ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / iommu / arm-smmu.c
blobfc13dd56953e1eb2cb25107ef017336546b733a7
1 /*
2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - Context fault reporting
29 #define pr_fmt(fmt) "arm-smmu: " fmt
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
45 #include <linux/amba/bus.h>
47 #include "io-pgtable.h"
49 /* Maximum number of stream IDs assigned to a single device */
50 #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
52 /* Maximum number of context banks per SMMU */
53 #define ARM_SMMU_MAX_CBS 128
55 /* Maximum number of mapping groups per SMMU */
56 #define ARM_SMMU_MAX_SMRS 128
58 /* SMMU global address space */
59 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
60 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (1 << (smmu)->pgshift))
63 * SMMU global address space with conditional offset to access secure
64 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
65 * nsGFSYNR0: 0x450)
67 #define ARM_SMMU_GR0_NS(smmu) \
68 ((smmu)->base + \
69 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
70 ? 0x400 : 0))
72 /* Configuration registers */
73 #define ARM_SMMU_GR0_sCR0 0x0
74 #define sCR0_CLIENTPD (1 << 0)
75 #define sCR0_GFRE (1 << 1)
76 #define sCR0_GFIE (1 << 2)
77 #define sCR0_GCFGFRE (1 << 4)
78 #define sCR0_GCFGFIE (1 << 5)
79 #define sCR0_USFCFG (1 << 10)
80 #define sCR0_VMIDPNE (1 << 11)
81 #define sCR0_PTM (1 << 12)
82 #define sCR0_FB (1 << 13)
83 #define sCR0_BSU_SHIFT 14
84 #define sCR0_BSU_MASK 0x3
86 /* Identification registers */
87 #define ARM_SMMU_GR0_ID0 0x20
88 #define ARM_SMMU_GR0_ID1 0x24
89 #define ARM_SMMU_GR0_ID2 0x28
90 #define ARM_SMMU_GR0_ID3 0x2c
91 #define ARM_SMMU_GR0_ID4 0x30
92 #define ARM_SMMU_GR0_ID5 0x34
93 #define ARM_SMMU_GR0_ID6 0x38
94 #define ARM_SMMU_GR0_ID7 0x3c
95 #define ARM_SMMU_GR0_sGFSR 0x48
96 #define ARM_SMMU_GR0_sGFSYNR0 0x50
97 #define ARM_SMMU_GR0_sGFSYNR1 0x54
98 #define ARM_SMMU_GR0_sGFSYNR2 0x58
100 #define ID0_S1TS (1 << 30)
101 #define ID0_S2TS (1 << 29)
102 #define ID0_NTS (1 << 28)
103 #define ID0_SMS (1 << 27)
104 #define ID0_ATOSNS (1 << 26)
105 #define ID0_CTTW (1 << 14)
106 #define ID0_NUMIRPT_SHIFT 16
107 #define ID0_NUMIRPT_MASK 0xff
108 #define ID0_NUMSIDB_SHIFT 9
109 #define ID0_NUMSIDB_MASK 0xf
110 #define ID0_NUMSMRG_SHIFT 0
111 #define ID0_NUMSMRG_MASK 0xff
113 #define ID1_PAGESIZE (1 << 31)
114 #define ID1_NUMPAGENDXB_SHIFT 28
115 #define ID1_NUMPAGENDXB_MASK 7
116 #define ID1_NUMS2CB_SHIFT 16
117 #define ID1_NUMS2CB_MASK 0xff
118 #define ID1_NUMCB_SHIFT 0
119 #define ID1_NUMCB_MASK 0xff
121 #define ID2_OAS_SHIFT 4
122 #define ID2_OAS_MASK 0xf
123 #define ID2_IAS_SHIFT 0
124 #define ID2_IAS_MASK 0xf
125 #define ID2_UBS_SHIFT 8
126 #define ID2_UBS_MASK 0xf
127 #define ID2_PTFS_4K (1 << 12)
128 #define ID2_PTFS_16K (1 << 13)
129 #define ID2_PTFS_64K (1 << 14)
131 /* Global TLB invalidation */
132 #define ARM_SMMU_GR0_TLBIVMID 0x64
133 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
134 #define ARM_SMMU_GR0_TLBIALLH 0x6c
135 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
136 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
137 #define sTLBGSTATUS_GSACTIVE (1 << 0)
138 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
140 /* Stream mapping registers */
141 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
142 #define SMR_VALID (1 << 31)
143 #define SMR_MASK_SHIFT 16
144 #define SMR_MASK_MASK 0x7fff
145 #define SMR_ID_SHIFT 0
146 #define SMR_ID_MASK 0x7fff
148 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
149 #define S2CR_CBNDX_SHIFT 0
150 #define S2CR_CBNDX_MASK 0xff
151 #define S2CR_TYPE_SHIFT 16
152 #define S2CR_TYPE_MASK 0x3
153 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
154 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
155 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
157 /* Context bank attribute registers */
158 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
159 #define CBAR_VMID_SHIFT 0
160 #define CBAR_VMID_MASK 0xff
161 #define CBAR_S1_BPSHCFG_SHIFT 8
162 #define CBAR_S1_BPSHCFG_MASK 3
163 #define CBAR_S1_BPSHCFG_NSH 3
164 #define CBAR_S1_MEMATTR_SHIFT 12
165 #define CBAR_S1_MEMATTR_MASK 0xf
166 #define CBAR_S1_MEMATTR_WB 0xf
167 #define CBAR_TYPE_SHIFT 16
168 #define CBAR_TYPE_MASK 0x3
169 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
170 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
171 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
172 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
173 #define CBAR_IRPTNDX_SHIFT 24
174 #define CBAR_IRPTNDX_MASK 0xff
176 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
177 #define CBA2R_RW64_32BIT (0 << 0)
178 #define CBA2R_RW64_64BIT (1 << 0)
180 /* Translation context bank */
181 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
182 #define ARM_SMMU_CB(smmu, n) ((n) * (1 << (smmu)->pgshift))
184 #define ARM_SMMU_CB_SCTLR 0x0
185 #define ARM_SMMU_CB_RESUME 0x8
186 #define ARM_SMMU_CB_TTBCR2 0x10
187 #define ARM_SMMU_CB_TTBR0_LO 0x20
188 #define ARM_SMMU_CB_TTBR0_HI 0x24
189 #define ARM_SMMU_CB_TTBR1_LO 0x28
190 #define ARM_SMMU_CB_TTBR1_HI 0x2c
191 #define ARM_SMMU_CB_TTBCR 0x30
192 #define ARM_SMMU_CB_S1_MAIR0 0x38
193 #define ARM_SMMU_CB_S1_MAIR1 0x3c
194 #define ARM_SMMU_CB_PAR_LO 0x50
195 #define ARM_SMMU_CB_PAR_HI 0x54
196 #define ARM_SMMU_CB_FSR 0x58
197 #define ARM_SMMU_CB_FAR_LO 0x60
198 #define ARM_SMMU_CB_FAR_HI 0x64
199 #define ARM_SMMU_CB_FSYNR0 0x68
200 #define ARM_SMMU_CB_S1_TLBIVA 0x600
201 #define ARM_SMMU_CB_S1_TLBIASID 0x610
