2 * Copyright © 2006-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
20 #include <linux/init.h>
21 #include <linux/bitmap.h>
22 #include <linux/debugfs.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/irq.h>
26 #include <linux/interrupt.h>
27 #include <linux/spinlock.h>
28 #include <linux/pci.h>
29 #include <linux/dmar.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mempool.h>
32 #include <linux/memory.h>
33 #include <linux/timer.h>
34 #include <linux/iova.h>
35 #include <linux/iommu.h>
36 #include <linux/intel-iommu.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/tboot.h>
39 #include <linux/dmi.h>
40 #include <linux/pci-ats.h>
41 #include <linux/memblock.h>
42 #include <linux/dma-contiguous.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/cacheflush.h>
45 #include <asm/iommu.h>
47 #include "irq_remapping.h"
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
63 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
65 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
66 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
68 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
69 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
70 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
71 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
72 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
74 /* IO virtual address start page frame number */
75 #define IOVA_START_PFN (1)
77 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
78 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
79 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
81 /* page table handling */
82 #define LEVEL_STRIDE (9)
83 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
86 * This bitmap is used to advertise the page sizes our hardware support
87 * to the IOMMU core, which will then use this information to split
88 * physically contiguous memory regions it is mapping into page sizes
91 * Traditionally the IOMMU core just handed us the mappings directly,
92 * after making sure the size is an order of a 4KiB page and that the
93 * mapping has natural alignment.
95 * To retain this behavior, we currently advertise that we support
96 * all page sizes that are an order of 4KiB.
98 * If at some point we'd like to utilize the IOMMU core's new behavior,
99 * we could change this to advertise the real page sizes we support.
101 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
103 static inline int agaw_to_level(int agaw
)
108 static inline int agaw_to_width(int agaw
)
110 return min_t(int, 30 + agaw
* LEVEL_STRIDE
, MAX_AGAW_WIDTH
);
113 static inline int width_to_agaw(int width
)
115 return DIV_ROUND_UP(width
- 30, LEVEL_STRIDE
);
118 static inline unsigned int level_to_offset_bits(int level
)
120 return (level
- 1) * LEVEL_STRIDE
;
123 static inline int pfn_level_offset(unsigned long pfn
, int level
)
125 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
128 static inline unsigned long level_mask(int level
)
130 return -1UL << level_to_offset_bits(level
);
133 static inline unsigned long level_size(int level
)
135 return 1UL << level_to_offset_bits(level
);
138 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
140 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
143 static inline unsigned long lvl_to_nr_pages(unsigned int lvl
)
145 return 1 << min_t(int, (lvl
- 1) * LEVEL_STRIDE
, MAX_AGAW_PFN_WIDTH
);
148 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
149 are never going to work. */
150 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
152 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
155 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
157 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
159 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
161 return mm_to_dma_pfn(page_to_pfn(pg
));
163 static inline unsigned long virt_to_dma_pfn(void *p
)
165 return page_to_dma_pfn(virt_to_page(p
));
168 /* global iommu list, set NULL for ignored DMAR units */
169 static struct intel_iommu
**g_iommus
;
171 static void __init
check_tylersburg_isoch(void);
172 static int rwbf_quirk
;
175 * set to 1 to panic kernel if can't successfully enable VT-d
176 * (used when kernel is launched w/ TXT)
178 static int force_on
= 0;
183 * 12-63: Context Ptr (12 - (haw-1))
190 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
191 static inline bool root_present(struct root_entry
*root
)
193 return (root
->val
& 1);
195 static inline void set_root_present(struct root_entry
*root
)
199 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
201 root
->val
&= ~VTD_PAGE_MASK
;
202 root
->val
|= value
& VTD_PAGE_MASK
;
205 static inline struct context_entry
*
206 get_context_addr_from_root(struct root_entry
*root
)
208 return (struct context_entry
*)
209 (root_present(root
)?phys_to_virt(
210 root
->val
& VTD_PAGE_MASK
) :
217 * 1: fault processing disable
218 * 2-3: translation type
219 * 12-63: address space root
225 struct context_entry
{
230 static inline bool context_present(struct context_entry
*context
)
232 return (context
->lo
& 1);
234 static inline void context_set_present(struct context_entry
*context
)
239 static inline void context_set_fault_enable(struct context_entry
*context
)
241 context
->lo
&= (((u64
)-1) << 2) | 1;
244 static inline void context_set_translation_type(struct context_entry
*context
,
247 context
->lo
&= (((u64
)-1) << 4) | 3;
248 context
->lo
|= (value
& 3) << 2;
251 static inline void context_set_address_root(struct context_entry
*context
,
254 context
->lo
&= ~VTD_PAGE_MASK
;
255 context
->lo
|= value
& VTD_PAGE_MASK
;
258 static inline void context_set_address_width(struct context_entry
*context
,
261 context
->hi
|= value
& 7;
264 static inline void context_set_domain_id(struct context_entry
*context
,
267 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
270 static inline void context_clear_entry(struct context_entry
*context
)
283 * 12-63: Host physcial address
289 static inline void dma_clear_pte(struct dma_pte
*pte
)
294 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
297 return pte
->val
& VTD_PAGE_MASK
;
299 /* Must have a full atomic 64-bit read */
300 return __cmpxchg64(&pte
->val
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
304 static inline bool dma_pte_present(struct dma_pte
*pte
)
306 return (pte
->val
& 3) != 0;
309 static inline bool dma_pte_superpage(struct dma_pte
*pte
)
311 return (pte
->val
& DMA_PTE_LARGE_PAGE
);
314 static inline int first_pte_in_page(struct dma_pte
*pte
)
316 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
320 * This domain is a statically identity mapping domain.
321 * 1. This domain creats a static 1:1 mapping to all usable memory.
322 * 2. It maps to each iommu if successful.
323 * 3. Each iommu mapps to this domain if successful.
325 static struct dmar_domain
*si_domain
;
326 static int hw_pass_through
= 1;
328 /* domain represents a virtual machine, more than one devices
329 * across iommus may be owned in one domain, e.g. kvm guest.
331 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
333 /* si_domain contains mulitple devices */
334 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
337 int id
; /* domain id */
338 int nid
; /* node id */
339 DECLARE_BITMAP(iommu_bmp
, DMAR_UNITS_SUPPORTED
);
340 /* bitmap of iommus this domain uses*/
342 struct list_head devices
; /* all devices' list */
343 struct iova_domain iovad
; /* iova's that belong to this domain */
345 struct dma_pte
*pgd
; /* virtual address */
346 int gaw
; /* max guest address width */
348 /* adjusted guest address width, 0 is level 2 30-bit */
351 int flags
; /* flags to find out type of domain */
353 int iommu_coherency
;/* indicate coherency of iommu access */
354 int iommu_snooping
; /* indicate snooping control feature*/
355 int iommu_count
; /* reference count of iommu */
356 int iommu_superpage
;/* Level of superpages supported:
357 0 == 4KiB (no superpages), 1 == 2MiB,
358 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
359 spinlock_t iommu_lock
; /* protect iommu set in domain */
360 u64 max_addr
; /* maximum mapped address */
363 /* PCI domain-device relationship */
364 struct device_domain_info
{
365 struct list_head link
; /* link to domain siblings */
366 struct list_head global
; /* link to global list */
367 u8 bus
; /* PCI bus number */
368 u8 devfn
; /* PCI devfn number */
369 struct device
*dev
; /* it's NULL for PCIe-to-PCI bridge */
370 struct intel_iommu
*iommu
; /* IOMMU used by this device */
371 struct dmar_domain
*domain
; /* pointer to domain */
374 struct dmar_rmrr_unit
{
375 struct list_head list
; /* list of rmrr units */
376 struct acpi_dmar_header
*hdr
; /* ACPI header */
377 u64 base_address
; /* reserved base address*/
378 u64 end_address
; /* reserved end address */
379 struct dmar_dev_scope
*devices
; /* target devices */
380 int devices_cnt
; /* target device count */
383 struct dmar_atsr_unit
{
384 struct list_head list
; /* list of ATSR units */
385 struct acpi_dmar_header
*hdr
; /* ACPI header */
386 struct dmar_dev_scope
*devices
; /* target devices */
387 int devices_cnt
; /* target device count */
388 u8 include_all
:1; /* include all ports */
391 static LIST_HEAD(dmar_atsr_units
);
392 static LIST_HEAD(dmar_rmrr_units
);
394 #define for_each_rmrr_units(rmrr) \
395 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
397 static void flush_unmaps_timeout(unsigned long data
);
399 static DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
401 #define HIGH_WATER_MARK 250
402 struct deferred_flush_tables
{
404 struct iova
*iova
[HIGH_WATER_MARK
];
405 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
406 struct page
*freelist
[HIGH_WATER_MARK
];
409 static struct deferred_flush_tables
*deferred_flush
;
411 /* bitmap for indexing intel_iommus */
412 static int g_num_of_iommus
;
414 static DEFINE_SPINLOCK(async_umap_flush_lock
);
415 static LIST_HEAD(unmaps_to_do
);
418 static long list_size
;
420 static void domain_exit(struct dmar_domain
*domain
);
421 static void domain_remove_dev_info(struct dmar_domain
*domain
);
422 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
424 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
426 static int domain_detach_iommu(struct dmar_domain
*domain
,
427 struct intel_iommu
*iommu
);
429 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
430 int dmar_disabled
= 0;
432 int dmar_disabled
= 1;
433 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
435 int intel_iommu_enabled
= 0;
436 EXPORT_SYMBOL_GPL(intel_iommu_enabled
);
438 static int dmar_map_gfx
= 1;
439 static int dmar_forcedac
;
440 static int intel_iommu_strict
;
441 static int intel_iommu_superpage
= 1;
443 int intel_iommu_gfx_mapped
;
444 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped
);
446 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
447 static DEFINE_SPINLOCK(device_domain_lock
);
448 static LIST_HEAD(device_domain_list
);
450 static const struct iommu_ops intel_iommu_ops
;
452 static int __init
intel_iommu_setup(char *str
)
457 if (!strncmp(str
, "on", 2)) {
459 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
460 } else if (!strncmp(str
, "off", 3)) {
462 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
463 } else if (!strncmp(str
, "igfx_off", 8)) {
466 "Intel-IOMMU: disable GFX device mapping\n");
467 } else if (!strncmp(str
, "forcedac", 8)) {
469 "Intel-IOMMU: Forcing DAC for PCI devices\n");
471 } else if (!strncmp(str
, "strict", 6)) {
473 "Intel-IOMMU: disable batched IOTLB flush\n");
474 intel_iommu_strict
= 1;
475 } else if (!strncmp(str
, "sp_off", 6)) {
477 "Intel-IOMMU: disable supported super page\n");
478 intel_iommu_superpage
= 0;
481 str
+= strcspn(str
, ",");
487 __setup("intel_iommu=", intel_iommu_setup
);
489 static struct kmem_cache
*iommu_domain_cache
;
490 static struct kmem_cache
*iommu_devinfo_cache
;
492 static inline void *alloc_pgtable_page(int node
)
497 page
= alloc_pages_node(node
, GFP_ATOMIC
| __GFP_ZERO
, 0);
499 vaddr
= page_address(page
);
503 static inline void free_pgtable_page(void *vaddr
)
505 free_page((unsigned long)vaddr
);
508 static inline void *alloc_domain_mem(void)
510 return kmem_cache_alloc(iommu_domain_cache
, GFP_ATOMIC
);
513 static void free_domain_mem(void *vaddr
)
515 kmem_cache_free(iommu_domain_cache
, vaddr
);
518 static inline void * alloc_devinfo_mem(void)
520 return kmem_cache_alloc(iommu_devinfo_cache
, GFP_ATOMIC
);
523 static inline void free_devinfo_mem(void *vaddr
)
525 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
528 static inline int domain_type_is_vm(struct dmar_domain
*domain
)
530 return domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
;
533 static inline int domain_type_is_vm_or_si(struct dmar_domain
*domain
)
535 return domain
->flags
& (DOMAIN_FLAG_VIRTUAL_MACHINE
|
536 DOMAIN_FLAG_STATIC_IDENTITY
);
539 static inline int domain_pfn_supported(struct dmar_domain
*domain
,
542 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
544 return !(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
547 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
552 sagaw
= cap_sagaw(iommu
->cap
);
553 for (agaw
= width_to_agaw(max_gaw
);
555 if (test_bit(agaw
, &sagaw
))
563 * Calculate max SAGAW for each iommu.
565 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
567 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
571 * calculate agaw for each iommu.
572 * "SAGAW" may be different across iommus, use a default agaw, and
573 * get a supported less agaw for iommus that don't support the default agaw.
