ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / gpu / drm / nouveau / nvkm / subdev / ltc / gf100.c
blob8e7cc6200d60b6eff06ebd50811d2bbb2969e923
1 /*
2 * Copyright 2012 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
22 * Authors: Ben Skeggs
24 #include "priv.h"
26 #include <core/enum.h>
27 #include <subdev/fb.h>
28 #include <subdev/timer.h>
30 void
31 gf100_ltc_cbc_clear(struct nvkm_ltc_priv *priv, u32 start, u32 limit)
33 nv_wr32(priv, 0x17e8cc, start);
34 nv_wr32(priv, 0x17e8d0, limit);
35 nv_wr32(priv, 0x17e8c8, 0x00000004);
38 void
39 gf100_ltc_cbc_wait(struct nvkm_ltc_priv *priv)
41 int c, s;
42 for (c = 0; c < priv->ltc_nr; c++) {
43 for (s = 0; s < priv->lts_nr; s++)
44 nv_wait(priv, 0x1410c8 + c * 0x2000 + s * 0x400, ~0, 0);
48 void
49 gf100_ltc_zbc_clear_color(struct nvkm_ltc_priv *priv, int i, const u32 color[4])
51 nv_mask(priv, 0x17ea44, 0x0000000f, i);
52 nv_wr32(priv, 0x17ea48, color[0]);
53 nv_wr32(priv, 0x17ea4c, color[1]);
54 nv_wr32(priv, 0x17ea50, color[2]);
55 nv_wr32(priv, 0x17ea54, color[3]);
58 void
59 gf100_ltc_zbc_clear_depth(struct nvkm_ltc_priv *priv, int i, const u32 depth)
61 nv_mask(priv, 0x17ea44, 0x0000000f, i);
62 nv_wr32(priv, 0x17ea58, depth);
65 static const struct nvkm_bitfield
66 gf100_ltc_lts_intr_name[] = {
67 { 0x00000001, "IDLE_ERROR_IQ" },
68 { 0x00000002, "IDLE_ERROR_CBC" },
69 { 0x00000004, "IDLE_ERROR_TSTG" },
70 { 0x00000008, "IDLE_ERROR_DSTG" },
71 { 0x00000010, "EVICTED_CB" },
72 { 0x00000020, "ILLEGAL_COMPSTAT" },
73 { 0x00000040, "BLOCKLINEAR_CB" },
74 { 0x00000100, "ECC_SEC_ERROR" },
75 { 0x00000200, "ECC_DED_ERROR" },
76 { 0x00000400, "DEBUG" },
77 { 0x00000800, "ATOMIC_TO_Z" },
78 { 0x00001000, "ILLEGAL_ATOMIC" },
79 { 0x00002000, "BLKACTIVITY_ERR" },
83 static void
84 gf100_ltc_lts_intr(struct nvkm_ltc_priv *priv, int ltc, int lts)
86 u32 base = 0x141000 + (ltc * 0x2000) + (lts * 0x400);
87 u32 intr = nv_rd32(priv, base + 0x020);
88 u32 stat = intr & 0x0000ffff;
90 if (stat) {
91 nv_info(priv, "LTC%d_LTS%d:", ltc, lts);
92 nvkm_bitfield_print(gf100_ltc_lts_intr_name, stat);
93 pr_cont("\n");
96 nv_wr32(priv, base + 0x020, intr);
99 void
100 gf100_ltc_intr(struct nvkm_subdev *subdev)
102 struct nvkm_ltc_priv *priv = (void *)subdev;
103 u32 mask;
105 mask = nv_rd32(priv, 0x00017c);
106 while (mask) {
107 u32 lts, ltc = __ffs(mask);
108 for (lts = 0; lts < priv->lts_nr; lts++)
109 gf100_ltc_lts_intr(priv, ltc, lts);
110 mask &= ~(1 << ltc);
114 static int
115 gf100_ltc_init(struct nvkm_object *object)
117 struct nvkm_ltc_priv *priv = (void *)object;
118 u32 lpg128 = !(nv_rd32(priv, 0x100c80) & 0x00000001);
119 int ret;
121 ret = nvkm_ltc_init(priv);
122 if (ret)
123 return ret;
125 nv_mask(priv, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
126 nv_wr32(priv, 0x17e8d8, priv->ltc_nr);
127 nv_wr32(priv, 0x17e8d4, priv->tag_base);
128 nv_mask(priv, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
129 return 0;
132 void
133 gf100_ltc_dtor(struct nvkm_object *object)
135 struct nvkm_fb *pfb = nvkm_fb(object);
136 struct nvkm_ltc_priv *priv = (void *)object;
138 nvkm_mm_fini(&priv->tags);
139 nvkm_mm_free(&pfb->vram, &priv->tag_ram);
141 nvkm_ltc_destroy(priv);
144 /* TODO: Figure out tag memory details and drop the over-cautious allocation.
