ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / dispnv04 / dfp.c
blobf6ca343fd34a9b2db0f51258ef1c0d99b576ab0e
1 /*
2 * Copyright 2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
5 * Copyright 2007-2009 Stuart Bennett
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
30 #include "nouveau_drm.h"
31 #include "nouveau_reg.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_connector.h"
34 #include "nouveau_crtc.h"
35 #include "hw.h"
36 #include "nvreg.h"
38 #include <drm/i2c/sil164.h>
40 #include <subdev/i2c.h>
42 #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \
43 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \
44 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
45 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \
46 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \
47 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
49 static inline bool is_fpc_off(uint32_t fpc)
51 return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
52 FP_TG_CONTROL_OFF);
55 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
57 /* special case of nv_read_tmds to find crtc associated with an output.
58 * this does not give a correct answer for off-chip dvi, but there's no
59 * use for such an answer anyway
61 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
63 NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
64 NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
65 return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
68 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
69 int head, bool dl)
71 /* The BIOS scripts don't do this for us, sadly
72 * Luckily we do know the values ;-)
74 * head < 0 indicates we wish to force a setting with the overrideval
75 * (for VT restore etc.)
78 int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
79 uint8_t tmds04 = 0x80;
81 if (head != ramdac)
82 tmds04 = 0x88;
84 if (dcbent->type == DCB_OUTPUT_LVDS)
85 tmds04 |= 0x01;
87 nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
89 if (dl) /* dual link */
90 nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
93 void nv04_dfp_disable(struct drm_device *dev, int head)
95 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
97 if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
98 FP_TG_CONTROL_ON) {
99 /* digital remnants must be cleaned before new crtc
100 * values programmed. delay is time for the vga stuff
101 * to realise it's in control again
103 NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
104 FP_TG_CONTROL_OFF);
105 msleep(50);
107 /* don't inadvertently turn it on when state written later */
108 crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
109 crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
110 ~NV_CIO_CRE_LCD_ROUTE_MASK;
113 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
115 struct drm_device *dev = encoder->dev;
116 struct drm_crtc *crtc;
117 struct nouveau_crtc *nv_crtc;
118 uint32_t *fpc;
120 if (mode == DRM_MODE_DPMS_ON) {
121 nv_crtc = nouveau_crtc(encoder->crtc);
122 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
124 if (is_fpc_off(*fpc)) {
125 /* using saved value is ok, as (is_digital && dpms_on &&
126 * fp_control==OFF) is (at present) *only* true when
127 * fpc's most recent change was by below "off" code
129 *fpc = nv_crtc->dpms_saved_fp_control;
132 nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
133 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
134 } else {
135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 nv_crtc = nouveau_crtc(crtc);
137 fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
139 nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
140 if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
141 nv_crtc->dpms_saved_fp_control = *fpc;
142 /* cut the FP output */
143 *fpc &= ~FP_TG_CONTROL_ON;
144 *fpc |= FP_TG_CONTROL_OFF;
145 NVWriteRAMDAC(dev, nv_crtc->index,
146 NV_PRAMDAC_FP_TG_CONTROL, *fpc);
152 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
154 struct drm_device *dev = encoder->dev;
155 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
156 struct drm_encoder *slave;
158 if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
159 return NULL;
161 /* Some BIOSes (e.g. the one in a Quadro FX1000) report several
162 * TMDS transmitters at the same I2C address, in the same I2C
163 * bus. This can still work because in that case one of them is
164 * always hard-wired to a reasonable configuration using straps,
165 * and the other one needs to be programmed.
167 * I don't think there's a way to know which is which, even the
168 * blob programs the one exposed via I2C for *both* heads, so
169 * let's do the same.