575 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
577 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
580 /* This functionin only returns single iommu in a domain */
581 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
585 /* si_domain and vm domain should not get here. */
586 BUG_ON(domain_type_is_vm_or_si(domain
));
587 iommu_id
= find_first_bit(domain
->iommu_bmp
, g_num_of_iommus
);
588 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
591 return g_iommus
[iommu_id
];
594 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
596 struct dmar_drhd_unit
*drhd
;
597 struct intel_iommu
*iommu
;
600 domain
->iommu_coherency
= 1;
602 for_each_set_bit(i
, domain
->iommu_bmp
, g_num_of_iommus
) {
604 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
605 domain
->iommu_coherency
= 0;
612 /* No hardware attached; use lowest common denominator */
614 for_each_active_iommu(iommu
, drhd
) {
615 if (!ecap_coherent(iommu
->ecap
)) {
616 domain
->iommu_coherency
= 0;
623 static int domain_update_iommu_snooping(struct intel_iommu
*skip
)
625 struct dmar_drhd_unit
*drhd
;
626 struct intel_iommu
*iommu
;
630 for_each_active_iommu(iommu
, drhd
) {
632 if (!ecap_sc_support(iommu
->ecap
)) {
643 static int domain_update_iommu_superpage(struct intel_iommu
*skip
)
645 struct dmar_drhd_unit
*drhd
;
646 struct intel_iommu
*iommu
;
649 if (!intel_iommu_superpage
) {
653 /* set iommu_superpage to the smallest common denominator */
655 for_each_active_iommu(iommu
, drhd
) {
657 mask
&= cap_super_page_val(iommu
->cap
);
667 /* Some capabilities may be different across iommus */
668 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
670 domain_update_iommu_coherency(domain
);
671 domain
->iommu_snooping
= domain_update_iommu_snooping(NULL
);
672 domain
->iommu_superpage
= domain_update_iommu_superpage(NULL
);
675 static struct intel_iommu
*device_to_iommu(struct device
*dev
, u8
*bus
, u8
*devfn
)
677 struct dmar_drhd_unit
*drhd
= NULL
;
678 struct intel_iommu
*iommu
;
680 struct pci_dev
*ptmp
, *pdev
= NULL
;
684 if (dev_is_pci(dev
)) {
685 pdev
= to_pci_dev(dev
);
686 segment
= pci_domain_nr(pdev
->bus
);
687 } else if (ACPI_COMPANION(dev
))
688 dev
= &ACPI_COMPANION(dev
)->dev
;
691 for_each_active_iommu(iommu
, drhd
) {
692 if (pdev
&& segment
!= drhd
->segment
)
695 for_each_active_dev_scope(drhd
->devices
,
696 drhd
->devices_cnt
, i
, tmp
) {
698 *bus
= drhd
->devices
[i
].bus
;
699 *devfn
= drhd
->devices
[i
].devfn
;
703 if (!pdev
|| !dev_is_pci(tmp
))
706 ptmp
= to_pci_dev(tmp
);
707 if (ptmp
->subordinate
&&
708 ptmp
->subordinate
->number
<= pdev
->bus
->number
&&
709 ptmp
->subordinate
->busn_res
.end
>= pdev
->bus
->number
)
713 if (pdev
&& drhd
->include_all
) {
715 *bus
= pdev
->bus
->number
;
716 *devfn
= pdev
->devfn
;
727 static void domain_flush_cache(struct dmar_domain
*domain
,
728 void *addr
, int size
)
730 if (!domain
->iommu_coherency
)
731 clflush_cache_range(addr
, size
);
734 /* Gets context entry for a given bus and devfn */
735 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
738 struct root_entry
*root
;
739 struct context_entry
*context
;
740 unsigned long phy_addr
;
743 spin_lock_irqsave(&iommu
->lock
, flags
);
744 root
= &iommu
->root_entry
[bus
];
745 context
= get_context_addr_from_root(root
);
747 context
= (struct context_entry
*)
748 alloc_pgtable_page(iommu
->node
);
750 spin_unlock_irqrestore(&iommu
->lock
, flags
);
753 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
754 phy_addr
= virt_to_phys((void *)context
);
755 set_root_value(root
, phy_addr
);
756 set_root_present(root
);
757 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
759 spin_unlock_irqrestore(&iommu
->lock
, flags
);
760 return &context
[devfn
];
763 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
765 struct root_entry
*root
;
766 struct context_entry
*context
;
770 spin_lock_irqsave(&iommu
->lock
, flags
);
771 root
= &iommu
->root_entry
[bus
];
772 context
= get_context_addr_from_root(root
);
777 ret
= context_present(&context
[devfn
]);
779 spin_unlock_irqrestore(&iommu
->lock
, flags
);
783 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
785 struct root_entry
*root
;
786 struct context_entry
*context
;
789 spin_lock_irqsave(&iommu
->lock
, flags
);
790 root
= &iommu
->root_entry
[bus
];
791 context
= get_context_addr_from_root(root
);
793 context_clear_entry(&context
[devfn
]);
794 __iommu_flush_cache(iommu
, &context
[devfn
], \
797 spin_unlock_irqrestore(&iommu
->lock
, flags
);
800 static void free_context_table(struct intel_iommu
*iommu
)
802 struct root_entry
*root
;
805 struct context_entry
*context
;
807 spin_lock_irqsave(&iommu
->lock
, flags
);
808 if (!iommu
->root_entry
) {
811 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
812 root
= &iommu
->root_entry
[i
];
813 context
= get_context_addr_from_root(root
);
815 free_pgtable_page(context
);
817 free_pgtable_page(iommu
->root_entry
);
818 iommu
->root_entry
= NULL
;
820 spin_unlock_irqrestore(&iommu
->lock
, flags
);
823 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
824 unsigned long pfn
, int *target_level
)
826 struct dma_pte
*parent
, *pte
= NULL
;
827 int level
= agaw_to_level(domain
->agaw
);
830 BUG_ON(!domain
->pgd
);
832 if (!domain_pfn_supported(domain
, pfn
))
833 /* Address beyond IOMMU's addressing capabilities. */
836 parent
= domain
->pgd
;
841 offset
= pfn_level_offset(pfn
, level
);
842 pte
= &parent
[offset
];
843 if (!*target_level
&& (dma_pte_superpage(pte
) || !dma_pte_present(pte
)))
845 if (level
== *target_level
)
848 if (!dma_pte_present(pte
)) {
851 tmp_page
= alloc_pgtable_page(domain
->nid
);
856 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
857 pteval
= ((uint64_t)virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
858 if (cmpxchg64(&pte
->val
, 0ULL, pteval
))
859 /* Someone else set it while we were thinking; use theirs. */
860 free_pgtable_page(tmp_page
);
862 domain_flush_cache(domain
, pte
, sizeof(*pte
));
867 parent
= phys_to_virt(dma_pte_addr(pte
));
872 *target_level
= level
;
878 /* return address's pte at specific level */
879 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
881 int level
, int *large_page
)
883 struct dma_pte
*parent
, *pte
= NULL
;
884 int total
= agaw_to_level(domain
->agaw
);
887 parent
= domain
->pgd
;
888 while (level
<= total
) {
889 offset
= pfn_level_offset(pfn
, total
);
890 pte
= &parent
[offset
];
894 if (!dma_pte_present(pte
)) {
899 if (dma_pte_superpage(pte
)) {
904 parent
= phys_to_virt(dma_pte_addr(pte
));
910 /* clear last level pte, a tlb flush should be followed */
911 static void dma_pte_clear_range(struct dmar_domain
*domain
,
912 unsigned long start_pfn
,
913 unsigned long last_pfn
)
915 unsigned int large_page
= 1;
916 struct dma_pte
*first_pte
, *pte
;
918 BUG_ON(!domain_pfn_supported(domain
, start_pfn
));
919 BUG_ON(!domain_pfn_supported(domain
, last_pfn
));
920 BUG_ON(start_pfn
> last_pfn
);
922 /* we don't need lock here; nobody else touches the iova range */
925 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1, &large_page
);
927 start_pfn
= align_to_level(start_pfn
+ 1, large_page
+ 1);
932 start_pfn
+= lvl_to_nr_pages(large_page
);
934 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
936 domain_flush_cache(domain
, first_pte
,
937 (void *)pte
- (void *)first_pte
);
939 } while (start_pfn
&& start_pfn
<= last_pfn
);
942 static void dma_pte_free_level(struct dmar_domain
*domain
, int level
,
943 struct dma_pte
*pte
, unsigned long pfn
,
944 unsigned long start_pfn
, unsigned long last_pfn
)
946 pfn
= max(start_pfn
, pfn
);
947 pte
= &pte
[pfn_level_offset(pfn
, level
)];
950 unsigned long level_pfn
;
951 struct dma_pte
*level_pte
;
953 if (!dma_pte_present(pte
) || dma_pte_superpage(pte
))
956 level_pfn
= pfn
& level_mask(level
- 1);
957 level_pte
= phys_to_virt(dma_pte_addr(pte
));
960 dma_pte_free_level(domain
, level
- 1, level_pte
,
961 level_pfn
, start_pfn
, last_pfn
);
963 /* If range covers entire pagetable, free it */
964 if (!(start_pfn
> level_pfn
||
965 last_pfn
< level_pfn
+ level_size(level
) - 1)) {
967 domain_flush_cache(domain
, pte
, sizeof(*pte
));
968 free_pgtable_page(level_pte
);
971 pfn
+= level_size(level
);
972 } while (!first_pte_in_page(++pte
) && pfn
<= last_pfn
);
975 /* free page table pages. last level pte should already be cleared */
976 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
977 unsigned long start_pfn
,
978 unsigned long last_pfn
)
980 BUG_ON(!domain_pfn_supported(domain
, start_pfn
));
981 BUG_ON(!domain_pfn_supported(domain
, last_pfn
));
982 BUG_ON(start_pfn
> last_pfn
);
984 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
986 /* We don't need lock here; nobody else touches the iova range */
987 dma_pte_free_level(domain
, agaw_to_level(domain
->agaw
),
988 domain
->pgd
, 0, start_pfn
, last_pfn
);
991 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
992 free_pgtable_page(domain
->pgd
);
997 /* When a page at a given level is being unlinked from its parent, we don't
998 need to *modify* it at all. All we need to do is make a list of all the
999 pages which can be freed just as soon as we've flushed the IOTLB and we
1000 know the hardware page-walk will no longer touch them.
1001 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1003 static struct page
*dma_pte_list_pagetables(struct dmar_domain
*domain
,
1004 int level
, struct dma_pte
*pte
,
1005 struct page
*freelist
)
1009 pg
= pfn_to_page(dma_pte_addr(pte
) >> PAGE_SHIFT
);
1010 pg
->freelist
= freelist
;
1016 pte
= page_address(pg
);
1018 if (dma_pte_present(pte
) && !dma_pte_superpage(pte
))
1019 freelist
= dma_pte_list_pagetables(domain
, level
- 1,
1022 } while (!first_pte_in_page(pte
));
1027 static struct page
*dma_pte_clear_level(struct dmar_domain
*domain
, int level
,
1028 struct dma_pte
*pte
, unsigned long pfn
,
1029 unsigned long start_pfn
,
1030 unsigned long last_pfn
,
1031 struct page
*freelist
)
1033 struct dma_pte
*first_pte
= NULL
, *last_pte
= NULL
;
1035 pfn
= max(start_pfn
, pfn
);
1036 pte
= &pte
[pfn_level_offset(pfn
, level
)];
1039 unsigned long level_pfn
;
1041 if (!dma_pte_present(pte
))
1044 level_pfn
= pfn
& level_mask(level
);
1046 /* If range covers entire pagetable, free it */
1047 if (start_pfn
<= level_pfn
&&
1048 last_pfn
>= level_pfn
+ level_size(level
) - 1) {
1049 /* These suborbinate page tables are going away entirely. Don't
1050 bother to clear them; we're just going to *free* them. */
1051 if (level
> 1 && !dma_pte_superpage(pte
))
1052 freelist
= dma_pte_list_pagetables(domain
, level
- 1, pte
, freelist
);
1058 } else if (level
> 1) {
1059 /* Recurse down into a level that isn't *entirely* obsolete */
1060 freelist
= dma_pte_clear_level(domain
, level
- 1,
1061 phys_to_virt(dma_pte_addr(pte
)),
1062 level_pfn
, start_pfn
, last_pfn
,
1066 pfn
+= level_size(level
);
1067 } while (!first_pte_in_page(++pte
) && pfn
<= last_pfn
);
1070 domain_flush_cache(domain
, first_pte
,
1071 (void *)++last_pte
- (void *)first_pte
);
1076 /* We can't just free the pages because the IOMMU may still be walking
1077 the page tables, and may have cached the intermediate levels. The
1078 pages can only be freed after the IOTLB flush has been done. */
1079 struct page
*domain_unmap(struct dmar_domain
*domain
,
1080 unsigned long start_pfn
,
1081 unsigned long last_pfn
)
1083 struct page
*freelist
= NULL
;
1085 BUG_ON(!domain_pfn_supported(domain
, start_pfn
));
1086 BUG_ON(!domain_pfn_supported(domain
, last_pfn
));
1087 BUG_ON(start_pfn
> last_pfn
);
1089 /* we don't need lock here; nobody else touches the iova range */
1090 freelist
= dma_pte_clear_level(domain
, agaw_to_level(domain
->agaw
),
1091 domain
->pgd
, 0, start_pfn
, last_pfn
, NULL
);
1094 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
1095 struct page
*pgd_page
= virt_to_page(domain
->pgd
);
1096 pgd_page
->freelist
= freelist
;
1097 freelist
= pgd_page
;
1105 void dma_free_pagelist(struct page
*freelist
)
1109 while ((pg
= freelist
)) {
1110 freelist
= pg
->freelist
;
1111 free_pgtable_page(page_address(pg
));
1115 /* iommu handling */
1116 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
1118 struct root_entry
*root
;
1119 unsigned long flags
;
1121 root
= (struct root_entry
*)alloc_pgtable_page(iommu
->node
);
1123 pr_err("IOMMU: allocating root entry for %s failed\n",
1128 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
1130 spin_lock_irqsave(&iommu
->lock
, flags
);
1131 iommu
->root_entry
= root
;
1132 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1137 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
1143 addr
= iommu
->root_entry
;
1145 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1146 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
1148 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
1150 /* Make sure hardware complete it */
1151 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1152 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
1154 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1157 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
1162 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
1165 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1166 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
1168 /* Make sure hardware complete it */
1169 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1170 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
1172 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1175 /* return value determine if we need a write buffer flush */
1176 static void __iommu_flush_context(struct intel_iommu
*iommu
,
1177 u16 did
, u16 source_id
, u8 function_mask
,
1184 case DMA_CCMD_GLOBAL_INVL
:
1185 val
= DMA_CCMD_GLOBAL_INVL
;
1187 case DMA_CCMD_DOMAIN_INVL
:
1188 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
1190 case DMA_CCMD_DEVICE_INVL
:
1191 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
1192 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
1197 val
|= DMA_CCMD_ICC
;
1199 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1200 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
1202 /* Make sure hardware complete it */
1203 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
1204 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
1206 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1209 /* return value determine if we need a write buffer flush */
1210 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
1211 u64 addr
, unsigned int size_order
, u64 type
)
1213 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
1214 u64 val
= 0, val_iva
= 0;
1218 case DMA_TLB_GLOBAL_FLUSH
:
1219 /* global flush doesn't need set IVA_REG */
1220 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
1222 case DMA_TLB_DSI_FLUSH
:
1223 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1225 case DMA_TLB_PSI_FLUSH
:
1226 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1227 /* IH bit is passed in as part of address */
1228 val_iva
= size_order
| addr
;
1233 /* Note: set drain read/write */
1236 * This is probably to be super secure.. Looks like we can
1237 * ignore it without any impact.