202 #define ARM_SMMU_CB_S1_TLBIVAL 0x620
203 #define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
204 #define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
205 #define ARM_SMMU_CB_ATS1PR_LO 0x800
206 #define ARM_SMMU_CB_ATS1PR_HI 0x804
207 #define ARM_SMMU_CB_ATSR 0x8f0
209 #define SCTLR_S1_ASIDPNE (1 << 12)
210 #define SCTLR_CFCFG (1 << 7)
211 #define SCTLR_CFIE (1 << 6)
212 #define SCTLR_CFRE (1 << 5)
213 #define SCTLR_E (1 << 4)
214 #define SCTLR_AFE (1 << 2)
215 #define SCTLR_TRE (1 << 1)
216 #define SCTLR_M (1 << 0)
217 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
219 #define CB_PAR_F (1 << 0)
221 #define ATSR_ACTIVE (1 << 0)
223 #define RESUME_RETRY (0 << 0)
224 #define RESUME_TERMINATE (1 << 0)
226 #define TTBCR2_SEP_SHIFT 15
227 #define TTBCR2_SEP_MASK 0x7
229 #define TTBCR2_ADDR_32 0
230 #define TTBCR2_ADDR_36 1
231 #define TTBCR2_ADDR_40 2
232 #define TTBCR2_ADDR_42 3
233 #define TTBCR2_ADDR_44 4
234 #define TTBCR2_ADDR_48 5
236 #define TTBRn_HI_ASID_SHIFT 16
238 #define FSR_MULTI (1 << 31)
239 #define FSR_SS (1 << 30)
240 #define FSR_UUT (1 << 8)
241 #define FSR_ASF (1 << 7)
242 #define FSR_TLBLKF (1 << 6)
243 #define FSR_TLBMCF (1 << 5)
244 #define FSR_EF (1 << 4)
245 #define FSR_PF (1 << 3)
246 #define FSR_AFF (1 << 2)
247 #define FSR_TF (1 << 1)
249 #define FSR_IGN (FSR_AFF | FSR_ASF | \
250 FSR_TLBMCF | FSR_TLBLKF)
251 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
252 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
254 #define FSYNR0_WNR (1 << 4)
256 static int force_stage;
257 module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
258 MODULE_PARM_DESC(force_stage,
259 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
261 enum arm_smmu_arch_version {
262 ARM_SMMU_V1 = 1,
263 ARM_SMMU_V2,
266 struct arm_smmu_smr {
267 u8 idx;
268 u16 mask;
269 u16 id;
272 struct arm_smmu_master_cfg {
273 int num_streamids;
274 u16 streamids[MAX_MASTER_STREAMIDS];
275 struct arm_smmu_smr *smrs;
278 struct arm_smmu_master {
279 struct device_node *of_node;
280 struct rb_node node;
281 struct arm_smmu_master_cfg cfg;
284 struct arm_smmu_device {
285 struct device *dev;
287 void __iomem *base;
288 unsigned long size;
289 unsigned long pgshift;
291 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
292 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
293 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
294 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
295 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
296 #define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
297 u32 features;
299 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
300 u32 options;
301 enum arm_smmu_arch_version version;
303 u32 num_context_banks;
304 u32 num_s2_context_banks;
305 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
306 atomic_t irptndx;
308 u32 num_mapping_groups;
309 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
311 unsigned long va_size;
312 unsigned long ipa_size;
313 unsigned long pa_size;
315 u32 num_global_irqs;
316 u32 num_context_irqs;
317 unsigned int *irqs;
319 struct list_head list;
320 struct rb_root masters;
323 struct arm_smmu_cfg {
324 u8 cbndx;
325 u8 irptndx;
326 u32 cbar;
328 #define INVALID_IRPTNDX 0xff
330 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
331 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
333 enum arm_smmu_domain_stage {
334 ARM_SMMU_DOMAIN_S1 = 0,
335 ARM_SMMU_DOMAIN_S2,
336 ARM_SMMU_DOMAIN_NESTED,
339 struct arm_smmu_domain {
340 struct arm_smmu_device *smmu;
341 struct io_pgtable_ops *pgtbl_ops;
342 spinlock_t pgtbl_lock;
343 struct arm_smmu_cfg cfg;
344 enum arm_smmu_domain_stage stage;
345 struct mutex init_mutex; /* Protects smmu pointer */
348 static struct iommu_ops arm_smmu_ops;
350 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
351 static LIST_HEAD(arm_smmu_devices);
353 struct arm_smmu_option_prop {
354 u32 opt;
355 const char *prop;
358 static struct arm_smmu_option_prop arm_smmu_options[] = {
359 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
360 { 0, NULL},
363 static void parse_driver_options(struct arm_smmu_device *smmu)
365 int i = 0;
367 do {
368 if (of_property_read_bool(smmu->dev->of_node,
369 arm_smmu_options[i].prop)) {
370 smmu->options |= arm_smmu_options[i].opt;
371 dev_notice(smmu->dev, "option %s\n",
372 arm_smmu_options[i].prop);
374 } while (arm_smmu_options[++i].opt);
377 static struct device_node *dev_get_dev_node(struct device *dev)
379 if (dev_is_pci(dev)) {
380 struct pci_bus *bus = to_pci_dev(dev)->bus;
382 while (!pci_is_root_bus(bus))
383 bus = bus->parent;
384 return bus->bridge->parent->of_node;
387 return dev->of_node;
390 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
391 struct device_node *dev_node)
393 struct rb_node *node = smmu->masters.rb_node;
395 while (node) {
396 struct arm_smmu_master *master;
398 master = container_of(node, struct arm_smmu_master, node);
400 if (dev_node < master->of_node)
401 node = node->rb_left;
402 else if (dev_node > master->of_node)
403 node = node->rb_right;
404 else
405 return master;
408 return NULL;
411 static struct arm_smmu_master_cfg *
412 find_smmu_master_cfg(struct device *dev)
414 struct arm_smmu_master_cfg *cfg = NULL;
415 struct iommu_group *group = iommu_group_get(dev);
417 if (group) {
418 cfg = iommu_group_get_iommudata(group);
419 iommu_group_put(group);
422 return cfg;
425 static int insert_smmu_master(struct arm_smmu_device *smmu,
426 struct arm_smmu_master *master)
428 struct rb_node **new, *parent;
