ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / gpu / drm / rcar-du / rcar_du_crtc.c
blob25c7a998fc2cf075fe1ecb6c8fe603f439abab7f
1 /*
2 * rcar_du_crtc.c -- R-Car Display Unit CRTCs
4 * Copyright (C) 2013-2014 Renesas Electronics Corporation
6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
17 #include <drm/drmP.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_crtc_helper.h>
20 #include <drm/drm_fb_cma_helper.h>
21 #include <drm/drm_gem_cma_helper.h>
22 #include <drm/drm_plane_helper.h>
24 #include "rcar_du_crtc.h"
25 #include "rcar_du_drv.h"
26 #include "rcar_du_kms.h"
27 #include "rcar_du_plane.h"
28 #include "rcar_du_regs.h"
30 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
32 struct rcar_du_device *rcdu = rcrtc->group->dev;
34 return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
37 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
39 struct rcar_du_device *rcdu = rcrtc->group->dev;
41 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
44 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
46 struct rcar_du_device *rcdu = rcrtc->group->dev;
48 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
49 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
52 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
54 struct rcar_du_device *rcdu = rcrtc->group->dev;
56 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
57 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
60 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
61 u32 clr, u32 set)
63 struct rcar_du_device *rcdu = rcrtc->group->dev;
64 u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
66 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
69 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
71 int ret;
73 ret = clk_prepare_enable(rcrtc->clock);
74 if (ret < 0)
75 return ret;
77 ret = clk_prepare_enable(rcrtc->extclock);
78 if (ret < 0)
79 goto error_clock;
81 ret = rcar_du_group_get(rcrtc->group);
82 if (ret < 0)
83 goto error_group;
85 return 0;
87 error_group:
88 clk_disable_unprepare(rcrtc->extclock);
89 error_clock:
90 clk_disable_unprepare(rcrtc->clock);
91 return ret;
94 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
96 rcar_du_group_put(rcrtc->group);
98 clk_disable_unprepare(rcrtc->extclock);
99 clk_disable_unprepare(rcrtc->clock);
102 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
104 const struct drm_display_mode *mode = &rcrtc->crtc.mode;
105 unsigned long mode_clock = mode->clock * 1000;
106 unsigned long clk;
107 u32 value;
108 u32 escr;
109 u32 div;
111 /* Compute the clock divisor and select the internal or external dot
112 * clock based on the requested frequency.
114 clk = clk_get_rate(rcrtc->clock);
115 div = DIV_ROUND_CLOSEST(clk, mode_clock);
116 div = clamp(div, 1U, 64U) - 1;
117 escr = div | ESCR_DCLKSEL_CLKS;
119 if (rcrtc->extclock) {
120 unsigned long extclk;
121 unsigned long extrate;
122 unsigned long rate;
123 u32 extdiv;
125 extclk = clk_get_rate(rcrtc->extclock);
126 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
127 extdiv = clamp(extdiv, 1U, 64U) - 1;
129 rate = clk / (div + 1);
130 extrate = extclk / (extdiv + 1);
132 if (abs((long)extrate - (long)mode_clock) <
133 abs((long)rate - (long)mode_clock)) {
134 dev_dbg(rcrtc->group->dev->dev,
135 "crtc%u: using external clock\n", rcrtc->index);
136 escr = extdiv | ESCR_DCLKSEL_DCLKIN;
140 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
141 escr);
142 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
144 /* Signal polarities */
145 value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? 0 : DSMR_VSL)
146 | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? 0 : DSMR_HSL)
147 | DSMR_DIPM_DE | DSMR_CSPM;
148 rcar_du_crtc_write(rcrtc, DSMR, value);
150 /* Display timings */
151 rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
152 rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
153 mode->hdisplay - 19);
154 rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
155 mode->hsync_start - 1);
156 rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
158 rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
159 mode->crtc_vsync_end - 2);
160 rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
161 mode->crtc_vsync_end +
162 mode->crtc_vdisplay - 2);
163 rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
164 mode->crtc_vsync_end +
165 mode->crtc_vsync_start - 1);
166 rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
168 rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start);
169 rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
172 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
173 enum rcar_du_output output)
175 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
176 struct rcar_du_device *rcdu = rcrtc->group->dev;
178 /* Store the route from the CRTC output to the DU output. The DU will be
179 * configured when starting the CRTC.
181 rcrtc->outputs |= BIT(output);
183 /* Store RGB routing to DPAD0, the hardware will be configured when
184 * starting the CRTC.