1239 if (cap_read_drain(iommu
->cap
))
1240 val
|= DMA_TLB_READ_DRAIN
;
1242 if (cap_write_drain(iommu
->cap
))
1243 val
|= DMA_TLB_WRITE_DRAIN
;
1245 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1246 /* Note: Only uses first TLB reg currently */
1248 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
1249 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
1251 /* Make sure hardware complete it */
1252 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
1253 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
1255 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1257 /* check IOTLB invalidation granularity */
1258 if (DMA_TLB_IAIG(val
) == 0)
1259 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
1260 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
1261 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1262 (unsigned long long)DMA_TLB_IIRG(type
),
1263 (unsigned long long)DMA_TLB_IAIG(val
));
1266 static struct device_domain_info
*
1267 iommu_support_dev_iotlb (struct dmar_domain
*domain
, struct intel_iommu
*iommu
,
1271 unsigned long flags
;
1272 struct device_domain_info
*info
;
1273 struct pci_dev
*pdev
;
1275 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1281 spin_lock_irqsave(&device_domain_lock
, flags
);
1282 list_for_each_entry(info
, &domain
->devices
, link
)
1283 if (info
->iommu
== iommu
&& info
->bus
== bus
&&
1284 info
->devfn
== devfn
) {
1288 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1290 if (!found
|| !info
->dev
|| !dev_is_pci(info
->dev
))
1293 pdev
= to_pci_dev(info
->dev
);
1295 if (!pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
))
1298 if (!dmar_find_matched_atsr_unit(pdev
))
1304 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1306 if (!info
|| !dev_is_pci(info
->dev
))
1309 pci_enable_ats(to_pci_dev(info
->dev
), VTD_PAGE_SHIFT
);
1312 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1314 if (!info
->dev
|| !dev_is_pci(info
->dev
) ||
1315 !pci_ats_enabled(to_pci_dev(info
->dev
)))
1318 pci_disable_ats(to_pci_dev(info
->dev
));
1321 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1322 u64 addr
, unsigned mask
)
1325 unsigned long flags
;
1326 struct device_domain_info
*info
;
1328 spin_lock_irqsave(&device_domain_lock
, flags
);
1329 list_for_each_entry(info
, &domain
->devices
, link
) {
1330 struct pci_dev
*pdev
;
1331 if (!info
->dev
|| !dev_is_pci(info
->dev
))
1334 pdev
= to_pci_dev(info
->dev
);
1335 if (!pci_ats_enabled(pdev
))
1338 sid
= info
->bus
<< 8 | info
->devfn
;
1339 qdep
= pci_ats_queue_depth(pdev
);
1340 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1342 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1345 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1346 unsigned long pfn
, unsigned int pages
, int ih
, int map
)
1348 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1349 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1356 * Fallback to domain selective flush if no PSI support or the size is
1358 * PSI requires page size to be 2 ^ x, and the base address is naturally
1359 * aligned to the size
1361 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1362 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1365 iommu
->flush
.flush_iotlb(iommu
, did
, addr
| ih
, mask
,
1369 * In caching mode, changes of pages from non-present to present require
1370 * flush. However, device IOTLB doesn't need to be flushed in this case.
1372 if (!cap_caching_mode(iommu
->cap
) || !map
)
1373 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1376 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1379 unsigned long flags
;
1381 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1382 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1383 pmen
&= ~DMA_PMEN_EPM
;
1384 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1386 /* wait for the protected region status bit to clear */
1387 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1388 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1390 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1393 static void iommu_enable_translation(struct intel_iommu
*iommu
)
1396 unsigned long flags
;
1398 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1399 iommu
->gcmd
|= DMA_GCMD_TE
;
1400 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1402 /* Make sure hardware complete it */
1403 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1404 readl
, (sts
& DMA_GSTS_TES
), sts
);
1406 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1409 static void iommu_disable_translation(struct intel_iommu
*iommu
)
1414 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1415 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1416 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1418 /* Make sure hardware complete it */
1419 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1420 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1422 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1426 static int iommu_init_domains(struct intel_iommu
*iommu
)
1428 unsigned long ndomains
;
1429 unsigned long nlongs
;
1431 ndomains
= cap_ndoms(iommu
->cap
);
1432 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1433 iommu
->seq_id
, ndomains
);
1434 nlongs
= BITS_TO_LONGS(ndomains
);
1436 spin_lock_init(&iommu
->lock
);
1438 /* TBD: there might be 64K domains,
1439 * consider other allocation for future chip
1441 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1442 if (!iommu
->domain_ids
) {
1443 pr_err("IOMMU%d: allocating domain id array failed\n",
1447 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1449 if (!iommu
->domains
) {
1450 pr_err("IOMMU%d: allocating domain array failed\n",
1452 kfree(iommu
->domain_ids
);
1453 iommu
->domain_ids
= NULL
;
1458 * if Caching mode is set, then invalid translations are tagged
1459 * with domainid 0. Hence we need to pre-allocate it.
1461 if (cap_caching_mode(iommu
->cap
))
1462 set_bit(0, iommu
->domain_ids
);
1466 static void disable_dmar_iommu(struct intel_iommu
*iommu
)
1468 struct dmar_domain
*domain
;
1471 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1472 for_each_set_bit(i
, iommu
->domain_ids
, cap_ndoms(iommu
->cap
)) {
1474 * Domain id 0 is reserved for invalid translation
1475 * if hardware supports caching mode.
1477 if (cap_caching_mode(iommu
->cap
) && i
== 0)
1480 domain
= iommu
->domains
[i
];
1481 clear_bit(i
, iommu
->domain_ids
);
1482 if (domain_detach_iommu(domain
, iommu
) == 0 &&
1483 !domain_type_is_vm(domain
))
1484 domain_exit(domain
);
1488 if (iommu
->gcmd
& DMA_GCMD_TE
)
1489 iommu_disable_translation(iommu
);
1492 static void free_dmar_iommu(struct intel_iommu
*iommu
)
1494 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1495 kfree(iommu
->domains
);
1496 kfree(iommu
->domain_ids
);
1497 iommu
->domains
= NULL
;
1498 iommu
->domain_ids
= NULL
;
1501 g_iommus
[iommu
->seq_id
] = NULL
;
1503 /* free context mapping */
1504 free_context_table(iommu
);
1507 static struct dmar_domain
*alloc_domain(int flags
)
1509 /* domain id for virtual machine, it won't be set in context */
1510 static atomic_t vm_domid
= ATOMIC_INIT(0);
1511 struct dmar_domain
*domain
;
1513 domain
= alloc_domain_mem();
1517 memset(domain
, 0, sizeof(*domain
));
1519 domain
->flags
= flags
;
1520 spin_lock_init(&domain
->iommu_lock
);
1521 INIT_LIST_HEAD(&domain
->devices
);
1522 if (flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1523 domain
->id
= atomic_inc_return(&vm_domid
);
1528 static int __iommu_attach_domain(struct dmar_domain
*domain
,
1529 struct intel_iommu
*iommu
)
1532 unsigned long ndomains
;
1534 ndomains
= cap_ndoms(iommu
->cap
);
1535 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1536 if (num
< ndomains
) {
1537 set_bit(num
, iommu
->domain_ids
);
1538 iommu
->domains
[num
] = domain
;
1546 static int iommu_attach_domain(struct dmar_domain
*domain
,
1547 struct intel_iommu
*iommu
)
1550 unsigned long flags
;
1552 spin_lock_irqsave(&iommu
->lock
, flags
);
1553 num
= __iommu_attach_domain(domain
, iommu
);
1554 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1556 pr_err("IOMMU: no free domain ids\n");
1561 static int iommu_attach_vm_domain(struct dmar_domain
*domain
,
1562 struct intel_iommu
*iommu
)
1565 unsigned long ndomains
;
1567 ndomains
= cap_ndoms(iommu
->cap
);
1568 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
)
1569 if (iommu
->domains
[num
] == domain
)
1572 return __iommu_attach_domain(domain
, iommu
);
1575 static void iommu_detach_domain(struct dmar_domain
*domain
,
1576 struct intel_iommu
*iommu
)
1578 unsigned long flags
;
1581 spin_lock_irqsave(&iommu
->lock
, flags
);
1582 if (domain_type_is_vm_or_si(domain
)) {
1583 ndomains
= cap_ndoms(iommu
->cap
);
1584 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
1585 if (iommu
->domains
[num
] == domain
) {
1586 clear_bit(num
, iommu
->domain_ids
);
1587 iommu
->domains
[num
] = NULL
;
1592 clear_bit(domain
->id
, iommu
->domain_ids
);
1593 iommu
->domains
[domain
->id
] = NULL
;
1595 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1598 static void domain_attach_iommu(struct dmar_domain
*domain
,
1599 struct intel_iommu
*iommu
)
1601 unsigned long flags
;
1603 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1604 if (!test_and_set_bit(iommu
->seq_id
, domain
->iommu_bmp
)) {
1605 domain
->iommu_count
++;
1606 if (domain
->iommu_count
== 1)
1607 domain
->nid
= iommu
->node
;
1608 domain_update_iommu_cap(domain
);
1610 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1613 static int domain_detach_iommu(struct dmar_domain
*domain
,
1614 struct intel_iommu
*iommu
)
1616 unsigned long flags
;
1617 int count
= INT_MAX
;
1619 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1620 if (test_and_clear_bit(iommu
->seq_id
, domain
->iommu_bmp
)) {
1621 count
= --domain
->iommu_count
;
1622 domain_update_iommu_cap(domain
);
1624 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1629 static struct iova_domain reserved_iova_list
;
1630 static struct lock_class_key reserved_rbtree_key
;
1632 static int dmar_init_reserved_ranges(void)
1634 struct pci_dev
*pdev
= NULL
;
1638 init_iova_domain(&reserved_iova_list
, VTD_PAGE_SIZE
, IOVA_START_PFN
,
1641 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1642 &reserved_rbtree_key
);
1644 /* IOAPIC ranges shouldn't be accessed by DMA */
1645 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1646 IOVA_PFN(IOAPIC_RANGE_END
));
1648 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1652 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1653 for_each_pci_dev(pdev
) {
1656 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1657 r
= &pdev
->resource
[i
];
1658 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1660 iova
= reserve_iova(&reserved_iova_list
,
1664 printk(KERN_ERR
"Reserve iova failed\n");
1672 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1674 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1677 static inline int guestwidth_to_adjustwidth(int gaw
)
1680 int r
= (gaw
- 12) % 9;
1691 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1693 struct intel_iommu
*iommu
;
1694 int adjust_width
, agaw
;
1695 unsigned long sagaw
;
1697 init_iova_domain(&domain
->iovad
, VTD_PAGE_SIZE
, IOVA_START_PFN
,
1699 domain_reserve_special_ranges(domain
);
1701 /* calculate AGAW */
1702 iommu
= domain_get_iommu(domain
);
1703 if (guest_width
> cap_mgaw(iommu
->cap
))
1704 guest_width
= cap_mgaw(iommu
->cap
);
1705 domain
->gaw
= guest_width
;
1706 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1707 agaw
= width_to_agaw(adjust_width
);
1708 sagaw
= cap_sagaw(iommu
->cap
);
1709 if (!test_bit(agaw
, &sagaw
)) {
1710 /* hardware doesn't support it, choose a bigger one */
1711 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1712 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1716 domain
->agaw
= agaw
;
1718 if (ecap_coherent(iommu
->ecap
))
1719 domain
->iommu_coherency
= 1;
1721 domain
->iommu_coherency
= 0;
1723 if (ecap_sc_support(iommu
->ecap
))
1724 domain
->iommu_snooping
= 1;
1726 domain
->iommu_snooping
= 0;
1728 if (intel_iommu_superpage
)
1729 domain
->iommu_superpage
= fls(cap_super_page_val(iommu
->cap
));
1731 domain
->iommu_superpage
= 0;
1733 domain
->nid
= iommu
->node
;
1735 /* always allocate the top pgd */
1736 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
1739 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1743 static void domain_exit(struct dmar_domain
*domain
)
1745 struct dmar_drhd_unit
*drhd
;
1746 struct intel_iommu
*iommu
;
1747 struct page
*freelist
= NULL
;
1749 /* Domain 0 is reserved, so dont process it */
1753 /* Flush any lazy unmaps that may reference this domain */
1754 if (!intel_iommu_strict
)
1755 flush_unmaps_timeout(0);
1757 /* remove associated devices */
1758 domain_remove_dev_info(domain
);
1761 put_iova_domain(&domain
->iovad
);
1763 freelist
= domain_unmap(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1765 /* clear attached or cached domains */
1767 for_each_active_iommu(iommu
, drhd
)
1768 iommu_detach_domain(domain
, iommu
);
1771 dma_free_pagelist(freelist
);
1773 free_domain_mem(domain
);
1776 static int domain_context_mapping_one(struct dmar_domain
*domain
,
1777 struct intel_iommu
*iommu
,
1778 u8 bus
, u8 devfn
, int translation
)
1780 struct context_entry
*context
;
1781 unsigned long flags
;
1782 struct dma_pte
*pgd
;
1785 struct device_domain_info
*info
= NULL
;
1787 pr_debug("Set context mapping for %02x:%02x.%d\n",
1788 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1790 BUG_ON(!domain
->pgd
);
1791 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1792 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1794 context
= device_to_context_entry(iommu
, bus
, devfn
);
1797 spin_lock_irqsave(&iommu
->lock
, flags
);
1798 if (context_present(context
)) {
1799 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1806 if (domain_type_is_vm_or_si(domain
)) {
1807 if (domain_type_is_vm(domain
)) {
1808 id
= iommu_attach_vm_domain(domain
, iommu
);
1810 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1811 pr_err("IOMMU: no free domain ids\n");
1816 /* Skip top levels of page tables for
1817 * iommu which has less agaw than default.
