2 * Copyright 2005-2006 Erik Waling
3 * Copyright 2006 Stephane Marchesin
4 * Copyright 2007-2009 Stuart Bennett
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
21 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 #include <subdev/bios.h>
25 #include <subdev/bios/bit.h>
26 #include <subdev/bios/bmp.h>
27 #include <subdev/bios/pll.h>
28 #include <subdev/vga.h>
30 #include <core/device.h>
37 static struct pll_mapping
38 nv04_pll_mapping
[] = {
39 { PLL_CORE
, 0x680500 },
40 { PLL_MEMORY
, 0x680504 },
41 { PLL_VPLL0
, 0x680508 },
42 { PLL_VPLL1
, 0x680520 },
46 static struct pll_mapping
47 nv40_pll_mapping
[] = {
48 { PLL_CORE
, 0x004000 },
49 { PLL_MEMORY
, 0x004020 },
50 { PLL_VPLL0
, 0x680508 },
51 { PLL_VPLL1
, 0x680520 },
55 static struct pll_mapping
56 nv50_pll_mapping
[] = {
57 { PLL_CORE
, 0x004028 },
58 { PLL_SHADER
, 0x004020 },
59 { PLL_UNK03
, 0x004000 },
60 { PLL_MEMORY
, 0x004008 },
61 { PLL_UNK40
, 0x00e810 },
62 { PLL_UNK41
, 0x00e818 },
63 { PLL_UNK42
, 0x00e824 },
64 { PLL_VPLL0
, 0x614100 },
65 { PLL_VPLL1
, 0x614900 },
69 static struct pll_mapping
71 { PLL_CORE
, 0x004028 },
72 { PLL_SHADER
, 0x004020 },
73 { PLL_MEMORY
, 0x004008 },
74 { PLL_VDEC
, 0x004030 },
75 { PLL_UNK41
, 0x00e818 },
76 { PLL_VPLL0
, 0x614100 },
77 { PLL_VPLL1
, 0x614900 },
82 pll_limits_table(struct nvkm_bios
*bios
, u8
*ver
, u8
*hdr
, u8
*cnt
, u8
*len
)
84 struct bit_entry bit_C
;
86 if (!bit_entry(bios
, 'C', &bit_C
) && bit_C
.length
>= 10) {
87 u16 data
= nv_ro16(bios
, bit_C
.offset
+ 8);
89 *ver
= nv_ro08(bios
, data
+ 0);
90 *hdr
= nv_ro08(bios
, data
+ 1);
91 *len
= nv_ro08(bios
, data
+ 2);
92 *cnt
= nv_ro08(bios
, data
+ 3);
97 if (bmp_version(bios
) >= 0x0524) {
98 u16 data
= nv_ro16(bios
, bios
->bmp_offset
+ 142);
100 *ver
= nv_ro08(bios
, data
+ 0);
112 static struct pll_mapping
*
113 pll_map(struct nvkm_bios
*bios
)
115 switch (nv_device(bios
)->card_type
) {
121 return nv04_pll_mapping
;
124 return nv40_pll_mapping
;
126 if (nv_device(bios
)->chipset
== 0x50)
127 return nv50_pll_mapping
;
129 if (nv_device(bios
)->chipset
< 0xa3 ||
130 nv_device(bios
)->chipset
== 0xaa ||
131 nv_device(bios
)->chipset
== 0xac)
132 return g84_pll_mapping
;
139 pll_map_reg(struct nvkm_bios
*bios
, u32 reg
, u32
*type
, u8
*ver
, u8
*len
)
141 struct pll_mapping
*map
;
145 data
= pll_limits_table(bios
, ver
, &hdr
, &cnt
, len
);
146 if (data
&& *ver
>= 0x30) {
149 if (nv_ro32(bios
, data
+ 3) == reg
) {
150 *type
= nv_ro08(bios
, data
+ 0);
160 if (map
->reg
== reg
&& *ver
>= 0x20) {
161 u16 addr
= (data
+= hdr
);
164 if (nv_ro32(bios
, data
) == map
->reg
)
170 if (map
->reg
== reg
) {
181 pll_map_type(struct nvkm_bios
*bios
, u8 type
, u32
*reg
, u8
*ver
, u8
*len
)
183 struct pll_mapping
*map
;
187 data
= pll_limits_table(bios
, ver
, &hdr
, &cnt
, len
);
188 if (data
&& *ver
>= 0x30) {
191 if (nv_ro08(bios
, data
+ 0) == type
) {
192 *reg
= nv_ro32(bios
, data
+ 3);
202 if (map
->type
