xx_dma_chan
*s3cchan
)
569 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
571 dev_dbg(&s3cdma
->pdev
->dev
, "reassigned physical channel %d for xfer on %s\n",
572 phy
->id
, s3cchan
->name
);
575 * We do this without taking the lock; we're really only concerned
576 * about whether this pointer is NULL or not, and we're guaranteed
577 * that this will only be called when it _already_ is non-NULL.
579 phy
->serving
= s3cchan
;
581 s3cchan
->state
= S3C24XX_DMA_CHAN_RUNNING
;
582 s3c24xx_dma_start_next_txd(s3cchan
);
586 * Free a physical DMA channel, potentially reallocating it to another
587 * virtual channel if we have any pending.
589 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan
*s3cchan
)
591 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
592 struct s3c24xx_dma_chan
*p
, *next
;
597 /* Find a waiting virtual channel for the next transfer. */
598 list_for_each_entry(p
, &s3cdma
->memcpy
.channels
, vc
.chan
.device_node
)
599 if (p
->state
== S3C24XX_DMA_CHAN_WAITING
) {
605 list_for_each_entry(p
, &s3cdma
->slave
.channels
,
607 if (p
->state
== S3C24XX_DMA_CHAN_WAITING
&&
608 s3c24xx_dma_phy_valid(p
, s3cchan
->phy
)) {
614 /* Ensure that the physical channel is stopped */
615 s3c24xx_dma_terminate_phy(s3cchan
->phy
);
621 * Eww. We know this isn't going to deadlock
622 * but lockdep probably doesn't.
624 spin_lock(&next
->vc
.lock
);
625 /* Re-check the state now that we have the lock */
626 success
= next
->state
== S3C24XX_DMA_CHAN_WAITING
;
628 s3c24xx_dma_phy_reassign_start(s3cchan
->phy
, next
);
629 spin_unlock(&next
->vc
.lock
);
631 /* If the state changed, try to find another channel */
635 /* No more jobs, so free up the physical channel */
636 s3c24xx_dma_put_phy(s3cchan
->phy
);
640 s3cchan
->state
= S3C24XX_DMA_CHAN_IDLE
;
643 static void s3c24xx_dma_desc_free(struct virt_dma_desc
*vd
)
645 struct s3c24xx_txd
*txd
= to_s3c24xx_txd(&vd
->tx
);
646 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(vd
->tx
.chan
);
649 dma_descriptor_unmap(&vd
->tx
);
651 s3c24xx_dma_free_txd(txd
);
654 static irqreturn_t
s3c24xx_dma_irq(int irq
, void *data
)
656 struct s3c24xx_dma_phy
*phy
= data
;
657 struct s3c24xx_dma_chan
*s3cchan
= phy
->serving
;
658 struct s3c24xx_txd
*txd
;
660 dev_dbg(&phy
->host
->pdev
->dev
, "interrupt on channel %d\n", phy
->id
);
663 * Interrupts happen to notify the completion of a transfer and the
664 * channel should have moved into its stop state already on its own.
665 * Therefore interrupts on channels not bound to a virtual channel
666 * should never happen. Nevertheless send a terminate command to the
667 * channel if the unlikely case happens.
669 if (unlikely(!s3cchan
)) {
670 dev_err(&phy
->host
->pdev
->dev
, "interrupt on unused channel %d\n",
673 s3c24xx_dma_terminate_phy(phy
);
678 spin_lock(&s3cchan
->vc
.lock
);
681 /* when more sg's are in this txd, start the next one */
682 if (!list_is_last(txd
->at
, &txd
->dsg_list
)) {
683 txd
->at
= txd
->at
->next
;
685 vchan_cyclic_callback(&txd
->vd
);
686 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
687 } else if (!txd
->cyclic
) {
689 vchan_cookie_complete(&txd
->vd
);
692 * And start the next descriptor (if any),
693 * otherwise free this channel.