430 new = &smmu->masters.rb_node;
431 parent = NULL;
432 while (*new) {
433 struct arm_smmu_master *this
434 = container_of(*new, struct arm_smmu_master, node);
436 parent = *new;
437 if (master->of_node < this->of_node)
438 new = &((*new)->rb_left);
439 else if (master->of_node > this->of_node)
440 new = &((*new)->rb_right);
441 else
442 return -EEXIST;
445 rb_link_node(&master->node, parent, new);
446 rb_insert_color(&master->node, &smmu->masters);
447 return 0;
450 static int register_smmu_master(struct arm_smmu_device *smmu,
451 struct device *dev,
452 struct of_phandle_args *masterspec)
454 int i;
455 struct arm_smmu_master *master;
457 master = find_smmu_master(smmu, masterspec->np);
458 if (master) {
459 dev_err(dev,
460 "rejecting multiple registrations for master device %s\n",
461 masterspec->np->name);
462 return -EBUSY;
465 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
466 dev_err(dev,
467 "reached maximum number (%d) of stream IDs for master device %s\n",
468 MAX_MASTER_STREAMIDS, masterspec->np->name);
469 return -ENOSPC;
472 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
473 if (!master)
474 return -ENOMEM;
476 master->of_node = masterspec->np;
477 master->cfg.num_streamids = masterspec->args_count;
479 for (i = 0; i < master->cfg.num_streamids; ++i) {
480 u16 streamid = masterspec->args[i];
482 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
483 (streamid >= smmu->num_mapping_groups)) {
484 dev_err(dev,
485 "stream ID for master device %s greater than maximum allowed (%d)\n",
486 masterspec->np->name, smmu->num_mapping_groups);
487 return -ERANGE;
489 master->cfg.streamids[i] = streamid;
491 return insert_smmu_master(smmu, master);
494 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
496 struct arm_smmu_device *smmu;
497 struct arm_smmu_master *master = NULL;
498 struct device_node *dev_node = dev_get_dev_node(dev);
500 spin_lock(&arm_smmu_devices_lock);
501 list_for_each_entry(smmu, &arm_smmu_devices, list) {
502 master = find_smmu_master(smmu, dev_node);
503 if (master)
504 break;
506 spin_unlock(&arm_smmu_devices_lock);
508 return master ? smmu : NULL;
511 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
513 int idx;
515 do {
516 idx = find_next_zero_bit(map, end, start);
517 if (idx == end)
518 return -ENOSPC;
519 } while (test_and_set_bit(idx, map));
521 return idx;
524 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
526 clear_bit(idx, map);
529 /* Wait for any pending TLB invalidations to complete */
530 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
532 int count = 0;
533 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
535 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
536 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
537 & sTLBGSTATUS_GSACTIVE) {
538 cpu_relax();
539 if (++count == TLB_LOOP_TIMEOUT) {
540 dev_err_ratelimited(smmu->dev,
541 "TLB sync timed out -- SMMU may be deadlocked\n");
542 return;
544 udelay(1);
548 static void arm_smmu_tlb_sync(void *cookie)
550 struct arm_smmu_domain *smmu_domain = cookie;
551 __arm_smmu_tlb_sync(smmu_domain->smmu);
554 static void arm_smmu_tlb_inv_context(void *cookie)
556 struct arm_smmu_domain *smmu_domain = cookie;
557 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
558 struct arm_smmu_device *smmu = smmu_domain->smmu;
559 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
560 void __iomem *base;
562 if (stage1) {
563 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
564 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
565 base + ARM_SMMU_CB_S1_TLBIASID);
566 } else {
567 base = ARM_SMMU_GR0(smmu);
568 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
569 base + ARM_SMMU_GR0_TLBIVMID);
572 __arm_smmu_tlb_sync(smmu);
575 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
576 bool leaf, void *cookie)
578 struct arm_smmu_domain *smmu_domain = cookie;
579 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
580 struct arm_smmu_device *smmu = smmu_domain->smmu;
581 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
582 void __iomem *reg;
584 if (stage1) {
585 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
586 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
588 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
589 iova &= ~12UL;
590 iova |= ARM_SMMU_CB_ASID(cfg);
591 writel_relaxed(iova, reg);
592 #ifdef CONFIG_64BIT
593 } else {
594 iova >>= 12;
595 iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
596 writeq_relaxed(iova, reg);
597 #endif
599 #ifdef CONFIG_64BIT
600 } else if (smmu->version == ARM_SMMU_V2) {
601 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
602 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
603 ARM_SMMU_CB_S2_TLBIIPAS2;
604 writeq_relaxed(iova >> 12, reg);
605 #endif
606 } else {
607 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
608 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
612 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
614 struct arm_smmu_domain *smmu_domain = cookie;
615 struct arm_smmu_device *smmu = smmu_domain->smmu;
616 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
619 /* Ensure new page tables are visible to the hardware walker */
620 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
621 dsb(ishst);
622 } else {
624 * If the SMMU can't walk tables in the CPU caches, treat them
625 * like non-coherent DMA since we need to flush the new entries
626 * all the way out to memory. There's no possibility of
627 * recursion here as the SMMU table walker will not be wired
628 * through another SMMU.