1818 * Unnecessary for PT mode.
1820 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1821 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1822 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1823 if (!dma_pte_present(pgd
)) {
1824 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1831 context_set_domain_id(context
, id
);
1833 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1834 info
= iommu_support_dev_iotlb(domain
, iommu
, bus
, devfn
);
1835 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1836 CONTEXT_TT_MULTI_LEVEL
;
1839 * In pass through mode, AW must be programmed to indicate the largest
1840 * AGAW value supported by hardware. And ASR is ignored by hardware.
1842 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1843 context_set_address_width(context
, iommu
->msagaw
);
1845 context_set_address_root(context
, virt_to_phys(pgd
));
1846 context_set_address_width(context
, iommu
->agaw
);
1849 context_set_translation_type(context
, translation
);
1850 context_set_fault_enable(context
);
1851 context_set_present(context
);
1852 domain_flush_cache(domain
, context
, sizeof(*context
));
1855 * It's a non-present to present mapping. If hardware doesn't cache
1856 * non-present entry we only need to flush the write-buffer. If the
1857 * _does_ cache non-present entries, then it does so in the special
1858 * domain #0, which we have to flush:
1860 if (cap_caching_mode(iommu
->cap
)) {
1861 iommu
->flush
.flush_context(iommu
, 0,
1862 (((u16
)bus
) << 8) | devfn
,
1863 DMA_CCMD_MASK_NOBIT
,
1864 DMA_CCMD_DEVICE_INVL
);
1865 iommu
->flush
.flush_iotlb(iommu
, id
, 0, 0, DMA_TLB_DSI_FLUSH
);
1867 iommu_flush_write_buffer(iommu
);
1869 iommu_enable_dev_iotlb(info
);
1870 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1872 domain_attach_iommu(domain
, iommu
);
1877 struct domain_context_mapping_data
{
1878 struct dmar_domain
*domain
;
1879 struct intel_iommu
*iommu
;
1883 static int domain_context_mapping_cb(struct pci_dev
*pdev
,
1884 u16 alias
, void *opaque
)
1886 struct domain_context_mapping_data
*data
= opaque
;
1888 return domain_context_mapping_one(data
->domain
, data
->iommu
,
1889 PCI_BUS_NUM(alias
), alias
& 0xff,
1894 domain_context_mapping(struct dmar_domain
*domain
, struct device
*dev
,
1897 struct intel_iommu
*iommu
;
1899 struct domain_context_mapping_data data
;
1901 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
1905 if (!dev_is_pci(dev
))
1906 return domain_context_mapping_one(domain
, iommu
, bus
, devfn
,
1909 data
.domain
= domain
;
1911 data
.translation
= translation
;
1913 return pci_for_each_dma_alias(to_pci_dev(dev
),
1914 &domain_context_mapping_cb
, &data
);
1917 static int domain_context_mapped_cb(struct pci_dev
*pdev
,
1918 u16 alias
, void *opaque
)
1920 struct intel_iommu
*iommu
= opaque
;
1922 return !device_context_mapped(iommu
, PCI_BUS_NUM(alias
), alias
& 0xff);
1925 static int domain_context_mapped(struct device
*dev
)
1927 struct intel_iommu
*iommu
;
1930 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
1934 if (!dev_is_pci(dev
))
1935 return device_context_mapped(iommu
, bus
, devfn
);
1937 return !pci_for_each_dma_alias(to_pci_dev(dev
),
1938 domain_context_mapped_cb
, iommu
);
1941 /* Returns a number of VTD pages, but aligned to MM page size */
1942 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
1945 host_addr
&= ~PAGE_MASK
;
1946 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
1949 /* Return largest possible superpage level for a given mapping */
1950 static inline int hardware_largepage_caps(struct dmar_domain
*domain
,
1951 unsigned long iov_pfn
,
1952 unsigned long phy_pfn
,
1953 unsigned long pages
)
1955 int support
, level
= 1;
1956 unsigned long pfnmerge
;
1958 support
= domain
->iommu_superpage
;
1960 /* To use a large page, the virtual *and* physical addresses
1961 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1962 of them will mean we have to use smaller pages. So just
1963 merge them and check both at once. */
1964 pfnmerge
= iov_pfn
| phy_pfn
;
1966 while (support
&& !(pfnmerge
& ~VTD_STRIDE_MASK
)) {
1967 pages
>>= VTD_STRIDE_SHIFT
;
1970 pfnmerge
>>= VTD_STRIDE_SHIFT
;
1977 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1978 struct scatterlist
*sg
, unsigned long phys_pfn
,
1979 unsigned long nr_pages
, int prot
)
1981 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1982 phys_addr_t
uninitialized_var(pteval
);
1983 unsigned long sg_res
= 0;
1984 unsigned int largepage_lvl
= 0;
1985 unsigned long lvl_pages
= 0;
1987 BUG_ON(!domain_pfn_supported(domain
, iov_pfn
+ nr_pages
- 1));
1989 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1992 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1996 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1999 while (nr_pages
> 0) {
2003 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
2004 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
2005 sg
->dma_length
= sg
->length
;
2006 pteval
= page_to_phys(sg_page(sg
)) | prot
;
2007 phys_pfn
= pteval
>> VTD_PAGE_SHIFT
;
2011 largepage_lvl
= hardware_largepage_caps(domain
, iov_pfn
, phys_pfn
, sg_res
);
2013 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
, &largepage_lvl
);
2016 /* It is large page*/
2017 if (largepage_lvl
> 1) {
2018 pteval
|= DMA_PTE_LARGE_PAGE
;
2019 lvl_pages
= lvl_to_nr_pages(largepage_lvl
);
2021 * Ensure that old small page tables are
2022 * removed to make room for superpage,
2025 dma_pte_free_pagetable(domain
, iov_pfn
,
2026 iov_pfn
+ lvl_pages
- 1);
2028 pteval
&= ~(uint64_t)DMA_PTE_LARGE_PAGE
;
2032 /* We don't need lock here, nobody else
2033 * touches the iova range
2035 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
2037 static int dumps
= 5;
2038 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2039 iov_pfn
, tmp
, (unsigned long long)pteval
);
2042 debug_dma_dump_mappings(NULL
);
2047 lvl_pages
= lvl_to_nr_pages(largepage_lvl
);
2049 BUG_ON(nr_pages
< lvl_pages
);
2050 BUG_ON(sg_res
< lvl_pages
);
2052 nr_pages
-= lvl_pages
;
2053 iov_pfn
+= lvl_pages
;
2054 phys_pfn
+= lvl_pages
;
2055 pteval
+= lvl_pages
* VTD_PAGE_SIZE
;
2056 sg_res
-= lvl_pages
;
2058 /* If the next PTE would be the first in a new page, then we
2059 need to flush the cache on the entries we've just written.
2060 And then we'll need to recalculate 'pte', so clear it and
2061 let it get set again in the if (!pte) block above.