695 if (vchan_next_desc(&s3cchan
->vc
))
696 s3c24xx_dma_start_next_txd(s3cchan
);
698 s3c24xx_dma_phy_free(s3cchan
);
700 vchan_cyclic_callback(&txd
->vd
);
702 /* Cyclic: reset at beginning */
703 txd
->at
= txd
->dsg_list
.next
;
704 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
707 spin_unlock(&s3cchan
->vc
.lock
);
716 static int s3c24xx_dma_terminate_all(struct dma_chan
*chan
)
718 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
719 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
723 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
725 if (!s3cchan
->phy
&& !s3cchan
->at
) {
726 dev_err(&s3cdma
->pdev
->dev
, "trying to terminate already stopped channel %d\n",
732 s3cchan
->state
= S3C24XX_DMA_CHAN_IDLE
;
734 /* Mark physical channel as free */
736 s3c24xx_dma_phy_free(s3cchan
);
738 /* Dequeue current job */
740 s3c24xx_dma_desc_free(&s3cchan
->at
->vd
);
744 /* Dequeue jobs not yet fired as well */
745 s3c24xx_dma_free_txd_list(s3cdma
, s3cchan
);
747 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
752 static int s3c24xx_dma_alloc_chan_resources(struct dma_chan
*chan
)
757 static void s3c24xx_dma_free_chan_resources(struct dma_chan
*chan
)
759 /* Ensure all queued descriptors are freed */
760 vchan_free_chan_resources(to_virt_chan(chan
));
763 static enum dma_status
s3c24xx_dma_tx_status(struct dma_chan
*chan
,
764 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
766 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
767 struct s3c24xx_txd
*txd
;
768 struct s3c24xx_sg
*dsg
;
769 struct virt_dma_desc
*vd
;
774 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
775 ret
= dma_cookie_status(chan
, cookie
, txstate
);
776 if (ret
== DMA_COMPLETE
) {
777 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
782 * There's no point calculating the residue if there's
783 * no txstate to store the value.
786 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
790 vd
= vchan_find_desc(&s3cchan
->vc
, cookie
);
792 /* On the issued list, so hasn't been processed yet */
793 txd
= to_s3c24xx_txd(&vd
->tx
);
795 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
799 * Currently running, so sum over the pending sg's and
800 * the currently active one.
804 dsg
= list_entry(txd
->at
, struct s3c24xx_sg
, node
);
805 list_for_each_entry_from(dsg
, &txd
->dsg_list
, node
)
808 bytes
+= s3c24xx_dma_getbytes_chan(s3cchan
);
810 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
813 * This cookie not complete yet
814 * Get number of bytes left in the active transactions and queue
816 dma_set_residue(txstate
, bytes
);
818 /* Whether waiting or running, we're in progress */
823 * Initialize a descriptor to be used by memcpy submit
825 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_memcpy(
826 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
827 size_t len
, unsigned long flags
)
829 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
830 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
831 struct s3c24xx_txd
*txd
;
832 struct s3c24xx_sg
*dsg
;
833 int src_mod
, dest_mod
;
835 dev_dbg(&s3cdma
->pdev
->dev
, "prepare memcpy of %d bytes from %s\n",
838 if ((len
& S3C24XX_DCON_TC_MASK
) != len
) {
839 dev_err(&s3cdma
->pdev
->dev
, "memcpy size %d to large\n", len
);
843 txd
= s3c24xx_dma_get_txd();
847 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
849 s3c24xx_dma_free_txd(txd
);
852 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
855 dsg
->dst_addr
= dest
;
859 * Determine a suitable transfer width.
860 * The DMA controller cannot fetch/store information which is not
861 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
862 * an address divisible by 4 - more generally addr % width must be 0.