630 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
631 DMA_TO_DEVICE);
635 static struct iommu_gather_ops arm_smmu_gather_ops = {
636 .tlb_flush_all = arm_smmu_tlb_inv_context,
637 .tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
638 .tlb_sync = arm_smmu_tlb_sync,
639 .flush_pgtable = arm_smmu_flush_pgtable,
642 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
644 int flags, ret;
645 u32 fsr, far, fsynr, resume;
646 unsigned long iova;
647 struct iommu_domain *domain = dev;
648 struct arm_smmu_domain *smmu_domain = domain->priv;
649 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
650 struct arm_smmu_device *smmu = smmu_domain->smmu;
651 void __iomem *cb_base;
653 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
654 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
656 if (!(fsr & FSR_FAULT))
657 return IRQ_NONE;
659 if (fsr & FSR_IGN)
660 dev_err_ratelimited(smmu->dev,
661 "Unexpected context fault (fsr 0x%x)\n",
662 fsr);
664 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
665 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
667 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
668 iova = far;
669 #ifdef CONFIG_64BIT
670 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
671 iova |= ((unsigned long)far << 32);
672 #endif
674 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
675 ret = IRQ_HANDLED;
676 resume = RESUME_RETRY;
677 } else {
678 dev_err_ratelimited(smmu->dev,
679 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
680 iova, fsynr, cfg->cbndx);
681 ret = IRQ_NONE;
682 resume = RESUME_TERMINATE;
685 /* Clear the faulting FSR */
686 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
688 /* Retry or terminate any stalled transactions */
689 if (fsr & FSR_SS)
690 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
692 return ret;
695 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
697 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
698 struct arm_smmu_device *smmu = dev;
699 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
701 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
702 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
703 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
704 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
706 if (!gfsr)
707 return IRQ_NONE;
709 dev_err_ratelimited(smmu->dev,
710 "Unexpected global fault, this could be serious\n");
711 dev_err_ratelimited(smmu->dev,
712 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
713 gfsr, gfsynr0, gfsynr1, gfsynr2);
715 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
716 return IRQ_HANDLED;
719 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
720 struct io_pgtable_cfg *pgtbl_cfg)
722 u32 reg;
723 bool stage1;
724 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
725 struct arm_smmu_device *smmu = smmu_domain->smmu;
726 void __iomem *cb_base, *gr0_base, *gr1_base;
728 gr0_base = ARM_SMMU_GR0(smmu);
729 gr1_base = ARM_SMMU_GR1(smmu);
730 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
731 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
733 /* CBAR */
734 reg = cfg->cbar;
735 if (smmu->version == ARM_SMMU_V1)
736 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
739 * Use the weakest shareability/memory types, so they are
740 * overridden by the ttbcr/pte.
742 if (stage1) {
743 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
744 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
745 } else {
746 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
748 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
750 if (smmu->version > ARM_SMMU_V1) {
751 /* CBA2R */
752 #ifdef CONFIG_64BIT
753 reg = CBA2R_RW64_64BIT;
754 #else
755 reg = CBA2R_RW64_32BIT;
756 #endif
757 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
760 /* TTBRs */
761 if (stage1) {
762 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
763 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
764 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
765 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
766 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
768 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
769 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
770 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
771 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
772 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
773 } else {
774 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
775 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
776 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
777 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
780 /* TTBCR */
781 if (stage1) {
782 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
783 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
784 if (smmu->version > ARM_SMMU_V1) {
785 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
786 switch (smmu->va_size) {
787 case 32:
788 reg |= (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
789 break;
790 case 36:
791 reg |= (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
792 break;
793 case 40:
794 reg |= (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
795 break;
796 case 42:
797 reg |= (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
798 break;
799 case 44:
800 reg |= (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
801 break;
802 case 48:
803 reg |= (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
804 break;
806 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
808 } else {
809 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
810 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
813 /* MAIRs (stage-1 only) */
814 if (stage1) {
815 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
816 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
817 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
818 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
821 /* SCTLR */
822 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
823 if (stage1)
824 reg |= SCTLR_S1_ASIDPNE;
825 #ifdef __BIG_ENDIAN
826 reg |= SCTLR_E;
827 #endif
828 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
831 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
832 struct arm_smmu_device *smmu)
834 int irq, start, ret = 0;
835 unsigned long ias, oas;
836 struct io_pgtable_ops *pgtbl_ops;
837 struct io_pgtable_cfg pgtbl_cfg;
838 enum io_pgtable_fmt fmt;
839 struct arm_smmu_domain *smmu_domain = domain->priv;
840 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
842 mutex_lock(&smmu_domain->init_mutex);
843 if (smmu_domain->smmu)
844 goto out_unlock;
847 * Mapping the requested stage onto what we support is surprisingly
848 * complicated, mainly because the spec allows S1+S2 SMMUs without
849 * support for nested translation. That means we end up with the
850 * following table:
852 * Requested Supported Actual
853 * S1 N S1
854 * S1 S1+S2 S1
855 * S1 S2 S2
856 * S1 S1 S1
857 * N N N
858 * N S1+S2 S2
859 * N S2 S2
860 * N S1 S1
862 * Note that you can't actually request stage-2 mappings.
864 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
865 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
866 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
867 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
869 switch (smmu_domain->stage) {
870 case ARM_SMMU_DOMAIN_S1:
871 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
872 start = smmu->num_s2_context_banks;
873 ias = smmu->va_size;
874 oas = smmu->ipa_size;
875 if (IS_ENABLED(CONFIG_64BIT))
876 fmt = ARM_64_LPAE_S1;
877 else
878 fmt = ARM_32_LPAE_S1;
879 break;
880 case ARM_SMMU_DOMAIN_NESTED:
882 * We will likely want to change this if/when KVM gets
883 * involved.