2063 If we're done (!nr_pages) we need to flush the cache too.
2065 Also if we've been setting superpages, we may need to
2066 recalculate 'pte' and switch back to smaller pages for the
2067 end of the mapping, if the trailing size is not enough to
2068 use another superpage (i.e. sg_res < lvl_pages). */
2070 if (!nr_pages
|| first_pte_in_page(pte
) ||
2071 (largepage_lvl
> 1 && sg_res
< lvl_pages
)) {
2072 domain_flush_cache(domain
, first_pte
,
2073 (void *)pte
- (void *)first_pte
);
2077 if (!sg_res
&& nr_pages
)
2083 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
2084 struct scatterlist
*sg
, unsigned long nr_pages
,
2087 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
2090 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
2091 unsigned long phys_pfn
, unsigned long nr_pages
,
2094 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
2097 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
2102 clear_context_table(iommu
, bus
, devfn
);
2103 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
2104 DMA_CCMD_GLOBAL_INVL
);
2105 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2108 static inline void unlink_domain_info(struct device_domain_info
*info
)
2110 assert_spin_locked(&device_domain_lock
);
2111 list_del(&info
->link
);
2112 list_del(&info
->global
);
2114 info
->dev
->archdata
.iommu
= NULL
;
2117 static void domain_remove_dev_info(struct dmar_domain
*domain
)
2119 struct device_domain_info
*info
, *tmp
;
2120 unsigned long flags
;
2122 spin_lock_irqsave(&device_domain_lock
, flags
);
2123 list_for_each_entry_safe(info
, tmp
, &domain
->devices
, link
) {
2124 unlink_domain_info(info
);
2125 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2127 iommu_disable_dev_iotlb(info
);
2128 iommu_detach_dev(info
->iommu
, info
->bus
, info
->devfn
);
2130 if (domain_type_is_vm(domain
)) {
2131 iommu_detach_dependent_devices(info
->iommu
, info
->dev
);
2132 domain_detach_iommu(domain
, info
->iommu
);
2135 free_devinfo_mem(info
);
2136 spin_lock_irqsave(&device_domain_lock
, flags
);
2138 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2143 * Note: we use struct device->archdata.iommu stores the info
2145 static struct dmar_domain
*find_domain(struct device
*dev
)
2147 struct device_domain_info
*info
;
2149 /* No lock here, assumes no domain exit in normal case */
2150 info
= dev
->archdata
.iommu
;
2152 return info
->domain
;
2156 static inline struct device_domain_info
*
2157 dmar_search_domain_by_dev_info(int segment
, int bus
, int devfn
)
2159 struct device_domain_info
*info
;
2161 list_for_each_entry(info
, &device_domain_list
, global
)
2162 if (info
->iommu
->segment
== segment
&& info
->bus
== bus
&&
2163 info
->devfn
== devfn
)
2169 static struct dmar_domain
*dmar_insert_dev_info(struct intel_iommu
*iommu
,
2172 struct dmar_domain
*domain
)
2174 struct dmar_domain
*found
= NULL
;
2175 struct device_domain_info
*info
;
2176 unsigned long flags
;
2178 info
= alloc_devinfo_mem();
2183 info
->devfn
= devfn
;
2185 info
->domain
= domain
;
2186 info
->iommu
= iommu
;
2188 spin_lock_irqsave(&device_domain_lock
, flags
);
2190 found
= find_domain(dev
);
2192 struct device_domain_info
*info2
;
2193 info2
= dmar_search_domain_by_dev_info(iommu
->segment
, bus
, devfn
);
2195 found
= info2
->domain
;
2198 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2199 free_devinfo_mem(info
);
2200 /* Caller must free the original domain */
2204 list_add(&info
->link
, &domain
->devices
);
2205 list_add(&info
->global
, &device_domain_list
);
2207 dev
->archdata
.iommu
= info
;
2208 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2213 static int get_last_alias(struct pci_dev
*pdev
, u16 alias
, void *opaque
)
2215 *(u16
*)opaque
= alias
;
2219 /* domain is initialized */
2220 static struct dmar_domain
*get_domain_for_dev(struct device
*dev
, int gaw
)
2222 struct dmar_domain
*domain
, *tmp
;
2223 struct intel_iommu
*iommu
;
2224 struct device_domain_info
*info
;
2226 unsigned long flags
;
2229 domain
= find_domain(dev
);
2233 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2237 if (dev_is_pci(dev
)) {
2238 struct pci_dev
*pdev
= to_pci_dev(dev
);
2240 pci_for_each_dma_alias(pdev
, get_last_alias
, &dma_alias
);
2242 spin_lock_irqsave(&device_domain_lock
, flags
);
2243 info
= dmar_search_domain_by_dev_info(pci_domain_nr(pdev
->bus
),
2244 PCI_BUS_NUM(dma_alias
),
2247 iommu
= info
->iommu
;
2248 domain
= info
->domain
;
2250 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2252 /* DMA alias already has a domain, uses it */
2257 /* Allocate and initialize new domain for the device */
2258 domain
= alloc_domain(0);
2261 domain
->id
= iommu_attach_domain(domain
, iommu
);
2262 if (domain
->id
< 0) {
2263 free_domain_mem(domain
);
2266 domain_attach_iommu(domain
, iommu
);
2267 if (domain_init(domain
, gaw
)) {
2268 domain_exit(domain
);
2272 /* register PCI DMA alias device */
2273 if (dev_is_pci(dev
)) {
2274 tmp
= dmar_insert_dev_info(iommu
, PCI_BUS_NUM(dma_alias
),
2275 dma_alias
& 0xff, NULL
, domain
);
2277 if (!tmp
|| tmp
!= domain
) {
2278 domain_exit(domain
);
2287 tmp
= dmar_insert_dev_info(iommu
, bus
, devfn
, dev
, domain
);
2289 if (!tmp
|| tmp
!= domain
) {
2290 domain_exit(domain
);
2297 static int iommu_identity_mapping
;
2298 #define IDENTMAP_ALL 1
2299 #define IDENTMAP_GFX 2
2300 #define IDENTMAP_AZALIA 4
2302 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
2303 unsigned long long start
,
2304 unsigned long long end
)
2306 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
2307 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
2309 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
2310 dma_to_mm_pfn(last_vpfn
))) {
2311 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
2315 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2316 start
, end
, domain
->id
);
2318 * RMRR range might have overlap with physical memory range,
2321 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
2323 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
2324 last_vpfn
- first_vpfn
+ 1,
2325 DMA_PTE_READ
|DMA_PTE_WRITE
);
2328 static int iommu_prepare_identity_map(struct device
*dev
,
2329 unsigned long long start
,
2330 unsigned long long end
)
2332 struct dmar_domain
*domain
;
2335 domain
= get_domain_for_dev(dev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2339 /* For _hardware_ passthrough, don't bother. But for software
2340 passthrough, we do it anyway -- it may indicate a memory
2341 range which is reserved in E820, so which didn't get set
2342 up to start with in si_domain */
2343 if (domain
== si_domain
&& hw_pass_through
) {
2344 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2345 dev_name(dev
), start
, end
);
2350 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2351 dev_name(dev
), start
, end
);
2354 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2355 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2356 dmi_get_system_info(DMI_BIOS_VENDOR
),
2357 dmi_get_system_info(DMI_BIOS_VERSION
),
2358 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2363 if (end
>> agaw_to_width(domain
->agaw
)) {
2364 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2365 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2366 agaw_to_width(domain
->agaw
),
2367 dmi_get_system_info(DMI_BIOS_VENDOR
),
2368 dmi_get_system_info(DMI_BIOS_VERSION
),
2369 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2374 ret
= iommu_domain_identity_map(domain
, start
, end
);
2378 /* context entry init */
2379 ret
= domain_context_mapping(domain
, dev
, CONTEXT_TT_MULTI_LEVEL
);
2386 domain_exit(domain
);
2390 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
2393 if (dev
->archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2395 return iommu_prepare_identity_map(dev
, rmrr
->base_address
,
2399 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2400 static inline void iommu_prepare_isa(void)
2402 struct pci_dev
*pdev
;
2405 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2409 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2410 ret
= iommu_prepare_identity_map(&pdev
->dev
, 0, 16*1024*1024 - 1);
2413 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2414 "floppy might not work\n");
2419 static inline void iommu_prepare_isa(void)
2423 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2425 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2427 static int __init
si_domain_init(int hw
)
2429 struct dmar_drhd_unit
*drhd
;
2430 struct intel_iommu
*iommu
;
2434 si_domain
= alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY
);
2438 for_each_active_iommu(iommu
, drhd
) {
2439 ret
= iommu_attach_domain(si_domain
, iommu
);
2441 domain_exit(si_domain
);
2444 si_domain
->id
= ret
;
2446 } else if (si_domain
->id
!= ret
) {
2447 domain_exit(si_domain
);
2450 domain_attach_iommu(si_domain
, iommu
);
2453 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2454 domain_exit(si_domain
);
2458 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2464 for_each_online_node(nid
) {
2465 unsigned long start_pfn
, end_pfn
;
2468 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
2469 ret
= iommu_domain_identity_map(si_domain
,
2470 PFN_PHYS(start_pfn
), PFN_PHYS(end_pfn
));
2479 static int identity_mapping(struct device
*dev
)
2481 struct device_domain_info
*info
;
2483 if (likely(!iommu_identity_mapping
))
2486 info
= dev
->archdata
.iommu
;
2487 if (info
&& info
!= DUMMY_DEVICE_DOMAIN_INFO
)
2488 return (info
->domain
== si_domain
);
2493 static int domain_add_dev_info(struct dmar_domain
*domain
,
2494 struct device
*dev
, int translation
)
2496 struct dmar_domain
*ndomain
;
2497 struct intel_iommu
*iommu
;
2501 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2505 ndomain
= dmar_insert_dev_info(iommu
, bus
, devfn
, dev
, domain
);
2506 if (ndomain
!= domain
)
2509 ret
= domain_context_mapping(domain
, dev
, translation
);
2511 domain_remove_one_dev_info(domain
, dev
);
2518 static bool device_has_rmrr(struct device
*dev
)
2520 struct dmar_rmrr_unit
*rmrr
;
2525 for_each_rmrr_units(rmrr
) {
2527 * Return TRUE if this RMRR contains the device that
2530 for_each_active_dev_scope(rmrr
->devices
,
2531 rmrr
->devices_cnt
, i
, tmp
)
2542 * There are a couple cases where we need to restrict the functionality of
2543 * devices associated with RMRRs. The first is when evaluating a device for
2544 * identity mapping because problems exist when devices are moved in and out
2545 * of domains and their respective RMRR information is lost. This means that
2546 * a device with associated RMRRs will never be in a "passthrough" domain.
2547 * The second is use of the device through the IOMMU API. This interface
2548 * expects to have full control of the IOVA space for the device. We cannot
2549 * satisfy both the requirement that RMRR access is maintained and have an
2550 * unencumbered IOVA space. We also have no ability to quiesce the device's
2551 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2552 * We therefore prevent devices associated with an RMRR from participating in
2553 * the IOMMU API, which eliminates them from device assignment.
2555 * In both cases we assume that PCI USB devices with RMRRs have them largely
2556 * for historical reasons and that the RMRR space is not actively used post
2557 * boot. This exclusion may change if vendors begin to abuse it.
2559 static bool device_is_rmrr_locked(struct device
*dev
)
2561 if (!device_has_rmrr(dev
))
2564 if (dev_is_pci(dev
)) {
2565 struct pci_dev
*pdev
= to_pci_dev(dev
);
2567 if ((pdev
->class >> 8) == PCI_CLASS_SERIAL_USB
)
2574 static int iommu_should_identity_map(struct device
*dev
, int startup
)
2577 if (dev_is_pci(dev
)) {
2578 struct pci_dev
*pdev
= to_pci_dev(dev
);
2580 if (device_is_rmrr_locked(dev
))
2583 if ((iommu_identity_mapping
& IDENTMAP_AZALIA
) && IS_AZALIA(pdev
))
2586 if ((iommu_identity_mapping
& IDENTMAP_GFX
) && IS_GFX_DEVICE(pdev
))
2589 if (!(iommu_identity_mapping
& IDENTMAP_ALL
))
2593 * We want to start off with all devices in the 1:1 domain, and
2594 * take them out later if we find they can't access all of memory.
2596 * However, we can't do this for PCI devices behind bridges,
2597 * because all PCI devices behind the same bridge will end up
2598 * with the same source-id on their transactions.
2600 * Practically speaking, we can't change things around for these
2601 * devices at run-time, because we can't be sure there'll be no
2602 * DMA transactions in flight for any of their siblings.
2604 * So PCI devices (unless they're on the root bus) as well as
2605 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2606 * the 1:1 domain, just in _case_ one of their siblings turns out
2607 * not to be able to map all of memory.
2609 if (!pci_is_pcie(pdev
)) {
2610 if (!pci_is_root_bus(pdev
->bus
))
2612 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2614 } else if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_PCI_BRIDGE
)
2617 if (device_has_rmrr(dev
))
2622 * At boot time, we don't yet know if devices will be 64-bit capable.
2623 * Assume that they will — if they turn out not to be, then we can
2624 * take them out of the 1:1 domain later.
2628 * If the device's dma_mask is less than the system's memory
2629 * size then this is not a candidate for identity mapping.
2631 u64 dma_mask
= *dev
->dma_mask
;
2633 if (dev
->coherent_dma_mask
&&
2634 dev
->coherent_dma_mask
< dma_mask
)
2635 dma_mask
= dev
->coherent_dma_mask
;
2637 return dma_mask
>= dma_get_required_mask(dev
);
2643 static int __init
dev_prepare_static_identity_mapping(struct device
*dev
, int hw
)
2647 if (!iommu_should_identity_map(dev
, 1))
2650 ret
= domain_add_dev_info(si_domain
, dev
,
2651 hw
? CONTEXT_TT_PASS_THROUGH
:
2652 CONTEXT_TT_MULTI_LEVEL
);
2654 pr_info("IOMMU: %s identity mapping for device %s\n",
2655 hw
? "hardware" : "software", dev_name(dev
));
2656 else if (ret
== -ENODEV
)
2657 /* device not associated with an iommu */
2664 static int __init
iommu_prepare_static_identity_mapping(int hw
)
2666 struct pci_dev
*pdev
= NULL
;
2667 struct dmar_drhd_unit
*drhd
;
2668 struct intel_iommu
*iommu
;
2673 ret
= si_domain_init(hw
);
2677 for_each_pci_dev(pdev
) {
2678 ret
= dev_prepare_static_identity_mapping(&pdev
->dev
, hw
);
2683 for_each_active_iommu(iommu
, drhd
)
2684 for_each_active_dev_scope(drhd
->devices
, drhd
->devices_cnt
, i
, dev
) {
2685 struct acpi_device_physical_node
*pn
;
2686 struct acpi_device
*adev
;
2688 if (dev
->bus
!= &acpi_bus_type
)
2691 adev
= to_acpi_device(dev
);
2692 mutex_lock(&adev
->physical_node_lock
);
2693 list_for_each_entry(pn
, &adev
->physical_node_list
, node
) {
2694 ret
= dev_prepare_static_identity_mapping(pn
->dev
, hw
);
2698 mutex_unlock(&adev
->physical_node_lock
);
2706 static void intel_iommu_init_qi(struct intel_iommu
*iommu
)
2709 * Start from the sane iommu hardware state.
2710 * If the queued invalidation is already initialized by us
2711 * (for example, while enabling interrupt-remapping) then
2712 * we got the things already rolling from a sane state.
2716 * Clear any previous faults.
2718 dmar_fault(-1, iommu
);
2720 * Disable queued invalidation if supported and already enabled
2721 * before OS handover.
2723 dmar_disable_qi(iommu
);
2726 if (dmar_enable_qi(iommu
)) {
2728 * Queued Invalidate not enabled, use Register Based Invalidate
2730 iommu
->flush
.flush_context
= __iommu_flush_context
;
2731 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2732 pr_info("IOMMU: %s using Register based invalidation\n",
2735 iommu
->flush
.flush_context
= qi_flush_context
;
2736 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2737 pr_info("IOMMU: %s using Queued invalidation\n", iommu
->name
);
2741 static int __init
init_dmars(void)
2743 struct dmar_drhd_unit
*drhd
;
2744 struct dmar_rmrr_unit
*rmrr
;
2746 struct intel_iommu
*iommu
;
2752 * initialize and program root entry to not present
2755 for_each_drhd_unit(drhd
) {
2757 * lock not needed as this is only incremented in the single
2758 * threaded kernel __init code path all other access are read
2761 if (g_num_of_iommus
< DMAR_UNITS_SUPPORTED
) {
2765 printk_once(KERN_ERR
"intel-iommu: exceeded %d IOMMUs\n",
2766 DMAR_UNITS_SUPPORTED
);
2769 /* Preallocate enough resources for IOMMU hot-addition */
2770 if (g_num_of_iommus
< DMAR_UNITS_SUPPORTED
)
2771 g_num_of_iommus
= DMAR_UNITS_SUPPORTED
;
2773 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2776 printk(KERN_ERR
"Allocating global iommu array failed\n");
2781 deferred_flush
= kzalloc(g_num_of_iommus
*
2782 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2783 if (!deferred_flush
) {
2788 for_each_active_iommu(iommu
, drhd
) {
2789 g_iommus
[iommu
->seq_id
] = iommu
;
2791 ret
= iommu_init_domains(iommu
);
2797 * we could share the same root & context tables
2798 * among all IOMMU's. Need to Split it later.