868 txd
->width
= (src_mod
== 0 && dest_mod
== 0) ? 4 : 1;
871 txd
->width
= ((src_mod
== 2 || src_mod
== 0) &&
872 (dest_mod
== 2 || dest_mod
== 0)) ? 2 : 1;
879 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
| S3C24XX_DISRCC_INC_INCREMENT
;
880 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
| S3C24XX_DIDSTC_INC_INCREMENT
;
881 txd
->dcon
|= S3C24XX_DCON_DEMAND
| S3C24XX_DCON_SYNC_HCLK
|
882 S3C24XX_DCON_SERV_WHOLE
;
884 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
887 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_dma_cyclic(
888 struct dma_chan
*chan
, dma_addr_t addr
, size_t size
, size_t period
,
889 enum dma_transfer_direction direction
, unsigned long flags
)
891 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
892 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
893 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
894 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
895 struct s3c24xx_txd
*txd
;
896 struct s3c24xx_sg
*dsg
;
898 dma_addr_t slave_addr
;
902 dev_dbg(&s3cdma
->pdev
->dev
,
903 "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
904 size
, period
, s3cchan
->name
);
906 if (!is_slave_direction(direction
)) {
907 dev_err(&s3cdma
->pdev
->dev
,
908 "direction %d unsupported\n", direction
);
912 txd
= s3c24xx_dma_get_txd();
918 if (cdata
->handshake
)
919 txd
->dcon
|= S3C24XX_DCON_HANDSHAKE
;
921 switch (cdata
->bus
) {
922 case S3C24XX_DMA_APB
:
923 txd
->dcon
|= S3C24XX_DCON_SYNC_PCLK
;
924 hwcfg
|= S3C24XX_DISRCC_LOC_APB
;
926 case S3C24XX_DMA_AHB
:
927 txd
->dcon
|= S3C24XX_DCON_SYNC_HCLK
;
928 hwcfg
|= S3C24XX_DISRCC_LOC_AHB
;
933 * Always assume our peripheral desintation is a fixed
936 hwcfg
|= S3C24XX_DISRCC_INC_FIXED
;
939 * Individual dma operations are requested by the slave,
940 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
942 txd
->dcon
|= S3C24XX_DCON_SERV_SINGLE
;
944 if (direction
== DMA_MEM_TO_DEV
) {
945 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
|
946 S3C24XX_DISRCC_INC_INCREMENT
;
948 slave_addr
= s3cchan
->cfg
.dst_addr
;
949 txd
->width
= s3cchan
->cfg
.dst_addr_width
;
952 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
|
953 S3C24XX_DIDSTC_INC_INCREMENT
;
954 slave_addr
= s3cchan
->cfg
.src_addr
;
955 txd
->width
= s3cchan
->cfg
.src_addr_width
;
958 sg_len
= size
/ period
;
960 for (i
= 0; i
< sg_len
; i
++) {
961 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
963 s3c24xx_dma_free_txd(txd
);
966 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
969 /* Check last period length */
971 dsg
->len
= size
- period
* i
;
972 if (direction
== DMA_MEM_TO_DEV
) {
973 dsg
->src_addr
= addr
+ period
* i
;
974 dsg
->dst_addr
= slave_addr
;
975 } else { /* DMA_DEV_TO_MEM */
976 dsg
->src_addr
= slave_addr
;
977 dsg
->dst_addr
= addr
+ period
* i
;
981 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
984 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_slave_sg(
985 struct dma_chan
*chan
, struct scatterlist
*sgl
,
986 unsigned int sg_len
, enum dma_transfer_direction direction
,
987 unsigned long flags
, void *context
)
989 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
990 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
991 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
992 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
993 struct s3c24xx_txd
*txd
;
994 struct s3c24xx_sg
*dsg
;
995 struct scatterlist
*sg
;
996 dma_addr_t slave_addr
;
1000 dev_dbg(&s3cdma
->pdev
->dev
, "prepare transaction of %d bytes from %s\n",
1001 sg_dma_len(sgl
), s3cchan
->name
);
1003 txd
= s3c24xx_dma_get_txd();
1007 if (cdata
->handshake
)
1008 txd
->dcon
|= S3C24XX_DCON_HANDSHAKE
;
1010 switch (cdata
->bus
) {
1011 case S3C24XX_DMA_APB
:
1012 txd
->dcon
|= S3C24XX_DCON_SYNC_PCLK
;
1013 hwcfg
|= S3C24XX_DISRCC_LOC_APB
;
1015 case S3C24XX_DMA_AHB
:
1016 txd
->dcon
|= S3C24XX_DCON_SYNC_HCLK
;
1017 hwcfg
|= S3C24XX_DISRCC_LOC_AHB
;
1022 * Always assume our peripheral desintation is a fixed
1023 * address in memory.