171 list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
172 struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
174 if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
175 slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
176 return slave;
179 return NULL;
182 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
183 const struct drm_display_mode *mode,
184 struct drm_display_mode *adjusted_mode)
186 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
187 struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
189 if (!nv_connector->native_mode ||
190 nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
191 mode->hdisplay > nv_connector->native_mode->hdisplay ||
192 mode->vdisplay > nv_connector->native_mode->vdisplay) {
193 nv_encoder->mode = *adjusted_mode;
195 } else {
196 nv_encoder->mode = *nv_connector->native_mode;
197 adjusted_mode->clock = nv_connector->native_mode->clock;
200 return true;
203 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
204 struct nouveau_encoder *nv_encoder, int head)
206 struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
207 uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
209 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
210 return;
212 /* SEL_CLK is only used on the primary ramdac
213 * It toggles spread spectrum PLL output and sets the bindings of PLLs
214 * to heads on digital outputs
216 if (head)
217 state->sel_clk |= bits1618;
218 else
219 state->sel_clk &= ~bits1618;
221 /* nv30:
222 * bit 0 NVClk spread spectrum on/off
223 * bit 2 MemClk spread spectrum on/off
224 * bit 4 PixClk1 spread spectrum on/off toggle
225 * bit 6 PixClk2 spread spectrum on/off toggle
227 * nv40 (observations from bios behaviour and mmio traces):
228 * bits 4&6 as for nv30
229 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6;
230 * maybe a different spread mode
231 * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
232 * The logic behind turning spread spectrum on/off in the first place,
233 * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
234 * entry has the necessary info)
236 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
237 int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
239 state->sel_clk &= ~0xf0;
240 state->sel_clk |= (head ? 0x40 : 0x10) << shift;
244 static void nv04_dfp_prepare(struct drm_encoder *encoder)
246 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247 struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248 struct drm_device *dev = encoder->dev;
249 int head = nouveau_crtc(encoder->crtc)->index;
250 struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
251 uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
252 uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
254 helper->dpms(encoder, DRM_MODE_DPMS_OFF);
256 nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
258 *cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
260 if (nv_two_heads(dev)) {
261 if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
262 *cr_lcd |= head ? 0x0 : 0x8;
263 else {
264 *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
265 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
266 *cr_lcd |= 0x30;
267 if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
268 /* avoid being connected to both crtcs */
269 *cr_lcd_oth &= ~0x30;
270 NVWriteVgaCrtc(dev, head ^ 1,
271 NV_CIO_CRE_LCD__INDEX,
272 *cr_lcd_oth);
279 static void nv04_dfp_mode_set(struct drm_encoder *encoder,
280 struct drm_display_mode *mode,
281 struct drm_display_mode *adjusted_mode)
283 struct drm_device *dev = encoder->dev;
284 struct nvif_device *device = &nouveau_drm(dev)->device;
285 struct nouveau_drm *drm = nouveau_drm(dev);
286 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287 struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
288 struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
289 struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
290 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
291 struct drm_display_mode *output_mode = &nv_encoder->mode;
292 struct drm_connector *connector = &nv_connector->base;
293 uint32_t mode_ratio, panel_ratio;
295 NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
296 drm_mode_debug_printmodeline(output_mode);
298 /* Initialize the FP registers in this CRTC. */
299 regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
300 regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
301 if (!nv_gf4_disp_arch(dev) ||
302 (output_mode->hsync_start - output_mode->hdisplay) >=
303 drm->vbios.digital_min_front_porch)
304 regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
305 else
306 regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
307 regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
308 regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
309 regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
310 regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
312 regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
313 regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
314 regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
315 regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
316 regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
317 regp->fp_vert_regs[FP_VALID_START] = 0;
318 regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
320 /* bit26: a bit seen on some g7x, no as yet discernable purpose */
321 regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
322 (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
323 /* Deal with vsync/hsync polarity */
324 /* LVDS screens do set this, but modes with +ve syncs are very rare */
325 if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
326 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
327 if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
328 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
329 /* panel scaling first, as native would get set otherwise */
330 if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
331 nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */
332 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