== type
&& *ver
>= 0x20) {
203 u16 addr
= (data
+= hdr
);
206 if (nv_ro32(bios
, data
) == map
->reg
)
212 if (map
->type
== type
) {
223 nvbios_pll_parse(struct nvkm_bios
*bios
, u32 type
, struct nvbios_pll
*info
)
229 if (type
> PLL_MAX
) {
231 data
= pll_map_reg(bios
, reg
, &type
, &ver
, &len
);
233 data
= pll_map_type(bios
, type
, ®
, &ver
, &len
);
239 memset(info
, 0, sizeof(*info
));
248 info
->vco1
.min_freq
= nv_ro32(bios
, data
+ 0);
249 info
->vco1
.max_freq
= nv_ro32(bios
, data
+ 4);
250 info
->vco2
.min_freq
= nv_ro32(bios
, data
+ 8);
251 info
->vco2
.max_freq
= nv_ro32(bios
, data
+ 12);
252 info
->vco1
.min_inputfreq
= nv_ro32(bios
, data
+ 16);
253 info
->vco2
.min_inputfreq
= nv_ro32(bios
, data
+ 20);
254 info
->vco1
.max_inputfreq
= INT_MAX
;
255 info
->vco2
.max_inputfreq
= INT_MAX
;
258 info
->max_p_usable
= 0x6;
260 /* these values taken from nv30/31/36 */
261 switch (bios
->version
.chip
) {
263 info
->vco1
.min_n
= 0x5;
266 info
->vco1
.min_n
= 0x1;
269 info
->vco1
.max_n
= 0xff;
270 info
->vco1
.min_m
= 0x1;
271 info
->vco1
.max_m
= 0xd;
274 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
275 * table version (apart from nv35)), N2 is compared to
276 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
279 info
->vco2
.min_n
= 0x4;
280 switch (bios
->version
.chip
) {
283 info
->vco2
.max_n
= 0x1f;
286 info
->vco2
.max_n
= 0x28;
289 info
->vco2
.min_m
= 0x1;
290 info
->vco2
.max_m
= 0x4;
294 info
->vco1
.min_freq
= nv_ro16(bios
, data
+ 4) * 1000;
295 info
->vco1
.max_freq
= nv_ro16(bios
, data
+ 6) * 1000;
296 info
->vco2
.min_freq
= nv_ro16(bios
, data
+ 8) * 1000;
297 info
->vco2
.max_freq
= nv_ro16(bios
, data
+ 10) * 1000;
298 info
->vco1
.min_inputfreq
= nv_ro16(bios
, data
+ 12) * 1000;
299 info
->vco2
.min_inputfreq
= nv_ro16(bios
, data
+ 14) * 1000;
300 info
->vco1
.max_inputfreq
= nv_ro16(bios
, data
+ 16) * 1000;
301 info
->vco2
.max_inputfreq
= nv_ro16(bios
, data
+ 18) * 1000;
302 info
->vco1
.min_n
= nv_ro08(bios
, data
+ 20);
303 info
->vco1
.max_n
= nv_ro08(bios
, data
+ 21);
304 info
->vco1
.min_m
= nv_ro08(bios
, data
+ 22);
305 info
->vco1
.max_m
= nv_ro08(bios
, data
+ 23);
306 info
->vco2
.min_n
= nv_ro08(bios
, data
+ 24);
307 info
->vco2
.max_n
= nv_ro08(bios
, data
+ 25);
308 info
->vco2
.min_m
= nv_ro08(bios
, data
+ 26);
309 info
->vco2
.max_m
= nv_ro08(bios
, data
+ 27);
311 info
->max_p
= nv_ro08(bios
, data
+ 29);
312 info
->max_p_usable
= info
->max_p
;
313 if (bios
->version
.chip
< 0x60)
314 info
->max_p_usable
= 0x6;
315 info
->bias_p
= nv_ro08(bios
, data
+ 30);
318 info
->refclk
= nv_ro32(bios
, data
+ 31);
321 data
= nv_ro16(bios
, data
+ 1);
323 info
->vco1
.min_freq
= nv_ro16(bios
, data
+ 0) * 1000;
324 info
->vco1
.max_freq
= nv_ro16(bios
, data
+ 2) * 1000;
325 info
->vco2
.min_freq
= nv_ro16(bios
, data
+ 4) * 1000;
326 info
->vco2
.max_freq
= nv_ro16(bios
, data
+ 6) * 1000;
327 info
->vco1
.min_inputfreq