1025 hwcfg
|= S3C24XX_DISRCC_INC_FIXED
;
1028 * Individual dma operations are requested by the slave,
1029 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1031 txd
->dcon
|= S3C24XX_DCON_SERV_SINGLE
;
1033 if (direction
== DMA_MEM_TO_DEV
) {
1034 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
|
1035 S3C24XX_DISRCC_INC_INCREMENT
;
1036 txd
->didstc
= hwcfg
;
1037 slave_addr
= s3cchan
->cfg
.dst_addr
;
1038 txd
->width
= s3cchan
->cfg
.dst_addr_width
;
1039 } else if (direction
== DMA_DEV_TO_MEM
) {
1040 txd
->disrcc
= hwcfg
;
1041 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
|
1042 S3C24XX_DIDSTC_INC_INCREMENT
;
1043 slave_addr
= s3cchan
->cfg
.src_addr
;
1044 txd
->width
= s3cchan
->cfg
.src_addr_width
;
1046 s3c24xx_dma_free_txd(txd
);
1047 dev_err(&s3cdma
->pdev
->dev
,
1048 "direction %d unsupported\n", direction
);
1052 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1053 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
1055 s3c24xx_dma_free_txd(txd
);
1058 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1060 dsg
->len
= sg_dma_len(sg
);
1061 if (direction
== DMA_MEM_TO_DEV
) {
1062 dsg
->src_addr
= sg_dma_address(sg
);
1063 dsg
->dst_addr
= slave_addr
;
1064 } else { /* DMA_DEV_TO_MEM */
1065 dsg
->src_addr
= slave_addr
;
1066 dsg
->dst_addr
= sg_dma_address(sg
);
1070 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
1074 * Slave transactions callback to the slave device to allow
1075 * synchronization of slave DMA signals with the DMAC enable
1077 static void s3c24xx_dma_issue_pending(struct dma_chan
*chan
)
1079 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
1080 unsigned long flags
;
1082 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
1083 if (vchan_issue_pending(&s3cchan
->vc
)) {
1084 if (!s3cchan
->phy
&& s3cchan
->state
!= S3C24XX_DMA_CHAN_WAITING
)
1085 s3c24xx_dma_phy_alloc_and_start(s3cchan
);
1087 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
1091 * Bringup and teardown
1095 * Initialise the DMAC memcpy/slave channels.
1096 * Make a local wrapper to hold required data
1098 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine
*s3cdma
,
1099 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1101 struct s3c24xx_dma_chan
*chan
;
1104 INIT_LIST_HEAD(&dmadev
->channels
);
1107 * Register as many many memcpy as we have physical channels,
1108 * we won't always be able to use all but the code will have
1109 * to cope with that situation.
1111 for (i
= 0; i
< channels
; i
++) {
1112 chan
= devm_kzalloc(dmadev
->dev
, sizeof(*chan
), GFP_KERNEL
);
1114 dev_err(dmadev
->dev
,
1115 "%s no memory for channel\n", __func__
);
1120 chan
->host
= s3cdma
;
1121 chan
->state
= S3C24XX_DMA_CHAN_IDLE
;
1125 chan
->name
= kasprintf(GFP_KERNEL
, "slave%d", i
);
1129 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1133 dev_dbg(dmadev
->dev
,
1134 "initialize virtual channel \"%s\"\n",
1137 chan
->vc
.desc_free
= s3c24xx_dma_desc_free
;
1138 vchan_init(&chan
->vc
, dmadev
);
1140 dev_info(dmadev
->dev
, "initialized %d virtual %s channels\n",
1141 i
, slave
? "slave" : "memcpy");
1145 static void s3c24xx_dma_free_virtual_channels(struct dma_device
*dmadev
)
1147 struct s3c24xx_dma_chan
*chan
= NULL
;
1148 struct s3c24xx_dma_chan
*next
;
1150 list_for_each_entry_safe(chan
,
1151 next
, &dmadev
->channels
, vc
.chan
.device_node
)
1152 list_del(&chan
->vc
.chan
.device_node
);
1155 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1156 static struct soc_data soc_s3c2410
= {
1158 .has_reqsel
= false,
1159 .has_clocks