333 else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
334 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
335 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
336 else /* gpu needs to scale */
337 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
338 if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
339 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
340 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
341 output_mode->clock > 165000)
342 regp->fp_control |= (2 << 24);
343 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
344 bool duallink = false, dummy;
345 if (nv_connector->edid &&
346 nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
347 duallink = (((u8 *)nv_connector->edid)[121] == 2);
348 } else {
349 nouveau_bios_parse_lvds_table(dev, output_mode->clock,
350 &duallink, &dummy);
353 if (duallink)
354 regp->fp_control |= (8 << 28);
355 } else
356 if (output_mode->clock > 165000)
357 regp->fp_control |= (8 << 28);
359 regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
360 NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
361 NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
362 NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
363 NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
364 NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
365 NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
367 /* We want automatic scaling */
368 regp->fp_debug_1 = 0;
369 /* This can override HTOTAL and VTOTAL */
370 regp->fp_debug_2 = 0;
372 /* Use 20.12 fixed point format to avoid floats */
373 mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
374 panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
375 /* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
376 * get treated the same as SCALE_FULLSCREEN */
377 if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
378 mode_ratio != panel_ratio) {
379 uint32_t diff, scale;
380 bool divide_by_2 = nv_gf4_disp_arch(dev);
382 if (mode_ratio < panel_ratio) {
383 /* vertical needs to expand to glass size (automatic)
384 * horizontal needs to be scaled at vertical scale factor
385 * to maintain aspect */
387 scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
388 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
389 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
391 /* restrict area of screen used, horizontally */
392 diff = output_mode->hdisplay -
393 output_mode->vdisplay * mode_ratio / (1 << 12);
394 regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
395 regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
398 if (mode_ratio > panel_ratio) {
399 /* horizontal needs to expand to glass size (automatic)
400 * vertical needs to be scaled at horizontal scale factor
401 * to maintain aspect */
403 scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
404 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
405 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
407 /* restrict area of screen used, vertically */
408 diff = output_mode->vdisplay -
409 (1 << 12) * output_mode->hdisplay / mode_ratio;
410 regp->fp_vert_regs[FP_VALID_START] += diff / 2;
411 regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
415 /* Output property. */
416 if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
417 (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
418 encoder->crtc->primary->fb->depth > connector->display_info.bpc * 3)) {
419 if (drm->device.info.chipset == 0x11)
420 regp->dither = savep->dither | 0x00010000;
421 else {
422 int i;
423 regp->dither = savep->dither | 0x00000001;
424 for (i = 0; i < 3; i++) {
425 regp->dither_regs[i] = 0xe4e4e4e4;
426 regp->dither_regs[i + 3] = 0x44444444;
429 } else {
430 if (drm->device.info.chipset != 0x11) {
431 /* reset them */
432 int i;
433 for (i = 0; i < 3; i++) {
434 regp->dither_regs[i] = savep->dither_regs[i];
435 regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
438 regp->dither = savep->dither;
441 regp->fp_margin_color = 0;
444 static void nv04_dfp_commit(struct drm_encoder *encoder)
446 struct drm_device *dev = encoder->dev;
447 struct nouveau_drm *drm = nouveau_drm(dev);
448 struct drm_encoder_helper_funcs *helper = encoder->helper_private;
449 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
450 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
451 struct dcb_output *dcbe = nv_encoder->dcb;
452 int head = nouveau_crtc(encoder->crtc)->index;
453 struct drm_encoder *slave_encoder;
455 if (dcbe->type == DCB_OUTPUT_TMDS)
456 run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
457 else if (dcbe->type == DCB_OUTPUT_LVDS)
458 call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
460 /* update fp_control state for any changes made by scripts,
461 * so correct value is written at DPMS on */
462 nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
463 NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
465 /* This could use refinement for flatpanels, but it should work this way */
466 if (drm->device.info.chipset < 0x44)
467 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
468 else
469 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
471 /* Init external transmitters */
472 slave_encoder = get_tmds_slave(encoder);
473 if (slave_encoder)
474 get_slave_funcs(slave_encoder)->mode_set(
475 slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
477 helper->dpms(encoder, DRM_MODE_DPMS_ON);
479 NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
480 nouveau_encoder_connector_get(nv_encoder)->base.name,
481 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
484 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
486 #ifdef __powerpc__
487 struct drm_device *dev = encoder->dev;
488 struct nvif_device *device = &nouveau_drm(dev)->device;
490 /* BIOS scripts usually take care of the backlight, thanks
491 * Apple for your consistency.
493 if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 ||
494 dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) {
495 if (mode == DRM_MODE_DPMS_ON) {
496 nv_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
497 nv_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