186 if (output == RCAR_DU_OUTPUT_DPAD0)
187 rcdu->dpad0_source = rcrtc->index;
190 void rcar_du_crtc_update_planes(struct drm_crtc *crtc)
192 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
193 struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
194 unsigned int num_planes = 0;
195 unsigned int prio = 0;
196 unsigned int i;
197 u32 dptsr = 0;
198 u32 dspr = 0;
200 for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
201 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
202 unsigned int j;
204 if (plane->crtc != &rcrtc->crtc || !plane->enabled)
205 continue;
207 /* Insert the plane in the sorted planes array. */
208 for (j = num_planes++; j > 0; --j) {
209 if (planes[j-1]->zpos <= plane->zpos)
210 break;
211 planes[j] = planes[j-1];
214 planes[j] = plane;
215 prio += plane->format->planes * 4;
218 for (i = 0; i < num_planes; ++i) {
219 struct rcar_du_plane *plane = planes[i];
220 unsigned int index = plane->hwindex;
222 prio -= 4;
223 dspr |= (index + 1) << prio;
224 dptsr |= DPTSR_PnDK(index) | DPTSR_PnTS(index);
226 if (plane->format->planes == 2) {
227 index = (index + 1) % 8;
229 prio -= 4;
230 dspr |= (index + 1) << prio;
231 dptsr |= DPTSR_PnDK(index) | DPTSR_PnTS(index);
235 /* Select display timing and dot clock generator 2 for planes associated
236 * with superposition controller 2.
238 if (rcrtc->index % 2) {
239 u32 value = rcar_du_group_read(rcrtc->group, DPTSR);
241 /* The DPTSR register is updated when the display controller is
242 * stopped. We thus need to restart the DU. Once again, sorry
243 * for the flicker. One way to mitigate the issue would be to
244 * pre-associate planes with CRTCs (either with a fixed 4/4
245 * split, or through a module parameter). Flicker would then
246 * occur only if we need to break the pre-association.
248 if (value != dptsr) {
249 rcar_du_group_write(rcrtc->group, DPTSR, dptsr);
250 if (rcrtc->group->used_crtcs)
251 rcar_du_group_restart(rcrtc->group);
255 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
256 dspr);
259 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
261 struct drm_crtc *crtc = &rcrtc->crtc;
262 bool interlaced;
263 unsigned int i;
265 if (rcrtc->started)
266 return;
268 if (WARN_ON(rcrtc->plane->format == NULL))
269 return;
271 /* Set display off and background to black */
272 rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
273 rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
275 /* Configure display timings and output routing */
276 rcar_du_crtc_set_display_timing(rcrtc);
277 rcar_du_group_set_routing(rcrtc->group);
279 mutex_lock(&rcrtc->group->planes.lock);
280 rcrtc->plane->enabled = true;
281 rcar_du_crtc_update_planes(crtc);
282 mutex_unlock(&rcrtc->group->planes.lock);
284 /* Setup planes. */
285 for (i = 0; i < ARRAY_SIZE(rcrtc->group->planes.planes); ++i) {
286 struct rcar_du_plane *plane = &rcrtc->group->planes.planes[i];
288 if (plane->crtc != crtc || !plane->enabled)
289 continue;
291 rcar_du_plane_setup(plane);
294 /* Select master sync mode. This enables display operation in master
295 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
296 * actively driven).
298 interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
299 rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
300 (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
301 DSYSR_TVM_MASTER);
303 rcar_du_group_start_stop(rcrtc->group, true);
305 rcrtc->started = true;
308 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
310 struct drm_crtc *crtc = &rcrtc->crtc;
312 if (!rcrtc->started)
313 return;
315 mutex_lock(&rcrtc->group->planes.lock);
316 rcrtc->plane->enabled = false;
317 rcar_du_crtc_update_planes(crtc);
318 mutex_unlock(&rcrtc->group->planes.lock);
320 /* Select switch sync mode. This stops display operation and configures
321 * the HSYNC and VSYNC signals as inputs.