885 case ARM_SMMU_DOMAIN_S2:
886 cfg->cbar = CBAR_TYPE_S2_TRANS;
887 start = 0;
888 ias = smmu->ipa_size;
889 oas = smmu->pa_size;
890 if (IS_ENABLED(CONFIG_64BIT))
891 fmt = ARM_64_LPAE_S2;
892 else
893 fmt = ARM_32_LPAE_S2;
894 break;
895 default:
896 ret = -EINVAL;
897 goto out_unlock;
900 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
901 smmu->num_context_banks);
902 if (IS_ERR_VALUE(ret))
903 goto out_unlock;
905 cfg->cbndx = ret;
906 if (smmu->version == ARM_SMMU_V1) {
907 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
908 cfg->irptndx %= smmu->num_context_irqs;
909 } else {
910 cfg->irptndx = cfg->cbndx;
913 pgtbl_cfg = (struct io_pgtable_cfg) {
914 .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
915 .ias = ias,
916 .oas = oas,
917 .tlb = &arm_smmu_gather_ops,
920 smmu_domain->smmu = smmu;
921 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
922 if (!pgtbl_ops) {
923 ret = -ENOMEM;
924 goto out_clear_smmu;
927 /* Update our support page sizes to reflect the page table format */
928 arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
930 /* Initialise the context bank with our page table cfg */
931 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
934 * Request context fault interrupt. Do this last to avoid the
935 * handler seeing a half-initialised domain state.
937 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
938 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
939 "arm-smmu-context-fault", domain);
940 if (IS_ERR_VALUE(ret)) {
941 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
942 cfg->irptndx, irq);
943 cfg->irptndx = INVALID_IRPTNDX;
946 mutex_unlock(&smmu_domain->init_mutex);
948 /* Publish page table ops for map/unmap */
949 smmu_domain->pgtbl_ops = pgtbl_ops;
950 return 0;
952 out_clear_smmu:
953 smmu_domain->smmu = NULL;
954 out_unlock:
955 mutex_unlock(&smmu_domain->init_mutex);
956 return ret;
959 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
961 struct arm_smmu_domain *smmu_domain = domain->priv;
962 struct arm_smmu_device *smmu = smmu_domain->smmu;
963 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
964 void __iomem *cb_base;
965 int irq;
967 if (!smmu)
968 return;
971 * Disable the context bank and free the page tables before freeing
972 * it.
974 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
975 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
977 if (cfg->irptndx != INVALID_IRPTNDX) {
978 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
979 free_irq(irq, domain);
982 if (smmu_domain->pgtbl_ops)
983 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
985 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
988 static int arm_smmu_domain_init(struct iommu_domain *domain)
990 struct arm_smmu_domain *smmu_domain;
993 * Allocate the domain and initialise some of its data structures.
994 * We can't really do anything meaningful until we've added a
995 * master.
997 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
998 if (!smmu_domain)
999 return -ENOMEM;
1001 mutex_init(&smmu_domain->init_mutex);
1002 spin_lock_init(&smmu_domain->pgtbl_lock);
1003 domain->priv = smmu_domain;
1004 return 0;
1007 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1009 struct arm_smmu_domain *smmu_domain = domain->priv;
1012 * Free the domain resources. We assume that all devices have
1013 * already been detached.
1015 arm_smmu_destroy_domain_context(domain);
1016 kfree(smmu_domain);
1019 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1020 struct arm_smmu_master_cfg *cfg)
1022 int i;
1023 struct arm_smmu_smr *smrs;
1024 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1026 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1027 return 0;
1029 if (cfg->smrs)
1030 return -EEXIST;
1032 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1033 if (!smrs) {
1034 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1035 cfg->num_streamids);
1036 return -ENOMEM;
1039 /* Allocate the SMRs on the SMMU */
1040 for (i = 0; i < cfg->num_streamids; ++i) {
1041 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1042 smmu->num_mapping_groups);
1043 if (IS_ERR_VALUE(idx)) {
1044 dev_err(smmu->dev, "failed to allocate free SMR\n");
1045 goto err_free_smrs;
1048 smrs[i] = (struct arm_smmu_smr) {
1049 .idx = idx,
1050 .mask = 0, /* We don't currently share SMRs */
1051 .id = cfg->streamids[i],
1055 /* It worked! Now, poke the actual hardware */
1056 for (i = 0; i < cfg->num_streamids; ++i) {
1057 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1058 smrs[i].mask << SMR_MASK_SHIFT;
1059 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1062 cfg->smrs = smrs;
1063 return 0;
1065 err_free_smrs:
1066 while (--i >= 0)
1067 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1068 kfree(smrs);
1069 return -ENOSPC;
1072 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1073 struct arm_smmu_master_cfg *cfg)
1075 int i;
1076 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1077 struct arm_smmu_smr *smrs = cfg->smrs;
1079 if (!smrs)
1080 return;
1082 /* Invalidate the SMRs before freeing back to the allocator */
1083 for (i = 0; i < cfg->num_streamids; ++i) {
1084 u8 idx = smrs[i].idx;
1086 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1087 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1090 cfg->smrs = NULL;
1091 kfree(smrs);
1094 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1095 struct arm_smmu_master_cfg *cfg)
1097 int i, ret;
1098 struct arm_smmu_device *smmu = smmu_domain->smmu;
1099 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1101 /* Devices in an IOMMU group may already be configured */
1102 ret = arm_smmu_master_configure_smrs(smmu, cfg);
1103 if (ret)
1104 return ret == -EEXIST ? 0 : ret;
1106 for (i = 0; i < cfg->num_streamids; ++i) {
1107 u32 idx, s2cr;
1109 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1110 s2cr = S2CR_TYPE_TRANS |
1111 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1112 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1115 return 0;
1118 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1119 struct arm_smmu_master_cfg *cfg)
1121 int i;
1122 struct arm_smmu_device *smmu = smmu_domain->smmu;
1123 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1125 /* An IOMMU group is torn down by the first device to be removed */
1126 if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1127 return;
1130 * We *must* clear the S2CR first, because freeing the SMR means
1131 * that it can be re-allocated immediately.
1133 for (i = 0; i < cfg->num_streamids; ++i) {
1134 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1136 writel_relaxed(S2CR_TYPE_BYPASS,
1137 gr0_base + ARM_SMMU_GR0_S2CR(idx));
1140 arm_smmu_master_free_smrs(smmu, cfg);
1143 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1145 int ret;
1146 struct arm_smmu_domain *smmu_domain = domain->priv;
1147 struct arm_smmu_device *smmu;
1148 struct arm_smmu_master_cfg *cfg;
1150 smmu = find_smmu_for_device(dev);
1151 if (!smmu) {
1152 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1153 return -ENXIO;
1156 if (dev->archdata.iommu) {
1157 dev_err(dev, "already attached to IOMMU domain\n");
1158 return -EEXIST;
1161 /* Ensure that the domain is finalised */
1162 ret = arm_smmu_init_domain_context(domain, smmu);
1163 if (IS_ERR_VALUE(ret))
1164 return ret;
1167 * Sanity check the domain. We don't support domains across
1168 * different SMMUs.