2800 ret
= iommu_alloc_root_entry(iommu
);
2803 if (!ecap_pass_through(iommu
->ecap
))
2804 hw_pass_through
= 0;
2807 for_each_active_iommu(iommu
, drhd
)
2808 intel_iommu_init_qi(iommu
);
2810 if (iommu_pass_through
)
2811 iommu_identity_mapping
|= IDENTMAP_ALL
;
2813 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2814 iommu_identity_mapping
|= IDENTMAP_GFX
;
2817 check_tylersburg_isoch();
2820 * If pass through is not set or not enabled, setup context entries for
2821 * identity mappings for rmrr, gfx, and isa and may fall back to static
2822 * identity mapping if iommu_identity_mapping is set.
2824 if (iommu_identity_mapping
) {
2825 ret
= iommu_prepare_static_identity_mapping(hw_pass_through
);
2827 printk(KERN_CRIT
"Failed to setup IOMMU pass-through\n");
2833 * for each dev attached to rmrr
2835 * locate drhd for dev, alloc domain for dev
2836 * allocate free domain
2837 * allocate page table entries for rmrr
2838 * if context not allocated for bus
2839 * allocate and init context
2840 * set present in root table for this bus
2841 * init context with domain, translation etc
2845 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2846 for_each_rmrr_units(rmrr
) {
2847 /* some BIOS lists non-exist devices in DMAR table. */
2848 for_each_active_dev_scope(rmrr
->devices
, rmrr
->devices_cnt
,
2850 ret
= iommu_prepare_rmrr_dev(rmrr
, dev
);
2853 "IOMMU: mapping reserved region failed\n");
2857 iommu_prepare_isa();
2862 * global invalidate context cache
2863 * global invalidate iotlb
2864 * enable translation
2866 for_each_iommu(iommu
, drhd
) {
2867 if (drhd
->ignored
) {
2869 * we always have to disable PMRs or DMA may fail on
2873 iommu_disable_protect_mem_regions(iommu
);
2877 iommu_flush_write_buffer(iommu
);
2879 ret
= dmar_set_interrupt(iommu
);
2883 iommu_set_root_entry(iommu
);
2885 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2886 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2887 iommu_enable_translation(iommu
);
2888 iommu_disable_protect_mem_regions(iommu
);
2894 for_each_active_iommu(iommu
, drhd
) {
2895 disable_dmar_iommu(iommu
);
2896 free_dmar_iommu(iommu
);
2898 kfree(deferred_flush
);
2905 /* This takes a number of _MM_ pages, not VTD pages */
2906 static struct iova
*intel_alloc_iova(struct device
*dev
,
2907 struct dmar_domain
*domain
,
2908 unsigned long nrpages
, uint64_t dma_mask
)
2910 struct iova
*iova
= NULL
;
2912 /* Restrict dma_mask to the width that the iommu can handle */
2913 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2915 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2917 * First try to allocate an io virtual address in
2918 * DMA_BIT_MASK(32) and if that fails then try allocating
2921 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2922 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2926 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2927 if (unlikely(!iova
)) {
2928 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2929 nrpages
, dev_name(dev
));
2936 static struct dmar_domain
*__get_valid_domain_for_dev(struct device
*dev
)
2938 struct dmar_domain
*domain
;
2941 domain
= get_domain_for_dev(dev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2943 printk(KERN_ERR
"Allocating domain for %s failed",
2948 /* make sure context mapping is ok */
2949 if (unlikely(!domain_context_mapped(dev
))) {
2950 ret
= domain_context_mapping(domain
, dev
, CONTEXT_TT_MULTI_LEVEL
);
2952 printk(KERN_ERR
"Domain context map for %s failed",
2961 static inline struct dmar_domain
*get_valid_domain_for_dev(struct device
*dev
)
2963 struct device_domain_info
*info
;
2965 /* No lock here, assumes no domain exit in normal case */
2966 info
= dev
->archdata
.iommu
;
2968 return info
->domain
;
2970 return __get_valid_domain_for_dev(dev
);
2973 static int iommu_dummy(struct device
*dev
)
2975 return dev
->archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2978 /* Check if the dev needs to go through non-identity map and unmap process.*/
2979 static int iommu_no_mapping(struct device
*dev
)
2983 if (iommu_dummy(dev
))
2986 if (!iommu_identity_mapping
)
2989 found
= identity_mapping(dev
);
2991 if (iommu_should_identity_map(dev
, 0))
2995 * 32 bit DMA is removed from si_domain and fall back
2996 * to non-identity mapping.
2998 domain_remove_one_dev_info(si_domain
, dev
);
2999 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
3005 * In case of a detached 64 bit DMA device from vm, the device
3006 * is put into si_domain for identity mapping.
3008 if (iommu_should_identity_map(dev
, 0)) {
3010 ret
= domain_add_dev_info(si_domain
, dev
,
3012 CONTEXT_TT_PASS_THROUGH
:
3013 CONTEXT_TT_MULTI_LEVEL
);
3015 printk(KERN_INFO
"64bit %s uses identity mapping\n",
3025 static dma_addr_t
__intel_map_single(struct device
*dev
, phys_addr_t paddr
,
3026 size_t size
, int dir
, u64 dma_mask
)
3028 struct dmar_domain
*domain
;
3029 phys_addr_t start_paddr
;
3033 struct intel_iommu
*iommu
;
3034 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
3036 BUG_ON(dir
== DMA_NONE
);
3038 if (iommu_no_mapping(dev
))
3041 domain
= get_valid_domain_for_dev(dev
);
3045 iommu
= domain_get_iommu(domain
);
3046 size
= aligned_nrpages(paddr
, size
);
3048 iova
= intel_alloc_iova(dev
, domain
, dma_to_mm_pfn(size
), dma_mask
);
3053 * Check if DMAR supports zero-length reads on write only
3056 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
3057 !cap_zlr(iommu
->cap
))
3058 prot
|= DMA_PTE_READ
;
3059 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
3060 prot
|= DMA_PTE_WRITE
;
3062 * paddr - (paddr + size) might be partial page, we should map the whole
3063 * page. Note: if two part of one page are separately mapped, we
3064 * might have two guest_addr mapping to the same host paddr, but this
3065 * is not a big problem
3067 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
3068 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
3072 /* it's a non-present to present mapping. Only flush if caching mode */
3073 if (cap_caching_mode(iommu
->cap
))
3074 iommu_flush_iotlb_psi(iommu
, domain
->id
, mm_to_dma_pfn(iova
->pfn_lo
), size
, 0, 1);
3076 iommu_flush_write_buffer(iommu
);
3078 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
3079 start_paddr
+= paddr
& ~PAGE_MASK
;
3084 __free_iova(&domain
->iovad
, iova
);
3085 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
3086 dev_name(dev
), size
, (unsigned long long)paddr
, dir
);
3090 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
3091 unsigned long offset
, size_t size
,
3092 enum dma_data_direction dir
,
3093 struct dma_attrs
*attrs
)
3095 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
3096 dir
, *dev
->dma_mask
);
3099 static void flush_unmaps(void)
3105 /* just flush them all */
3106 for (i
= 0; i
< g_num_of_iommus
; i
++) {
3107 struct intel_iommu
*iommu
= g_iommus
[i
];
3111 if (!deferred_flush
[i
].next
)
3114 /* In caching mode, global flushes turn emulation expensive */
3115 if (!cap_caching_mode(iommu
->cap
))
3116 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3117 DMA_TLB_GLOBAL_FLUSH
);
3118 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
3120 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
3121 struct dmar_domain
*domain
= deferred_flush
[i
].domain
[j
];
3123 /* On real hardware multiple invalidations are expensive */
3124 if (cap_caching_mode(iommu
->cap
))
3125 iommu_flush_iotlb_psi(iommu
, domain
->id
,
3126 iova
->pfn_lo
, iova_size(iova
),
3127 !deferred_flush
[i
].freelist
[j
], 0);
3129 mask
= ilog2(mm_to_dma_pfn(iova_size(iova
)));
3130 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
3131 (uint64_t)iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
3133 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
3134 if (deferred_flush
[i
].freelist
[j
])
3135 dma_free_pagelist(deferred_flush
[i
].freelist
[j
]);
3137 deferred_flush
[i
].next
= 0;
3143 static void flush_unmaps_timeout(unsigned long data
)
3145 unsigned long flags
;
3147 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
3149 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
3152 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
, struct page
*freelist
)
3154 unsigned long flags
;
3156 struct intel_iommu
*iommu
;
3158 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
3159 if (list_size
== HIGH_WATER_MARK
)
3162 iommu
= domain_get_iommu(dom
);
3163 iommu_id
= iommu
->seq_id
;
3165 next
= deferred_flush
[iommu_id
].next
;
3166 deferred_flush
[iommu_id
].domain
[next
] = dom
;
3167 deferred_flush
[iommu_id
].iova
[next
] = iova
;
3168 deferred_flush
[iommu_id
].freelist
[next
] = freelist
;
3169 deferred_flush
[iommu_id
].next
++;
3172 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
3176 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
3179 static void intel_unmap(struct device
*dev
, dma_addr_t dev_addr
)
3181 struct dmar_domain
*domain
;
3182 unsigned long start_pfn
, last_pfn
;
3184 struct intel_iommu
*iommu
;
3185 struct page
*freelist
;
3187 if (iommu_no_mapping(dev
))
3190 domain
= find_domain(dev
);
3193 iommu
= domain_get_iommu(domain
);
3195 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
3196 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
3197 (unsigned long long)dev_addr
))
3200 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
3201 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
3203 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
3204 dev_name(dev
), start_pfn
, last_pfn
);
3206 freelist
= domain_unmap(domain
, start_pfn
, last_pfn
);
3208 if (intel_iommu_strict
) {
3209 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
3210 last_pfn
- start_pfn
+ 1, !freelist
, 0);
3212 __free_iova(&domain
->iovad
, iova
);
3213 dma_free_pagelist(freelist
);
3215 add_unmap(domain
, iova
, freelist
);
3217 * queue up the release of the unmap to save the 1/6th of the
3218 * cpu used up by the iotlb flush operation...