147 gf100_ltc_init_tag_ram(struct nvkm_fb *pfb, struct nvkm_ltc_priv *priv)
149 u32 tag_size, tag_margin, tag_align;
150 int ret;
152 /* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
153 priv->num_tags = (pfb->ram->size >> 17) / 4;
154 if (priv->num_tags > (1 << 17))
155 priv->num_tags = 1 << 17; /* we have 17 bits in PTE */
156 priv->num_tags = (priv->num_tags + 63) & ~63; /* round up to 64 */
158 tag_align = priv->ltc_nr * 0x800;
159 tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
161 /* 4 part 4 sub: 0x2000 bytes for 56 tags */
162 /* 3 part 4 sub: 0x6000 bytes for 168 tags */
164 * About 147 bytes per tag. Let's be safe and allocate x2, which makes
165 * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
167 * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
169 tag_size = (priv->num_tags / 64) * 0x6000 + tag_margin;
170 tag_size += tag_align;
171 tag_size = (tag_size + 0xfff) >> 12; /* round up */
173 ret = nvkm_mm_tail(&pfb->vram, 1, 1, tag_size, tag_size, 1,
174 &priv->tag_ram);
175 if (ret) {
176 priv->num_tags = 0;
177 } else {
178 u64 tag_base = ((u64)priv->tag_ram->offset << 12) + tag_margin;
180 tag_base += tag_align - 1;
181 ret = do_div(tag_base, tag_align);
183 priv->tag_base = tag_base;
186 ret = nvkm_mm_init(&priv->tags, 0, priv->num_tags, 1);
187 return ret;
191 gf100_ltc_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
192 struct nvkm_oclass *oclass, void *data, u32 size,
193 struct nvkm_object **pobject)
195 struct nvkm_fb *pfb = nvkm_fb(parent);
196 struct nvkm_ltc_priv *priv;
197 u32 parts, mask;
198 int ret, i;
200 ret = nvkm_ltc_create(parent, engine, oclass, &priv);
201 *pobject = nv_object(priv);
202 if (ret)
203 return ret;
205 parts = nv_rd32(priv, 0x022438);
206 mask = nv_rd32(priv, 0x022554);
207 for (i = 0; i < parts; i++) {
208 if (!(mask & (1 << i)))
209 priv->ltc_nr++;
211 priv->lts_nr = nv_rd32(priv, 0x17e8dc) >> 28;
213 ret = gf100_ltc_init_tag_ram(pfb, priv);
214 if (ret)
215 return ret;
217 nv_subdev(priv)->intr = gf100_ltc_intr;
218 return 0;
221 struct nvkm_oclass *
222 gf100_ltc_oclass = &(struct nvkm_ltc_impl) {
223 .base.handle = NV_SUBDEV(LTC, 0xc0),
224 .base.ofuncs = &(struct nvkm_ofuncs) {
225 .ctor = gf100_ltc_ctor,
226 .dtor = gf100_ltc_dtor,
227 .init = gf100_ltc_init,
228 .fini = _nvkm_ltc_fini,
230 .intr = gf100_ltc_intr,
231 .cbc_clear = gf100_ltc_cbc_clear,
232 .cbc_wait = gf100_ltc_cbc_wait,
233 .zbc = 16,
234 .zbc_clear_color = gf100_ltc_zbc_clear_color,
235 .zbc_clear_depth = gf100_ltc_zbc_clear_depth,
236 }.base;