1170 if (smmu_domain->smmu != smmu) {
1171 dev_err(dev,
1172 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1173 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1174 return -EINVAL;
1177 /* Looks ok, so add the device to the domain */
1178 cfg = find_smmu_master_cfg(dev);
1179 if (!cfg)
1180 return -ENODEV;
1182 ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1183 if (!ret)
1184 dev->archdata.iommu = domain;
1185 return ret;
1188 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1190 struct arm_smmu_domain *smmu_domain = domain->priv;
1191 struct arm_smmu_master_cfg *cfg;
1193 cfg = find_smmu_master_cfg(dev);
1194 if (!cfg)
1195 return;
1197 dev->archdata.iommu = NULL;
1198 arm_smmu_domain_remove_master(smmu_domain, cfg);
1201 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1202 phys_addr_t paddr, size_t size, int prot)
1204 int ret;
1205 unsigned long flags;
1206 struct arm_smmu_domain *smmu_domain = domain->priv;
1207 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1209 if (!ops)
1210 return -ENODEV;
1212 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1213 ret = ops->map(ops, iova, paddr, size, prot);
1214 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1215 return ret;
1218 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1219 size_t size)
1221 size_t ret;
1222 unsigned long flags;
1223 struct arm_smmu_domain *smmu_domain = domain->priv;
1224 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1226 if (!ops)
1227 return 0;
1229 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1230 ret = ops->unmap(ops, iova, size);
1231 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1232 return ret;
1235 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1236 dma_addr_t iova)
1238 struct arm_smmu_domain *smmu_domain = domain->priv;
1239 struct arm_smmu_device *smmu = smmu_domain->smmu;
1240 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1241 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1242 struct device *dev = smmu->dev;
1243 void __iomem *cb_base;
1244 u32 tmp;
1245 u64 phys;
1247 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1249 if (smmu->version == 1) {
1250 u32 reg = iova & ~0xfff;
1251 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1252 } else {
1253 u32 reg = iova & ~0xfff;
1254 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
1255 reg = ((u64)iova & ~0xfff) >> 32;
1256 writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
1259 if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1260 !(tmp & ATSR_ACTIVE), 5, 50)) {
1261 dev_err(dev,
1262 "iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
1263 &iova);
1264 return ops->iova_to_phys(ops, iova);
1267 phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1268 phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1270 if (phys & CB_PAR_F) {
1271 dev_err(dev, "translation fault!\n");
1272 dev_err(dev, "PAR = 0x%llx\n", phys);
1273 return 0;
1276 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1279 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1280 dma_addr_t iova)
1282 phys_addr_t ret;
1283 unsigned long flags;
1284 struct arm_smmu_domain *smmu_domain = domain->priv;
1285 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1287 if (!ops)
1288 return 0;
1290 spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1291 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS)
1292 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1293 else
1294 ret = ops->iova_to_phys(ops, iova);
1295 spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1297 return ret;
1300 static bool arm_smmu_capable(enum iommu_cap cap)
1302 switch (cap) {
1303 case IOMMU_CAP_CACHE_COHERENCY:
1305 * Return true here as the SMMU can always send out coherent
1306 * requests.
1308 return true;
1309 case IOMMU_CAP_INTR_REMAP:
1310 return true; /* MSIs are just memory writes */
1311 case IOMMU_CAP_NOEXEC:
1312 return true;
1313 default:
1314 return false;
1318 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1320 *((u16 *)data) = alias;
1321 return 0; /* Continue walking */
1324 static void __arm_smmu_release_pci_iommudata(void *data)
1326 kfree(data);
1329 static int arm_smmu_add_device(struct device *dev)
1331 struct arm_smmu_device *smmu;
1332 struct arm_smmu_master_cfg *cfg;
1333 struct iommu_group *group;
1334 void (*releasefn)(void *) = NULL;
1335 int ret;
1337 smmu = find_smmu_for_device(dev);
1338 if (!smmu)
1339 return -ENODEV;
1341 group = iommu_group_alloc();
1342 if (IS_ERR(group)) {
1343 dev_err(dev, "Failed to allocate IOMMU group\n");
1344 return PTR_ERR(group);
1347 if (dev_is_pci(dev)) {
1348 struct pci_dev *pdev = to_pci_dev(dev);
1350 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1351 if (!cfg) {
1352 ret = -ENOMEM;
1353 goto out_put_group;
1356 cfg->num_streamids = 1;
1358 * Assume Stream ID == Requester ID for now.
1359 * We need a way to describe the ID mappings in FDT.