3223 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
3224 size_t size
, enum dma_data_direction dir
,
3225 struct dma_attrs
*attrs
)
3227 intel_unmap(dev
, dev_addr
);
3230 static void *intel_alloc_coherent(struct device
*dev
, size_t size
,
3231 dma_addr_t
*dma_handle
, gfp_t flags
,
3232 struct dma_attrs
*attrs
)
3234 struct page
*page
= NULL
;
3237 size
= PAGE_ALIGN(size
);
3238 order
= get_order(size
);
3240 if (!iommu_no_mapping(dev
))
3241 flags
&= ~(GFP_DMA
| GFP_DMA32
);
3242 else if (dev
->coherent_dma_mask
< dma_get_required_mask(dev
)) {
3243 if (dev
->coherent_dma_mask
< DMA_BIT_MASK(32))
3249 if (flags
& __GFP_WAIT
) {
3250 unsigned int count
= size
>> PAGE_SHIFT
;
3252 page
= dma_alloc_from_contiguous(dev
, count
, order
);
3253 if (page
&& iommu_no_mapping(dev
) &&
3254 page_to_phys(page
) + size
> dev
->coherent_dma_mask
) {
3255 dma_release_from_contiguous(dev
, page
, count
);
3261 page
= alloc_pages(flags
, order
);
3264 memset(page_address(page
), 0, size
);
3266 *dma_handle
= __intel_map_single(dev
, page_to_phys(page
), size
,
3268 dev
->coherent_dma_mask
);
3270 return page_address(page
);
3271 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
3272 __free_pages(page
, order
);
3277 static void intel_free_coherent(struct device
*dev
, size_t size
, void *vaddr
,
3278 dma_addr_t dma_handle
, struct dma_attrs
*attrs
)
3281 struct page
*page
= virt_to_page(vaddr
);
3283 size
= PAGE_ALIGN(size
);
3284 order
= get_order(size
);
3286 intel_unmap(dev
, dma_handle
);
3287 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
3288 __free_pages(page
, order
);
3291 static void intel_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
3292 int nelems
, enum dma_data_direction dir
,
3293 struct dma_attrs
*attrs
)
3295 intel_unmap(dev
, sglist
[0].dma_address
);
3298 static int intel_nontranslate_map_sg(struct device
*hddev
,
3299 struct scatterlist
*sglist
, int nelems
, int dir
)
3302 struct scatterlist
*sg
;
3304 for_each_sg(sglist
, sg
, nelems
, i
) {
3305 BUG_ON(!sg_page(sg
));
3306 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
3307 sg
->dma_length
= sg
->length
;
3312 static int intel_map_sg(struct device
*dev
, struct scatterlist
*sglist
, int nelems
,
3313 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
3316 struct dmar_domain
*domain
;
3319 struct iova
*iova
= NULL
;
3321 struct scatterlist
*sg
;
3322 unsigned long start_vpfn
;
3323 struct intel_iommu
*iommu
;
3325 BUG_ON(dir
== DMA_NONE
);
3326 if (iommu_no_mapping(dev
))
3327 return intel_nontranslate_map_sg(dev
, sglist
, nelems
, dir
);
3329 domain
= get_valid_domain_for_dev(dev
);
3333 iommu
= domain_get_iommu(domain
);
3335 for_each_sg(sglist
, sg
, nelems
, i
)
3336 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
3338 iova
= intel_alloc_iova(dev
, domain
, dma_to_mm_pfn(size
),
3341 sglist
->dma_length
= 0;
3346 * Check if DMAR supports zero-length reads on write only
3349 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
3350 !cap_zlr(iommu
->cap
))
3351 prot
|= DMA_PTE_READ
;
3352 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
3353 prot
|= DMA_PTE_WRITE
;
3355 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
3357 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
3358 if (unlikely(ret
)) {
3359 dma_pte_free_pagetable(domain
, start_vpfn
,
3360 start_vpfn
+ size
- 1);
3361 __free_iova(&domain
->iovad
, iova
);
3365 /* it's a non-present to present mapping. Only flush if caching mode */
3366 if (cap_caching_mode(iommu
->cap
))
3367 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_vpfn
, size
, 0, 1);
3369 iommu_flush_write_buffer(iommu
);
3374 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
3379 struct dma_map_ops intel_dma_ops
= {
3380 .alloc
= intel_alloc_coherent
,
3381 .free
= intel_free_coherent
,
3382 .map_sg
= intel_map_sg
,
3383 .unmap_sg
= intel_unmap_sg
,
3384 .map_page
= intel_map_page
,
3385 .unmap_page
= intel_unmap_page
,
3386 .mapping_error
= intel_mapping_error
,
3389 static inline int iommu_domain_cache_init(void)
3393 iommu_domain_cache
= kmem_cache_create("iommu_domain",
3394 sizeof(struct dmar_domain
),
3399 if (!iommu_domain_cache
) {
3400 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
3407 static inline int iommu_devinfo_cache_init(void)
3411 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
3412 sizeof(struct device_domain_info
),
3416 if (!iommu_devinfo_cache
) {
3417 printk(KERN_ERR
"Couldn't create devinfo cache\n");
3424 static int __init
iommu_init_mempool(void)
3427 ret
= iommu_iova_cache_init();
3431 ret
= iommu_domain_cache_init();
3435 ret
= iommu_devinfo_cache_init();
3439 kmem_cache_destroy(iommu_domain_cache
);
3441 iommu_iova_cache_destroy();
3446 static void __init
iommu_exit_mempool(void)
3448 kmem_cache_destroy(iommu_devinfo_cache
);
3449 kmem_cache_destroy(iommu_domain_cache
);
3450 iommu_iova_cache_destroy();
3453 static void quirk_ioat_snb_local_iommu(struct pci_dev
*pdev
)
3455 struct dmar_drhd_unit
*drhd
;
3459 /* We know that this device on this chipset has its own IOMMU.
3460 * If we find it under a different IOMMU, then the BIOS is lying
3461 * to us. Hope that the IOMMU for this device is actually
3462 * disabled, and it needs no translation...
3464 rc
= pci_bus_read_config_dword(pdev
->bus
, PCI_DEVFN(0, 0), 0xb0, &vtbar
);
3466 /* "can't" happen */
3467 dev_info(&pdev
->dev
, "failed to run vt-d quirk\n");
3470 vtbar
&= 0xffff0000;
3472 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3473 drhd
= dmar_find_matched_drhd_unit(pdev
);
3474 if (WARN_TAINT_ONCE(!drhd
|| drhd
->reg_base_addr
- vtbar
!= 0xa000,
3475 TAINT_FIRMWARE_WORKAROUND
,
3476 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3477 pdev
->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3479 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IOAT_SNB
, quirk_ioat_snb_local_iommu
);
3481 static void __init
init_no_remapping_devices(void)
3483 struct dmar_drhd_unit
*drhd
;
3487 for_each_drhd_unit(drhd
) {
3488 if (!drhd
->include_all
) {
3489 for_each_active_dev_scope(drhd
->devices
,
3490 drhd
->devices_cnt
, i
, dev
)
3492 /* ignore DMAR unit if no devices exist */
3493 if (i
== drhd
->devices_cnt
)
3498 for_each_active_drhd_unit(drhd
) {
3499 if (drhd
->include_all
)
3502 for_each_active_dev_scope(drhd
->devices
,
3503 drhd
->devices_cnt
, i
, dev
)
3504 if (!dev_is_pci(dev
) || !IS_GFX_DEVICE(to_pci_dev(dev
)))
3506 if (i
< drhd
->devices_cnt
)
3509 /* This IOMMU has *only* gfx devices. Either bypass it or
3510 set the gfx_mapped flag, as appropriate */
3512 intel_iommu_gfx_mapped
= 1;
3515 for_each_active_dev_scope(drhd
->devices
,
3516 drhd
->devices_cnt
, i
, dev
)
3517 dev
->archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3522 #ifdef CONFIG_SUSPEND
3523 static int init_iommu_hw(void)
3525 struct dmar_drhd_unit
*drhd
;
3526 struct intel_iommu
*iommu
= NULL
;
3528 for_each_active_iommu(iommu
, drhd
)
3530 dmar_reenable_qi(iommu
);
3532 for_each_iommu(iommu
, drhd
) {
3533 if (drhd
->ignored
) {
3535 * we always have to disable PMRs or DMA may fail on
3539 iommu_disable_protect_mem_regions(iommu
);
3543 iommu_flush_write_buffer(iommu
);
3545 iommu_set_root_entry(iommu
);
3547 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3548 DMA_CCMD_GLOBAL_INVL
);
3549 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
3550 iommu_enable_translation(iommu
);
3551 iommu_disable_protect_mem_regions(iommu
);
3557 static void iommu_flush_all(void)
3559 struct dmar_drhd_unit
*drhd
;
3560 struct intel_iommu
*iommu
;
3562 for_each_active_iommu(iommu
, drhd
) {
3563 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3564 DMA_CCMD_GLOBAL_INVL
);
3565 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3566 DMA_TLB_GLOBAL_FLUSH
);
3570 static int iommu_suspend(void)
3572 struct dmar_drhd_unit
*drhd
;
3573 struct intel_iommu
*iommu
= NULL
;
3576 for_each_active_iommu(iommu
, drhd
) {
3577 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3579 if (!iommu
->iommu_state
)
3585 for_each_active_iommu(iommu
, drhd
) {
3586 iommu_disable_translation(iommu
);
3588 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
3590 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3591 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3592 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3593 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3594 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3595 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3596 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3597 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3599 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3604 for_each_active_iommu(iommu
, drhd
)
3605 kfree(iommu
->iommu_state
);
3610 static void iommu_resume(void)
3612 struct dmar_drhd_unit
*drhd
;
3613 struct intel_iommu
*iommu
= NULL
;
3616 if (init_iommu_hw()) {
3618 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3620 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3624 for_each_active_iommu(iommu
, drhd
) {
3626 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
3628 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3629 iommu
->reg
+ DMAR_FECTL_REG
);
3630 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3631 iommu
->reg
+ DMAR_FEDATA_REG
);
3632 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3633 iommu
->reg
+ DMAR_FEADDR_REG
);
3634 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3635 iommu
->reg
+ DMAR_FEUADDR_REG
);
3637 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3640 for_each_active_iommu(iommu
, drhd
)
3641 kfree(iommu
->iommu_state
);
3644 static struct syscore_ops iommu_syscore_ops
= {
3645 .resume
= iommu_resume
,
3646 .suspend
= iommu_suspend
,
3649 static void __init
init_iommu_pm_ops(void)
3651 register_syscore_ops(&iommu_syscore_ops
);
3655 static inline void init_iommu_pm_ops(void) {}
3656 #endif /* CONFIG_PM */
3659 int __init
dmar_parse_one_rmrr(struct acpi_dmar_header
*header
, void *arg
)
3661 struct acpi_dmar_reserved_memory
*rmrr
;
3662 struct dmar_rmrr_unit
*rmrru
;
3664 rmrru
= kzalloc(sizeof(*rmrru
), GFP_KERNEL
);
3668 rmrru
->hdr
= header
;
3669 rmrr
= (struct acpi_dmar_reserved_memory
*)header
;
3670 rmrru
->base_address
= rmrr
->base_address
;
3671 rmrru
->end_address
= rmrr
->end_address
;
3672 rmrru
->devices
= dmar_alloc_dev_scope((void *)(rmrr
+ 1),
3673 ((void *)rmrr
) + rmrr
->header
.length
,
3674 &rmrru
->devices_cnt
);
3675 if (rmrru
->devices_cnt
&& rmrru
->devices
== NULL
) {
3680 list_add(&rmrru
->list
, &dmar_rmrr_units
);
3685 static struct dmar_atsr_unit
*dmar_find_atsr(struct acpi_dmar_atsr
*atsr
)
3687 struct dmar_atsr_unit
*atsru
;
3688 struct acpi_dmar_atsr
*tmp
;
3690 list_for_each_entry_rcu(atsru
, &dmar_atsr_units
, list
) {
3691 tmp
= (struct acpi_dmar_atsr
*)atsru
->hdr
;
3692 if (atsr
->segment
!= tmp
->segment
)
3694 if (atsr
->header
.length
!= tmp
->header
.length
)
3696 if (memcmp(atsr
, tmp
, atsr
->header
.length
) == 0)
3703 int dmar_parse_one_atsr(struct acpi_dmar_header
*hdr
, void *arg
)
3705 struct acpi_dmar_atsr
*atsr
;
3706 struct dmar_atsr_unit
*atsru
;
3708 if (system_state
!= SYSTEM_BOOTING
&& !intel_iommu_enabled
)
3711 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
3712 atsru
= dmar_find_atsr(atsr
);
3716 atsru
= kzalloc(sizeof(*atsru
) + hdr
->length
, GFP_KERNEL
);
3721 * If memory is allocated from slab by ACPI _DSM method, we need to
3722 * copy the memory content because the memory buffer will be freed
3725 atsru
->hdr
= (void *)(atsru
+ 1);
3726 memcpy(atsru
->hdr
, hdr
, hdr
->length
);
3727 atsru
->include_all
= atsr
->flags
& 0x1;
3728 if (!atsru
->include_all
) {
3729 atsru
->devices
= dmar_alloc_dev_scope((void *)(atsr
+ 1),
3730 (void *)atsr
+ atsr
->header
.length
,
3731 &atsru
->devices_cnt
);
3732 if (atsru
->devices_cnt
&& atsru
->devices
== NULL
) {
3738 list_add_rcu(&atsru
->list
, &dmar_atsr_units
);
3743 static void intel_iommu_free_atsr(struct dmar_atsr_unit
*atsru
)
3745 dmar_free_dev_scope(&atsru
->devices
, &atsru
->devices_cnt
);
3749 int dmar_release_one_atsr(struct acpi_dmar_header
*hdr
, void *arg
)
3751 struct acpi_dmar_atsr
*atsr
;
3752 struct dmar_atsr_unit
*atsru
;
3754 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
3755 atsru
= dmar_find_atsr(atsr
);
3757 list_del_rcu(&atsru
->list
);
3759 intel_iommu_free_atsr(atsru
);
3765 int dmar_check_one_atsr(struct acpi_dmar_header
*hdr
, void *arg
)
3769 struct acpi_dmar_atsr
*atsr
;
3770 struct dmar_atsr_unit
*atsru
;
3772 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
3773 atsru
= dmar_find_atsr(atsr
);
3777 if (!atsru
->include_all
&& atsru
->devices
&& atsru
->devices_cnt
)
3778 for_each_active_dev_scope(atsru
->devices
, atsru
->devices_cnt
,
3785 static int intel_iommu_add(struct dmar_drhd_unit
*dmaru
)
3788 struct intel_iommu
*iommu
= dmaru
->iommu
;
3790 if (g_iommus
[iommu
->seq_id
])
3793 if (hw_pass_through
&& !ecap_pass_through(iommu
->ecap
)) {
3794 pr_warn("IOMMU: %s doesn't support hardware pass through.\n",
3798 if (!ecap_sc_support(iommu
->ecap
) &&
3799 domain_update_iommu_snooping(iommu
)) {
3800 pr_warn("IOMMU: %s doesn't support snooping.\n",
3804 sp
= domain_update_iommu_superpage(iommu
) - 1;
3805 if (sp
>= 0 && !(cap_super_page_val(iommu
->cap
) & (1 << sp
))) {
3806 pr_warn("IOMMU: %s doesn't support large page.\n",
3812 * Disable translation if already enabled prior to OS handover.