498 } else {
499 nv_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
500 nv_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
503 #endif
506 static inline bool is_powersaving_dpms(int mode)
508 return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
511 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
513 struct drm_device *dev = encoder->dev;
514 struct drm_crtc *crtc = encoder->crtc;
515 struct nouveau_drm *drm = nouveau_drm(dev);
516 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
517 bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
519 if (nv_encoder->last_dpms == mode)
520 return;
521 nv_encoder->last_dpms = mode;
523 NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
524 mode, nv_encoder->dcb->index);
526 if (was_powersaving && is_powersaving_dpms(mode))
527 return;
529 if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
530 /* when removing an output, crtc may not be set, but PANEL_OFF
531 * must still be run
533 int head = crtc ? nouveau_crtc(crtc)->index :
534 nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
536 if (mode == DRM_MODE_DPMS_ON) {
537 call_lvds_script(dev, nv_encoder->dcb, head,
538 LVDS_PANEL_ON, nv_encoder->mode.clock);
539 } else
540 /* pxclk of 0 is fine for PANEL_OFF, and for a
541 * disconnected LVDS encoder there is no native_mode
543 call_lvds_script(dev, nv_encoder->dcb, head,
544 LVDS_PANEL_OFF, 0);
547 nv04_dfp_update_backlight(encoder, mode);
548 nv04_dfp_update_fp_control(encoder, mode);
550 if (mode == DRM_MODE_DPMS_ON)
551 nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
552 else {
553 nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
554 nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
556 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
559 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
561 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
562 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
564 if (nv_encoder->last_dpms == mode)
565 return;
566 nv_encoder->last_dpms = mode;
568 NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
569 mode, nv_encoder->dcb->index);
571 nv04_dfp_update_backlight(encoder, mode);
572 nv04_dfp_update_fp_control(encoder, mode);
575 static void nv04_dfp_save(struct drm_encoder *encoder)
577 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
578 struct drm_device *dev = encoder->dev;
580 if (nv_two_heads(dev))
581 nv_encoder->restore.head =
582 nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
585 static void nv04_dfp_restore(struct drm_encoder *encoder)
587 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
588 struct drm_device *dev = encoder->dev;
589 int head = nv_encoder->restore.head;
591 if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
592 struct nouveau_connector *connector =
593 nouveau_encoder_connector_get(nv_encoder);
595 if (connector && connector->native_mode)
596 call_lvds_script(dev, nv_encoder->dcb, head,
597 LVDS_PANEL_ON,
598 connector->native_mode->clock);
600 } else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
601 int clock = nouveau_hw_pllvals_to_clk
602 (&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
604 run_tmds_table(dev, nv_encoder->dcb, head, clock);
607 nv_encoder->last_dpms = NV_DPMS_CLEARED;
610 static void nv04_dfp_destroy(struct drm_encoder *encoder)
612 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
614 if (get_slave_funcs(encoder))
615 get_slave_funcs(encoder)->destroy(encoder);
617 drm_encoder_cleanup(encoder);
618 kfree(nv_encoder);
621 static void nv04_tmds_slave_init(struct drm_encoder *encoder)
623 struct drm_device *dev = encoder->dev;
624 struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
625 struct nouveau_drm *drm = nouveau_drm(dev);
626 struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
627 struct nvkm_i2c_port *port = i2c->find(i2c, 2);
628 struct nvkm_i2c_board_info info[] = {
631 .type = "sil164",
632 .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
633 .platform_data = &(struct sil164_encoder_params) {
634 SIL164_INPUT_EDGE_RISING
636 }, 0
640 int type;
642 if (!nv_gf4_disp_arch(dev) || !port ||
643 get_tmds_slave(encoder))
644 return;
646 type = i2c->identify(i2c, 2, "TMDS transmitter", info, NULL, NULL);
647 if (type < 0)
648 return;
650 drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
651 &port->adapter, &info[type].dev);
654 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
655 .dpms = nv04_lvds_dpms,
656 .save = nv04_dfp_save,
657 .restore = nv04_dfp_restore,
658 .mode_fixup = nv04_dfp_mode_fixup,
659 .prepare = nv04_dfp_prepare,
660 .commit = nv04_dfp_commit,
661 .mode_set = nv04_dfp_mode_set,
662 .detect = NULL,
665 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
666 .dpms = nv04_tmds_dpms,
667 .save = nv04_dfp_save,
668 .restore = nv04_dfp_restore,
669 .mode_fixup = nv04_dfp_mode_fixup,
670 .prepare = nv04_dfp_prepare,
671 .commit = nv04_dfp_commit,
672 .mode_set = nv04_dfp_mode_set,
673 .detect = NULL,
676 static const struct drm_encoder_funcs nv04_dfp_funcs = {
677 .destroy = nv04_dfp_destroy,
681 nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
683 const struct drm_encoder_helper_funcs *helper;
684 struct nouveau_encoder *nv_encoder = NULL;
685 struct drm_encoder *encoder;
686 int type;
688 switch (entry->type) {
689 case DCB_OUTPUT_TMDS:
690 type = DRM_MODE_ENCODER_TMDS;
691 helper = &nv04_tmds_helper_funcs;
692 break;
693 case DCB_OUTPUT_LVDS:
694 type = DRM_MODE_ENCODER_LVDS;
695 helper = &nv04_lvds_helper_funcs;
696 break;
697 default:
698 return -EINVAL;
701 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
702 if (!nv_encoder)
703 return -ENOMEM;
705 encoder = to_drm_encoder(nv_encoder);
707 nv_encoder->dcb = entry;
708 nv_encoder->or = ffs(entry->or) - 1;
710 drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type);
711 drm_encoder_helper_add(encoder, helper);
713 encoder->possible_crtcs = entry->heads;
714 encoder->possible_clones = 0;
716 if (entry->type == DCB_OUTPUT_TMDS &&
717 entry->location != DCB_LOC_ON_CHIP)
718 nv04_tmds_slave_init(encoder);
720 drm_mode_connector_attach_encoder(connector, encoder);
721 return 0;