1361 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1362 &cfg->streamids[0]);
1363 releasefn = __arm_smmu_release_pci_iommudata;
1364 } else {
1365 struct arm_smmu_master *master;
1367 master = find_smmu_master(smmu, dev->of_node);
1368 if (!master) {
1369 ret = -ENODEV;
1370 goto out_put_group;
1373 cfg = &master->cfg;
1376 iommu_group_set_iommudata(group, cfg, releasefn);
1377 ret = iommu_group_add_device(group, dev);
1379 out_put_group:
1380 iommu_group_put(group);
1381 return ret;
1384 static void arm_smmu_remove_device(struct device *dev)
1386 iommu_group_remove_device(dev);
1389 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1390 enum iommu_attr attr, void *data)
1392 struct arm_smmu_domain *smmu_domain = domain->priv;
1394 switch (attr) {
1395 case DOMAIN_ATTR_NESTING:
1396 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1397 return 0;
1398 default:
1399 return -ENODEV;
1403 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1404 enum iommu_attr attr, void *data)
1406 int ret = 0;
1407 struct arm_smmu_domain *smmu_domain = domain->priv;
1409 mutex_lock(&smmu_domain->init_mutex);
1411 switch (attr) {
1412 case DOMAIN_ATTR_NESTING:
1413 if (smmu_domain->smmu) {
1414 ret = -EPERM;
1415 goto out_unlock;
1418 if (*(int *)data)
1419 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1420 else
1421 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1423 break;
1424 default:
1425 ret = -ENODEV;
1428 out_unlock:
1429 mutex_unlock(&smmu_domain->init_mutex);
1430 return ret;
1433 static struct iommu_ops arm_smmu_ops = {
1434 .capable = arm_smmu_capable,
1435 .domain_init = arm_smmu_domain_init,
1436 .domain_destroy = arm_smmu_domain_destroy,
1437 .attach_dev = arm_smmu_attach_dev,
1438 .detach_dev = arm_smmu_detach_dev,
1439 .map = arm_smmu_map,
1440 .unmap = arm_smmu_unmap,
1441 .map_sg = default_iommu_map_sg,
1442 .iova_to_phys = arm_smmu_iova_to_phys,
1443 .add_device = arm_smmu_add_device,
1444 .remove_device = arm_smmu_remove_device,
1445 .domain_get_attr = arm_smmu_domain_get_attr,
1446 .domain_set_attr = arm_smmu_domain_set_attr,
1447 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1450 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1452 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1453 void __iomem *cb_base;
1454 int i = 0;
1455 u32 reg;
1457 /* clear global FSR */
1458 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1459 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1461 /* Mark all SMRn as invalid and all S2CRn as bypass */
1462 for (i = 0; i < smmu->num_mapping_groups; ++i) {
1463 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1464 writel_relaxed(S2CR_TYPE_BYPASS,
1465 gr0_base + ARM_SMMU_GR0_S2CR(i));
1468 /* Make sure all context banks are disabled and clear CB_FSR */
1469 for (i = 0; i < smmu->num_context_banks; ++i) {
1470 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1471 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1472 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1475 /* Invalidate the TLB, just in case */
1476 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1477 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1479 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1481 /* Enable fault reporting */
1482 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1484 /* Disable TLB broadcasting. */
1485 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1487 /* Enable client access, but bypass when no mapping is found */
1488 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1490 /* Disable forced broadcasting */
1491 reg &= ~sCR0_FB;
1493 /* Don't upgrade barriers */
1494 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1496 /* Push the button */
1497 __arm_smmu_tlb_sync(smmu);
1498 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1501 static int arm_smmu_id_size_to_bits(int size)
1503 switch (size) {
1504 case 0:
1505 return 32;
1506 case 1:
1507 return 36;
1508 case 2:
1509 return 40;
1510 case 3:
1511 return 42;
1512 case 4:
1513 return 44;
1514 case 5:
1515 default:
1516 return 48;
1520 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1522 unsigned long size;
1523 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1524 u32 id;
1526 dev_notice(smmu->dev, "probing hardware configuration...\n");
1527 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1529 /* ID0 */
1530 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1532 /* Restrict available stages based on module parameter */
1533 if (force_stage == 1)
1534 id &= ~(ID0_S2TS | ID0_NTS);
1535 else if (force_stage == 2)
1536 id &= ~(ID0_S1TS | ID0_NTS);
1538 if (id & ID0_S1TS) {
1539 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1540 dev_notice(smmu->dev, "\tstage 1 translation\n");
1543 if (id & ID0_S2TS) {
1544 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1545 dev_notice(smmu->dev, "\tstage 2 translation\n");
1548 if (id & ID0_NTS) {
1549 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1550 dev_notice(smmu->dev, "\tnested translation\n");
1553 if (!(smmu->features &
1554 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1555 dev_err(smmu->dev, "\tno translation support!\n");
1556 return -ENODEV;
1559 if (smmu->version == 1 || (!(id & ID0_ATOSNS) && (id & ID0_S1TS))) {
1560 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1561 dev_notice(smmu->dev, "\taddress translation ops\n");
1564 if (id & ID0_CTTW) {
1565 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1566 dev_notice(smmu->dev, "\tcoherent table walk\n");
1569 if (id & ID0_SMS) {
1570 u32 smr, sid, mask;
1572 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1573 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1574 ID0_NUMSMRG_MASK;
1575 if (smmu->num_mapping_groups == 0) {
1576 dev_err(smmu->dev,
1577 "stream-matching supported, but no SMRs present!\n");
1578 return -ENODEV;
1581 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1582 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1583 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1584 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1586 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1587 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1588 if ((mask & sid) != sid) {
1589 dev_err(smmu->dev,
1590 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1591 mask, sid);
1592 return -ENODEV;
1595 dev_notice(smmu->dev,
1596 "\tstream matching with %u register groups, mask 0x%x",
1597 smmu->num_mapping_groups, mask);
1598 } else {
1599 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1600 ID0_NUMSIDB_MASK;
1603 /* ID1 */
1604 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1605 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1607 /* Check for size mismatch of SMMU address space from mapped region */
1608 size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1609 size *= 2 << smmu->pgshift;
1610 if (smmu->size != size)
1611 dev_warn(smmu->dev,
1612 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1613 size, smmu->size);
1615 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1616 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1617 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1618 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1619 return -ENODEV;
1621 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1622 smmu->num_context_banks, smmu->num_s2_context_banks);