= false,
1162 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1163 static struct soc_data soc_s3c2412
= {
1169 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1170 static struct soc_data soc_s3c2443
= {
1176 static struct platform_device_id s3c24xx_dma_driver_ids
[] = {
1178 .name
= "s3c2410-dma",
1179 .driver_data
= (kernel_ulong_t
)&soc_s3c2410
,
1181 .name
= "s3c2412-dma",
1182 .driver_data
= (kernel_ulong_t
)&soc_s3c2412
,
1184 .name
= "s3c2443-dma",
1185 .driver_data
= (kernel_ulong_t
)&soc_s3c2443
,
1190 static struct soc_data
*s3c24xx_dma_get_soc_data(struct platform_device
*pdev
)
1192 return (struct soc_data
*)
1193 platform_get_device_id(pdev
)->driver_data
;
1196 static int s3c24xx_dma_probe(struct platform_device
*pdev
)
1198 const struct s3c24xx_dma_platdata
*pdata
= dev_get_platdata(&pdev
->dev
);
1199 struct s3c24xx_dma_engine
*s3cdma
;
1200 struct soc_data
*sdata
;
1201 struct resource
*res
;
1206 dev_err(&pdev
->dev
, "platform data missing\n");
1210 /* Basic sanity check */
1211 if (pdata
->num_phy_channels
> MAX_DMA_CHANNELS
) {
1212 dev_err(&pdev
->dev
, "to many dma channels %d, max %d\n",
1213 pdata
->num_phy_channels
, MAX_DMA_CHANNELS
);
1217 sdata
= s3c24xx_dma_get_soc_data(pdev
);
1221 s3cdma
= devm_kzalloc(&pdev
->dev
, sizeof(*s3cdma
), GFP_KERNEL
);
1225 s3cdma
->pdev
= pdev
;
1226 s3cdma
->pdata
= pdata
;
1227 s3cdma
->sdata
= sdata
;
1229 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1230 s3cdma
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1231 if (IS_ERR(s3cdma
->base
))
1232 return PTR_ERR(s3cdma
->base
);
1234 s3cdma
->phy_chans
= devm_kzalloc(&pdev
->dev
,
1235 sizeof(struct s3c24xx_dma_phy
) *
1236 pdata
->num_phy_channels
,
1238 if (!s3cdma
->phy_chans
)
1241 /* aquire irqs and clocks for all physical channels */
1242 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1243 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1247 phy
->base
= s3cdma
->base
+ (i
* sdata
->stride
);
1250 phy
->irq
= platform_get_irq(pdev
, i
);
1252 dev_err(&pdev
->dev
, "failed to get irq %d, err %d\n",
1257 ret
= devm_request_irq(&pdev
->dev
, phy
->irq
, s3c24xx_dma_irq
,
1258 0, pdev
->name
, phy
);
1260 dev_err(&pdev
->dev
, "Unable to request irq for channel %d, error %d\n",
1265 if (sdata
->has_clocks
) {
1266 sprintf(clk_name
, "dma.%d", i
);
1267 phy
->clk
= devm_clk_get(&pdev
->dev
, clk_name
);
1268 if (IS_ERR(phy
->clk
) && sdata
->has_clocks
) {
1269 dev_err(&pdev
->dev
, "unable to aquire clock for channel %d, error %lu",
1270 i
, PTR_ERR(phy
->clk
));
1274 ret
= clk_prepare(phy
->clk
);
1276 dev_err(&pdev
->dev
, "clock for phy %d failed, error %d\n",
1282 spin_lock_init(&phy
->lock
);
1285 dev_dbg(&pdev
->dev
, "physical channel %d is %s\n",
1286 i
, s3c24xx_dma_phy_busy(phy
) ? "BUSY" : "FREE");
1289 /* Initialize memcpy engine */
1290 dma_cap_set(DMA_MEMCPY
, s3cdma
->memcpy
.cap_mask
);
1291 dma_cap_set(DMA_PRIVATE
, s3cdma
->memcpy
.cap_mask
);
1292 s3cdma
->memcpy
.dev
= &pdev
->dev
;
1293 s3cdma
->memcpy
.device_alloc_chan_resources
=
1294 s3c24xx_dma_alloc_chan_resources
;
1295 s3cdma
->memcpy
.device_free_chan_resources
=
1296 s3c24xx_dma_free_chan_resources
;
1297 s3cdma
->memcpy
.device_prep_dma_memcpy
= s3c24xx_dma_prep_memcpy
;
1298 s3cdma
->memcpy
.device_tx_status
= s3c24xx_dma_tx_status
;
1299 s3cdma
->memcpy
.device_issue_pending
= s3c24xx_dma_issue_pending
;
1300 s3cdma
->memcpy
.device_config
= s3c24xx_dma_set_runtime_config
;
1301 s3cdma
->memcpy
.device_terminate_all
= s3c24xx_dma_terminate_all
;