= nv_ro16(bios
, data
+ 8) * 1000;
328 info
->vco2
.min_inputfreq
= nv_ro16(bios
, data
+ 10) * 1000;
329 info
->vco1
.max_inputfreq
= nv_ro16(bios
, data
+ 12) * 1000;
330 info
->vco2
.max_inputfreq
= nv_ro16(bios
, data
+ 14) * 1000;
331 info
->vco1
.min_n
= nv_ro08(bios
, data
+ 16);
332 info
->vco1
.max_n
= nv_ro08(bios
, data
+ 17);
333 info
->vco1
.min_m
= nv_ro08(bios
, data
+ 18);
334 info
->vco1
.max_m
= nv_ro08(bios
, data
+ 19);
335 info
->vco2
.min_n
= nv_ro08(bios
, data
+ 20);
336 info
->vco2
.max_n
= nv_ro08(bios
, data
+ 21);
337 info
->vco2
.min_m
= nv_ro08(bios
, data
+ 22);
338 info
->vco2
.max_m
= nv_ro08(bios
, data
+ 23);
339 info
->max_p_usable
= info
->max_p
= nv_ro08(bios
, data
+ 25);
340 info
->bias_p
= nv_ro08(bios
, data
+ 27);
341 info
->refclk
= nv_ro32(bios
, data
+ 28);
344 info
->refclk
= nv_ro16(bios
, data
+ 9) * 1000;
345 data
= nv_ro16(bios
, data
+ 1);
347 info
->vco1
.min_freq
= nv_ro16(bios
, data
+ 0) * 1000;
348 info
->vco1
.max_freq
= nv_ro16(bios
, data
+ 2) * 1000;
349 info
->vco1
.min_inputfreq
= nv_ro16(bios
, data
+ 4) * 1000;
350 info
->vco1
.max_inputfreq
= nv_ro16(bios
, data
+ 6) * 1000;
351 info
->vco1
.min_m
= nv_ro08(bios
, data
+ 8);
352 info
->vco1
.max_m
= nv_ro08(bios
, data
+ 9);
353 info
->vco1
.min_n
= nv_ro08(bios
, data
+ 10);
354 info
->vco1
.max_n
= nv_ro08(bios
, data
+ 11);
355 info
->min_p
= nv_ro08(bios
, data
+ 12);
356 info
->max_p
= nv_ro08(bios
, data
+ 13);
359 nv_error(bios
, "unknown pll limits version 0x%02x\n", ver
);
364 info
->refclk
= nv_device(bios
)->crystal
;
365 if (bios
->version
.chip
== 0x51) {
366 u32 sel_clk
= nv_rd32(bios
, 0x680524);
367 if ((info
->reg
== 0x680508 && sel_clk
& 0x20) ||
368 (info
->reg
== 0x680520 && sel_clk
& 0x80)) {
369 if (nv_rdvgac(bios
, 0, 0x27) < 0xa3)
370 info
->refclk
= 200000;
372 info
->refclk
= 25000;
378 * By now any valid limit table ought to have set a max frequency for
379 * vco1, so if it's zero it's either a pre limit table bios, or one
380 * with an empty limit table (seen on nv18)
382 if (!info
->vco1
.max_freq
) {
383 info
->vco1
.max_freq
= nv_ro32(bios
, bios
->bmp_offset
+ 67);
384 info
->vco1
.min_freq
= nv_ro32(bios
, bios
->bmp_offset
+ 71);
385 if (bmp_version(bios
) < 0x0506) {
386 info
->vco1
.max_freq
= 256000;
387 info
->vco1
.min_freq
= 128000;
390 info
->vco1
.min_inputfreq
= 0;
391 info
->vco1
.max_inputfreq
= INT_MAX
;
392 info
->vco1
.min_n
= 0x1;
393 info
->vco1
.max_n
= 0xff;
394 info
->vco1
.min_m
= 0x1;
396 if (nv_device(bios
)->crystal
== 13500) {
397 /* nv05 does this, nv11 doesn't, nv10 unknown */
398 if (bios
->version
.chip
< 0x11)
399 info
->vco1
.min_m
= 0x7;
400 info
->vco1
.max_m
= 0xd;
402 if (bios
->version
.chip
< 0x11)
403 info
->vco1
.min_m
= 0x8;
404 info
->vco1
.max_m
= 0xe;
407 if (bios
->version
.chip
< 0x17 ||
408 bios
->version
.chip
== 0x1a ||
409 bios
->version
.chip
== 0x20)
413 info
->max_p_usable
= info
->max_p
;