1624 /* ID2 */
1625 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1626 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1627 smmu->ipa_size = size;
1629 /* The output mask is also applied for bypass */
1630 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1631 smmu->pa_size = size;
1633 if (smmu->version == ARM_SMMU_V1) {
1634 smmu->va_size = smmu->ipa_size;
1635 size = SZ_4K | SZ_2M | SZ_1G;
1636 } else {
1637 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1638 smmu->va_size = arm_smmu_id_size_to_bits(size);
1639 #ifndef CONFIG_64BIT
1640 smmu->va_size = min(32UL, smmu->va_size);
1641 #endif
1642 size = 0;
1643 if (id & ID2_PTFS_4K)
1644 size |= SZ_4K | SZ_2M | SZ_1G;
1645 if (id & ID2_PTFS_16K)
1646 size |= SZ_16K | SZ_32M;
1647 if (id & ID2_PTFS_64K)
1648 size |= SZ_64K | SZ_512M;
1651 arm_smmu_ops.pgsize_bitmap &= size;
1652 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1654 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1655 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1656 smmu->va_size, smmu->ipa_size);
1658 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1659 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1660 smmu->ipa_size, smmu->pa_size);
1662 return 0;
1665 static const struct of_device_id arm_smmu_of_match[] = {
1666 { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1667 { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1668 { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1669 { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1670 { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1671 { },
1673 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1675 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1677 const struct of_device_id *of_id;
1678 struct resource *res;
1679 struct arm_smmu_device *smmu;
1680 struct device *dev = &pdev->dev;
1681 struct rb_node *node;
1682 struct of_phandle_args masterspec;
1683 int num_irqs, i, err;
1685 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1686 if (!smmu) {
1687 dev_err(dev, "failed to allocate arm_smmu_device\n");
1688 return -ENOMEM;
1690 smmu->dev = dev;
1692 of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1693 smmu->version = (enum arm_smmu_arch_version)of_id->data;
1695 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1696 smmu->base = devm_ioremap_resource(dev, res);
1697 if (IS_ERR(smmu->base))
1698 return PTR_ERR(smmu->base);
1699 smmu->size = resource_size(res);
1701 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1702 &smmu->num_global_irqs)) {
1703 dev_err(dev, "missing #global-interrupts property\n");
1704 return -ENODEV;
1707 num_irqs = 0;
1708 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1709 num_irqs++;
1710 if (num_irqs > smmu->num_global_irqs)
1711 smmu->num_context_irqs++;
1714 if (!smmu->num_context_irqs) {
1715 dev_err(dev, "found %d interrupts but expected at least %d\n",
1716 num_irqs, smmu->num_global_irqs + 1);
1717 return -ENODEV;
1720 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1721 GFP_KERNEL);
1722 if (!smmu->irqs) {
1723 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1724 return -ENOMEM;
1727 for (i = 0; i < num_irqs; ++i) {
1728 int irq = platform_get_irq(pdev, i);
1730 if (irq < 0) {
1731 dev_err(dev, "failed to get irq index %d\n", i);
1732 return -ENODEV;
1734 smmu->irqs[i] = irq;
1737 err = arm_smmu_device_cfg_probe(smmu);
1738 if (err)
1739 return err;
1741 i = 0;
1742 smmu->masters = RB_ROOT;
1743 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1744 "#stream-id-cells", i,
1745 &masterspec)) {
1746 err = register_smmu_master(smmu, dev, &masterspec);
1747 if (err) {
1748 dev_err(dev, "failed to add master %s\n",
1749 masterspec.np->name);
1750 goto out_put_masters;
1753 i++;
1755 dev_notice(dev, "registered %d master devices\n", i);
1757 parse_driver_options(smmu);
1759 if (smmu->version > ARM_SMMU_V1 &&
1760 smmu->num_context_banks != smmu->num_context_irqs) {
1761 dev_err(dev,
1762 "found only %d context interrupt(s) but %d required\n",
1763 smmu->num_context_irqs, smmu->num_context_banks);
1764 err = -ENODEV;
1765 goto out_put_masters;
1768 for (i = 0; i < smmu->num_global_irqs; ++i) {
1769 err = request_irq(smmu->irqs[i],
1770 arm_smmu_global_fault,
1771 IRQF_SHARED,
1772 "arm-smmu global fault",
1773 smmu);
1774 if (err) {
1775 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1776 i, smmu->irqs[i]);
1777 goto out_free_irqs;
1781 INIT_LIST_HEAD(&smmu->list);
1782 spin_lock(&arm_smmu_devices_lock);
1783 list_add(&smmu->list, &arm_smmu_devices);
1784 spin_unlock(&arm_smmu_devices_lock);
1786 arm_smmu_device_reset(smmu);
1787 return 0;
1789 out_free_irqs:
1790 while (i--)
1791 free_irq(smmu->irqs[i], smmu);
1793 out_put_masters:
1794 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1795 struct arm_smmu_master *master
1796 = container_of(node, struct arm_smmu_master, node);
1797 of_node_put(master->of_node);
1800 return err;
1803 static int arm_smmu_device_remove(struct platform_device *pdev)
1805 int i;
1806 struct device *dev = &pdev->dev;
1807 struct arm_smmu_device *curr, *smmu = NULL;
1808 struct rb_node *node;
1810 spin_lock(&arm_smmu_devices_lock);
1811 list_for_each_entry(curr, &arm_smmu_devices, list) {
1812 if (curr->dev == dev) {
1813 smmu = curr;
1814 list_del(&smmu->list);
1815 break;
1818 spin_unlock(&arm_smmu_devices_lock);
1820 if (!smmu)
1821 return -ENODEV;
1823 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1824 struct arm_smmu_master *master
1825 = container_of(node, struct arm_smmu_master, node);
1826 of_node_put(master->of_node);
1829 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1830 dev_err(dev, "removing device with active domains!\n");
1832 for (i = 0; i < smmu->num_global_irqs; ++i)
1833 free_irq(smmu->irqs[i], smmu);
1835 /* Turn the thing off */
1836 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1837 return 0;
1840 static struct platform_driver arm_smmu_driver = {
1841 .driver = {
1842 .name = "arm-smmu",
1843 .of_match_table = of_match_ptr(arm_smmu_of_match),
1845 .probe = arm_smmu_device_dt_probe,
1846 .remove = arm_smmu_device_remove,
1849 static int __init arm_smmu_init(void)
1851 struct device_node *np;
1852 int ret;
1855 * Play nice with systems that don't have an ARM SMMU by checking that
1856 * an ARM SMMU exists in the system before proceeding with the driver
1857 * and IOMMU bus operation registration.
1859 np = of_find_matching_node(NULL, arm_smmu_of_match);
1860 if (!np)
1861 return 0;
1863 of_node_put(np);
1865 ret = platform_driver_register(&arm_smmu_driver);
1866 if (ret)
1867 return ret;
1869 /* Oh, for a proper bus abstraction */
1870 if (!iommu_present(&platform_bus_type))
1871 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1873 #ifdef CONFIG_ARM_AMBA
1874 if (!iommu_present(&amba_bustype))
1875 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1876 #endif
1878 #ifdef CONFIG_PCI
1879 if (!iommu_present(&pci_bus_type))
1880 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1881 #endif
1883 return 0;
1886 static void __exit arm_smmu_exit(void)
1888 return platform_driver_unregister(&arm_smmu_driver);
1891 subsys_initcall(arm_smmu_init);
1892 module_exit(arm_smmu_exit);
1894 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1895 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1896 MODULE_LICENSE("GPL v2");