323 rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
325 rcar_du_group_start_stop(rcrtc->group, false);
327 rcrtc->started = false;
330 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
332 rcar_du_crtc_stop(rcrtc);
333 rcar_du_crtc_put(rcrtc);
336 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
338 if (rcrtc->dpms != DRM_MODE_DPMS_ON)
339 return;
341 rcar_du_crtc_get(rcrtc);
342 rcar_du_crtc_start(rcrtc);
345 static void rcar_du_crtc_update_base(struct rcar_du_crtc *rcrtc)
347 struct drm_crtc *crtc = &rcrtc->crtc;
349 rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
350 rcar_du_plane_update_base(rcrtc->plane);
353 static void rcar_du_crtc_dpms(struct drm_crtc *crtc, int mode)
355 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
357 if (mode != DRM_MODE_DPMS_ON)
358 mode = DRM_MODE_DPMS_OFF;
360 if (rcrtc->dpms == mode)
361 return;
363 if (mode == DRM_MODE_DPMS_ON) {
364 rcar_du_crtc_get(rcrtc);
365 rcar_du_crtc_start(rcrtc);
366 } else {
367 rcar_du_crtc_stop(rcrtc);
368 rcar_du_crtc_put(rcrtc);
371 rcrtc->dpms = mode;
374 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
375 const struct drm_display_mode *mode,
376 struct drm_display_mode *adjusted_mode)
378 /* TODO Fixup modes */
379 return true;
382 static void rcar_du_crtc_mode_prepare(struct drm_crtc *crtc)
384 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
386 /* We need to access the hardware during mode set, acquire a reference
387 * to the CRTC.
389 rcar_du_crtc_get(rcrtc);
391 /* Stop the CRTC and release the plane. Force the DPMS mode to off as a
392 * result.
394 rcar_du_crtc_stop(rcrtc);
395 rcar_du_plane_release(rcrtc->plane);
397 rcrtc->dpms = DRM_MODE_DPMS_OFF;
400 static int rcar_du_crtc_mode_set(struct drm_crtc *crtc,
401 struct drm_display_mode *mode,
402 struct drm_display_mode *adjusted_mode,
403 int x, int y,
404 struct drm_framebuffer *old_fb)
406 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
407 struct rcar_du_device *rcdu = rcrtc->group->dev;
408 const struct rcar_du_format_info *format;
409 int ret;
411 format = rcar_du_format_info(crtc->primary->fb->pixel_format);
412 if (format == NULL) {
413 dev_dbg(rcdu->dev, "mode_set: unsupported format %08x\n",
414 crtc->primary->fb->pixel_format);
415 ret = -EINVAL;
416 goto error;
419 ret = rcar_du_plane_reserve(rcrtc->plane, format);
420 if (ret < 0)
421 goto error;
423 rcrtc->plane->format = format;
425 rcrtc->plane->src_x = x;
426 rcrtc->plane->src_y = y;
427 rcrtc->plane->width = mode->hdisplay;
428 rcrtc->plane->height = mode->vdisplay;
430 rcar_du_plane_compute_base(rcrtc->plane, crtc->primary->fb);
432 rcrtc->outputs = 0;
434 return 0;
436 error:
437 /* There's no rollback/abort operation to clean up in case of error. We
438 * thus need to release the reference to the CRTC acquired in prepare()
439 * here.
441 rcar_du_crtc_put(rcrtc);
442 return ret;
445 static void rcar_du_crtc_mode_commit(struct drm_crtc *crtc)
447 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
449 /* We're done, restart the CRTC and set the DPMS mode to on. The
450 * reference to the DU acquired at prepare() time will thus be released
451 * by the DPMS handler (possibly called by the disable() handler).
453 rcar_du_crtc_start(rcrtc);
454 rcrtc->dpms = DRM_MODE_DPMS_ON;
457 static int rcar_du_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
458 struct drm_framebuffer *old_fb)
460 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
462 rcrtc->plane->src_x = x;
463 rcrtc->plane->src_y = y;
465 rcar_du_crtc_update_base(rcrtc);
467 return 0;
470 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
472 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
474 rcar_du_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
475 rcar_du_plane_release(rcrtc->plane);
478 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
479 .dpms = rcar_du_crtc_dpms,
480 .mode_fixup = rcar_du_crtc_mode_fixup,
481 .prepare = rcar_du_crtc_mode_prepare,
482 .commit = rcar_du_crtc_mode_commit,
483 .mode_set = rcar_du_crtc_mode_set,
484 .mode_set_base = rcar_du_crtc_mode_set_base,
485 .disable = rcar_du_crtc_disable,
488 void rcar_du_crtc_cancel_page_flip(struct rcar_du_crtc *rcrtc,
489 struct drm_file *file)
491 struct drm_pending_vblank_event *event;
492 struct drm_device *dev = rcrtc->crtc.dev;
493 unsigned long flags;
495 /* Destroy the pending vertical blanking event associated with the
496 * pending page flip, if any, and disable vertical blanking interrupts.