1303 /* Initialize slave engine for SoC internal dedicated peripherals */
1304 dma_cap_set(DMA_SLAVE
, s3cdma
->slave
.cap_mask
);
1305 dma_cap_set(DMA_CYCLIC
, s3cdma
->slave
.cap_mask
);
1306 dma_cap_set(DMA_PRIVATE
, s3cdma
->slave
.cap_mask
);
1307 s3cdma
->slave
.dev
= &pdev
->dev
;
1308 s3cdma
->slave
.device_alloc_chan_resources
=
1309 s3c24xx_dma_alloc_chan_resources
;
1310 s3cdma
->slave
.device_free_chan_resources
=
1311 s3c24xx_dma_free_chan_resources
;
1312 s3cdma
->slave
.device_tx_status
= s3c24xx_dma_tx_status
;
1313 s3cdma
->slave
.device_issue_pending
= s3c24xx_dma_issue_pending
;
1314 s3cdma
->slave
.device_prep_slave_sg
= s3c24xx_dma_prep_slave_sg
;
1315 s3cdma
->slave
.device_prep_dma_cyclic
= s3c24xx_dma_prep_dma_cyclic
;
1316 s3cdma
->slave
.device_config
= s3c24xx_dma_set_runtime_config
;
1317 s3cdma
->slave
.device_terminate_all
= s3c24xx_dma_terminate_all
;
1319 /* Register as many memcpy channels as there are physical channels */
1320 ret
= s3c24xx_dma_init_virtual_channels(s3cdma
, &s3cdma
->memcpy
,
1321 pdata
->num_phy_channels
, false);
1323 dev_warn(&pdev
->dev
,
1324 "%s failed to enumerate memcpy channels - %d\n",
1329 /* Register slave channels */
1330 ret
= s3c24xx_dma_init_virtual_channels(s3cdma
, &s3cdma
->slave
,
1331 pdata
->num_channels
, true);
1333 dev_warn(&pdev
->dev
,
1334 "%s failed to enumerate slave channels - %d\n",
1339 ret
= dma_async_device_register(&s3cdma
->memcpy
);
1341 dev_warn(&pdev
->dev
,
1342 "%s failed to register memcpy as an async device - %d\n",
1344 goto err_memcpy_reg
;
1347 ret
= dma_async_device_register(&s3cdma
->slave
);
1349 dev_warn(&pdev
->dev
,
1350 "%s failed to register slave as an async device - %d\n",
1355 platform_set_drvdata(pdev
, s3cdma
);
1356 dev_info(&pdev
->dev
, "Loaded dma driver with %d physical channels\n",
1357 pdata
->num_phy_channels
);
1362 dma_async_device_unregister(&s3cdma
->memcpy
);
1364 s3c24xx_dma_free_virtual_channels(&s3cdma
->slave
);
1366 s3c24xx_dma_free_virtual_channels(&s3cdma
->memcpy
);
1368 if (sdata
->has_clocks
)
1369 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1370 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1372 clk_unprepare(phy
->clk
);
1378 static int s3c24xx_dma_remove(struct platform_device
*pdev
)
1380 const struct s3c24xx_dma_platdata
*pdata
= dev_get_platdata(&pdev
->dev
);
1381 struct s3c24xx_dma_engine
*s3cdma
= platform_get_drvdata(pdev
);
1382 struct soc_data
*sdata
= s3c24xx_dma_get_soc_data(pdev
);
1385 dma_async_device_unregister(&s3cdma
->slave
);
1386 dma_async_device_unregister(&s3cdma
->memcpy
);
1388 s3c24xx_dma_free_virtual_channels(&s3cdma
->slave
);
1389 s3c24xx_dma_free_virtual_channels(&s3cdma
->memcpy
);
1391 if (sdata
->has_clocks
)
1392 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1393 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1395 clk_unprepare(phy
->clk
);
1401 static struct platform_driver s3c24xx_dma_driver
= {
1403 .name
= "s3c24xx-dma",
1405 .id_table
= s3c24xx_dma_driver_ids
,
1406 .probe
= s3c24xx_dma_probe
,
1407 .remove
= s3c24xx_dma_remove
,
1410 module_platform_driver(s3c24xx_dma_driver
);
1412 bool s3c24xx_dma_filter(struct dma_chan
*chan
, void *param
)
1414 struct s3c24xx_dma_chan
*s3cchan
;
1416 if (chan
->device
->dev
->driver
!= &s3c24xx_dma_driver
.driver
)
1419 s3cchan
= to_s3c24xx_dma_chan(chan
);
1421 return s3cchan
->id
== (int)param
;
1423 EXPORT_SYMBOL(s3c24xx_dma_filter
);
1425 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1426 MODULE_AUTHOR("Heiko Stuebner");
1427 MODULE_LICENSE("GPL v2");