498 spin_lock_irqsave(&dev->event_lock, flags);
499 event = rcrtc->event;
500 if (event && event->base.file_priv == file) {
501 rcrtc->event = NULL;
502 event->base.destroy(&event->base);
503 drm_vblank_put(dev, rcrtc->index);
505 spin_unlock_irqrestore(&dev->event_lock, flags);
508 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
510 struct drm_pending_vblank_event *event;
511 struct drm_device *dev = rcrtc->crtc.dev;
512 unsigned long flags;
514 spin_lock_irqsave(&dev->event_lock, flags);
515 event = rcrtc->event;
516 rcrtc->event = NULL;
517 spin_unlock_irqrestore(&dev->event_lock, flags);
519 if (event == NULL)
520 return;
522 spin_lock_irqsave(&dev->event_lock, flags);
523 drm_send_vblank_event(dev, rcrtc->index, event);
524 spin_unlock_irqrestore(&dev->event_lock, flags);
526 drm_vblank_put(dev, rcrtc->index);
529 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
531 struct rcar_du_crtc *rcrtc = arg;
532 irqreturn_t ret = IRQ_NONE;
533 u32 status;
535 status = rcar_du_crtc_read(rcrtc, DSSR);
536 rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
538 if (status & DSSR_FRM) {
539 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
540 rcar_du_crtc_finish_page_flip(rcrtc);
541 ret = IRQ_HANDLED;
544 return ret;
547 static int rcar_du_crtc_page_flip(struct drm_crtc *crtc,
548 struct drm_framebuffer *fb,
549 struct drm_pending_vblank_event *event,
550 uint32_t page_flip_flags)
552 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
553 struct drm_device *dev = rcrtc->crtc.dev;
554 unsigned long flags;
556 spin_lock_irqsave(&dev->event_lock, flags);
557 if (rcrtc->event != NULL) {
558 spin_unlock_irqrestore(&dev->event_lock, flags);
559 return -EBUSY;
561 spin_unlock_irqrestore(&dev->event_lock, flags);
563 crtc->primary->fb = fb;
564 rcar_du_crtc_update_base(rcrtc);
566 if (event) {
567 event->pipe = rcrtc->index;
568 drm_vblank_get(dev, rcrtc->index);
569 spin_lock_irqsave(&dev->event_lock, flags);
570 rcrtc->event = event;
571 spin_unlock_irqrestore(&dev->event_lock, flags);
574 return 0;
577 static const struct drm_crtc_funcs crtc_funcs = {
578 .destroy = drm_crtc_cleanup,
579 .set_config = drm_crtc_helper_set_config,
580 .page_flip = rcar_du_crtc_page_flip,
583 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
585 static const unsigned int mmio_offsets[] = {
586 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
589 struct rcar_du_device *rcdu = rgrp->dev;
590 struct platform_device *pdev = to_platform_device(rcdu->dev);
591 struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
592 struct drm_crtc *crtc = &rcrtc->crtc;
593 unsigned int irqflags;
594 struct clk *clk;
595 char clk_name[9];
596 char *name;
597 int irq;
598 int ret;
600 /* Get the CRTC clock and the optional external clock. */
601 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
602 sprintf(clk_name, "du.%u", index);
603 name = clk_name;
604 } else {
605 name = NULL;
608 rcrtc->clock = devm_clk_get(rcdu->dev, name);
609 if (IS_ERR(rcrtc->clock)) {
610 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
611 return PTR_ERR(rcrtc->clock);
614 sprintf(clk_name, "dclkin.%u", index);
615 clk = devm_clk_get(rcdu->dev, clk_name);
616 if (!IS_ERR(clk)) {
617 rcrtc->extclock = clk;
618 } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
619 dev_info(rcdu->dev, "can't get external clock %u\n", index);
620 return -EPROBE_DEFER;
623 rcrtc->group = rgrp;
624 rcrtc->mmio_offset = mmio_offsets[index];
625 rcrtc->index = index;
626 rcrtc->dpms = DRM_MODE_DPMS_OFF;
627 rcrtc->plane = &rgrp->planes.planes[index % 2];
629 rcrtc->plane->crtc = crtc;
631 ret = drm_crtc_init(rcdu->ddev, crtc, &crtc_funcs);
632 if (ret < 0)
633 return ret;
635 drm_crtc_helper_add(crtc, &crtc_helper_funcs);
637 /* Register the interrupt handler. */
638 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
639 irq = platform_get_irq(pdev, index);
640 irqflags = 0;
641 } else {
642 irq = platform_get_irq(pdev, 0);
643 irqflags = IRQF_SHARED;
646 if (irq < 0) {
647 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
648 return irq;
651 ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
652 dev_name(rcdu->dev), rcrtc);
653 if (ret < 0) {
654 dev_err(rcdu->dev,
655 "failed to register IRQ for CRTC %u\n", index);
656 return ret;
659 return 0;
662 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
664 if (enable) {
665 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
666 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
667 } else {
668 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);