3814 if (iommu
->gcmd
& DMA_GCMD_TE
)
3815 iommu_disable_translation(iommu
);
3817 g_iommus
[iommu
->seq_id
] = iommu
;
3818 ret
= iommu_init_domains(iommu
);
3820 ret
= iommu_alloc_root_entry(iommu
);
3824 if (dmaru
->ignored
) {
3826 * we always have to disable PMRs or DMA may fail on this device
3829 iommu_disable_protect_mem_regions(iommu
);
3833 intel_iommu_init_qi(iommu
);
3834 iommu_flush_write_buffer(iommu
);
3835 ret
= dmar_set_interrupt(iommu
);
3839 iommu_set_root_entry(iommu
);
3840 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
3841 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
3842 iommu_enable_translation(iommu
);
3845 ret
= iommu_attach_domain(si_domain
, iommu
);
3846 if (ret
< 0 || si_domain
->id
!= ret
)
3848 domain_attach_iommu(si_domain
, iommu
);
3851 iommu_disable_protect_mem_regions(iommu
);
3855 disable_dmar_iommu(iommu
);
3857 free_dmar_iommu(iommu
);
3861 int dmar_iommu_hotplug(struct dmar_drhd_unit
*dmaru
, bool insert
)
3864 struct intel_iommu
*iommu
= dmaru
->iommu
;
3866 if (!intel_iommu_enabled
)
3872 ret
= intel_iommu_add(dmaru
);
3874 disable_dmar_iommu(iommu
);
3875 free_dmar_iommu(iommu
);
3881 static void intel_iommu_free_dmars(void)
3883 struct dmar_rmrr_unit
*rmrru
, *rmrr_n
;
3884 struct dmar_atsr_unit
*atsru
, *atsr_n
;
3886 list_for_each_entry_safe(rmrru
, rmrr_n
, &dmar_rmrr_units
, list
) {
3887 list_del(&rmrru
->list
);
3888 dmar_free_dev_scope(&rmrru
->devices
, &rmrru
->devices_cnt
);
3892 list_for_each_entry_safe(atsru
, atsr_n
, &dmar_atsr_units
, list
) {
3893 list_del(&atsru
->list
);
3894 intel_iommu_free_atsr(atsru
);
3898 int dmar_find_matched_atsr_unit(struct pci_dev
*dev
)
3901 struct pci_bus
*bus
;
3902 struct pci_dev
*bridge
= NULL
;
3904 struct acpi_dmar_atsr
*atsr
;
3905 struct dmar_atsr_unit
*atsru
;
3907 dev
= pci_physfn(dev
);
3908 for (bus
= dev
->bus
; bus
; bus
= bus
->parent
) {
3910 if (!bridge
|| !pci_is_pcie(bridge
) ||
3911 pci_pcie_type(bridge
) == PCI_EXP_TYPE_PCI_BRIDGE
)
3913 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_ROOT_PORT
)
3920 list_for_each_entry_rcu(atsru
, &dmar_atsr_units
, list
) {
3921 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
3922 if (atsr
->segment
!= pci_domain_nr(dev
->bus
))
3925 for_each_dev_scope(atsru
->devices
, atsru
->devices_cnt
, i
, tmp
)
3926 if (tmp
== &bridge
->dev
)
3929 if (atsru
->include_all
)
3939 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info
*info
)
3942 struct dmar_rmrr_unit
*rmrru
;
3943 struct dmar_atsr_unit
*atsru
;
3944 struct acpi_dmar_atsr
*atsr
;
3945 struct acpi_dmar_reserved_memory
*rmrr
;
3947 if (!intel_iommu_enabled
&& system_state
!= SYSTEM_BOOTING
)
3950 list_for_each_entry(rmrru
, &dmar_rmrr_units
, list
) {
3951 rmrr
= container_of(rmrru
->hdr
,
3952 struct acpi_dmar_reserved_memory
, header
);
3953 if (info
->event
== BUS_NOTIFY_ADD_DEVICE
) {
3954 ret
= dmar_insert_dev_scope(info
, (void *)(rmrr
+ 1),
3955 ((void *)rmrr
) + rmrr
->header
.length
,
3956 rmrr
->segment
, rmrru
->devices
,
3957 rmrru
->devices_cnt
);
3960 } else if (info
->event
== BUS_NOTIFY_DEL_DEVICE
) {
3961 dmar_remove_dev_scope(info
, rmrr
->segment
,
3962 rmrru
->devices
, rmrru
->devices_cnt
);
3966 list_for_each_entry(atsru
, &dmar_atsr_units
, list
) {
3967 if (atsru
->include_all
)
3970 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
3971 if (info
->event
== BUS_NOTIFY_ADD_DEVICE
) {
3972 ret
= dmar_insert_dev_scope(info
, (void *)(atsr
+ 1),
3973 (void *)atsr
+ atsr
->header
.length
,
3974 atsr
->segment
, atsru
->devices
,
3975 atsru
->devices_cnt
);
3980 } else if (info
->event
== BUS_NOTIFY_DEL_DEVICE
) {
3981 if (dmar_remove_dev_scope(info
, atsr
->segment
,
3982 atsru
->devices
, atsru
->devices_cnt
))
3991 * Here we only respond to action of unbound device from driver.
3993 * Added device is not attached to its DMAR domain here yet. That will happen
3994 * when mapping the device to iova.
3996 static int device_notifier(struct notifier_block
*nb
,
3997 unsigned long action
, void *data
)
3999 struct device
*dev
= data
;
4000 struct dmar_domain
*domain
;
4002 if (iommu_dummy(dev
))
4005 if (action
!= BUS_NOTIFY_REMOVED_DEVICE
)
4008 domain
= find_domain(dev
);
4012 down_read(&dmar_global_lock
);
4013 domain_remove_one_dev_info(domain
, dev
);
4014 if (!domain_type_is_vm_or_si(domain
) && list_empty(&domain
->devices
))
4015 domain_exit(domain
);
4016 up_read(&dmar_global_lock
);
4021 static struct notifier_block device_nb
= {
4022 .notifier_call
= device_notifier
,
4025 static int intel_iommu_memory_notifier(struct notifier_block
*nb
,
4026 unsigned long val
, void *v
)
4028 struct memory_notify
*mhp
= v
;
4029 unsigned long long start
, end
;
4030 unsigned long start_vpfn
, last_vpfn
;
4033 case MEM_GOING_ONLINE
:
4034 start
= mhp
->start_pfn
<< PAGE_SHIFT
;
4035 end
= ((mhp
->start_pfn
+ mhp
->nr_pages
) << PAGE_SHIFT
) - 1;
4036 if (iommu_domain_identity_map(si_domain
, start
, end
)) {
4037 pr_warn("dmar: failed to build identity map for [%llx-%llx]\n",
4044 case MEM_CANCEL_ONLINE
:
4045 start_vpfn
= mm_to_dma_pfn(mhp
->start_pfn
);
4046 last_vpfn
= mm_to_dma_pfn(mhp
->start_pfn
+ mhp
->nr_pages
- 1);
4047 while (start_vpfn
<= last_vpfn
) {
4049 struct dmar_drhd_unit
*drhd
;
4050 struct intel_iommu
*iommu
;
4051 struct page
*freelist
;
4053 iova
= find_iova(&si_domain
->iovad
, start_vpfn
);
4055 pr_debug("dmar: failed get IOVA for PFN %lx\n",
4060 iova
= split_and_remove_iova(&si_domain
->iovad
, iova
,
4061 start_vpfn
, last_vpfn
);
4063 pr_warn("dmar: failed to split IOVA PFN [%lx-%lx]\n",
4064 start_vpfn
, last_vpfn
);
4068 freelist
= domain_unmap(si_domain
, iova
->pfn_lo
,
4072 for_each_active_iommu(iommu
, drhd
)
4073 iommu_flush_iotlb_psi(iommu
, si_domain
->id
,
4074 iova
->pfn_lo
, iova_size(iova
),
4077 dma_free_pagelist(freelist
);
4079 start_vpfn
= iova
->pfn_hi
+ 1;
4080 free_iova_mem(iova
);
4088 static struct notifier_block intel_iommu_memory_nb
= {
4089 .notifier_call
= intel_iommu_memory_notifier
,
4094 static ssize_t
intel_iommu_show_version(struct device
*dev
,
4095 struct device_attribute
*attr
,
4098 struct intel_iommu
*iommu
= dev_get_drvdata(dev
);
4099 u32 ver
= readl(iommu
->reg
+ DMAR_VER_REG
);
4100 return sprintf(buf
, "%d:%d\n",
4101 DMAR_VER_MAJOR(ver
), DMAR_VER_MINOR(ver
));
4103 static DEVICE_ATTR(version
, S_IRUGO
, intel_iommu_show_version
, NULL
);
4105 static ssize_t
intel_iommu_show_address(struct device
*dev
,
4106 struct device_attribute
*attr
,
4109 struct intel_iommu
*iommu
= dev_get_drvdata(dev
);
4110 return sprintf(buf
, "%llx\n", iommu
->reg_phys
);
4112 static DEVICE_ATTR(address
, S_IRUGO
, intel_iommu_show_address
, NULL
);
4114 static ssize_t
intel_iommu_show_cap(struct device
*dev
,
4115 struct device_attribute
*attr
,
4118 struct intel_iommu
*iommu
= dev_get_drvdata(dev
);
4119 return sprintf(buf
, "%llx\n", iommu
->cap
);
4121 static DEVICE_ATTR(cap
, S_IRUGO
, intel_iommu_show_cap
, NULL
);
4123 static ssize_t
intel_iommu_show_ecap(struct device
*dev
,
4124 struct device_attribute
*attr
,
4127 struct intel_iommu
*iommu
= dev_get_drvdata(dev
);
4128 return sprintf(buf
, "%llx\n", iommu
->ecap
);
4130 static DEVICE_ATTR(ecap
, S_IRUGO
, intel_iommu_show_ecap
, NULL
);
4132 static struct attribute
*intel_iommu_attrs
[] = {
4133 &dev_attr_version
.attr
,
4134 &dev_attr_address
.attr
,
4136 &dev_attr_ecap
.attr
,
4140 static struct attribute_group intel_iommu_group
= {
4141 .name
= "intel-iommu",
4142 .attrs
= intel_iommu_attrs
,
4145 const struct attribute_group
*intel_iommu_groups
[] = {
4150 int __init
intel_iommu_init(void)
4153 struct dmar_drhd_unit
*drhd
;
4154 struct intel_iommu
*iommu
;
4156 /* VT-d is required for a TXT/tboot launch, so enforce that */
4157 force_on
= tboot_force_iommu();
4159 if (iommu_init_mempool()) {
4161 panic("tboot: Failed to initialize iommu memory\n");
4165 down_write(&dmar_global_lock
);
4166 if (dmar_table_init()) {
4168 panic("tboot: Failed to initialize DMAR table\n");
4173 * Disable translation if already enabled prior to OS handover.
4175 for_each_active_iommu(iommu
, drhd
)
4176 if (iommu
->gcmd
& DMA_GCMD_TE
)
4177 iommu_disable_translation(iommu
);
4179 if (dmar_dev_scope_init() < 0) {
4181 panic("tboot: Failed to initialize DMAR device scope\n");
4185 if (no_iommu
|| dmar_disabled
)
4188 if (list_empty(&dmar_rmrr_units
))
4189 printk(KERN_INFO
"DMAR: No RMRR found\n");
4191 if (list_empty(&dmar_atsr_units
))
4192 printk(KERN_INFO
"DMAR: No ATSR found\n");
4194 if (dmar_init_reserved_ranges()) {
4196 panic("tboot: Failed to reserve iommu ranges\n");
4197 goto out_free_reserved_range
;
4200 init_no_remapping_devices();
4205 panic("tboot: Failed to initialize DMARs\n");
4206 printk(KERN_ERR
"IOMMU: dmar init failed\n");
4207 goto out_free_reserved_range
;
4209 up_write(&dmar_global_lock
);
4211 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
4213 init_timer(&unmap_timer
);
4214 #ifdef CONFIG_SWIOTLB
4217 dma_ops
= &intel_dma_ops
;
4219 init_iommu_pm_ops();
4221 for_each_active_iommu(iommu
, drhd
)
4222 iommu
->iommu_dev
= iommu_device_create(NULL
, iommu
,
4226 bus_set_iommu(&pci_bus_type
, &intel_iommu_ops
);
4227 bus_register_notifier(&pci_bus_type
, &device_nb
);
4228 if (si_domain
&& !hw_pass_through
)
4229 register_memory_notifier(&intel_iommu_memory_nb
);
4231 intel_iommu_enabled
= 1;
4235 out_free_reserved_range
:
4236 put_iova_domain(&reserved_iova_list
);
4238 intel_iommu_free_dmars();
4239 up_write(&dmar_global_lock
);
4240 iommu_exit_mempool();
4244 static int iommu_detach_dev_cb(struct pci_dev
*pdev
, u16 alias
, void *opaque
)
4246 struct intel_iommu
*iommu
= opaque
;
4248 iommu_detach_dev(iommu
, PCI_BUS_NUM(alias
), alias
& 0xff);
4253 * NB - intel-iommu lacks any sort of reference counting for the users of
4254 * dependent devices. If multiple endpoints have intersecting dependent
4255 * devices, unbinding the driver from any one of them will possibly leave
4256 * the others unable to operate.
4258 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
4261 if (!iommu
|| !dev
|| !dev_is_pci(dev
))
4264 pci_for_each_dma_alias(to_pci_dev(dev
), &iommu_detach_dev_cb
, iommu
);
4267 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
4270 struct device_domain_info
*info
, *tmp
;
4271 struct intel_iommu
*iommu
;
4272 unsigned long flags
;
4276 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
4280 spin_lock_irqsave(&device_domain_lock
, flags
);
4281 list_for_each_entry_safe(info
, tmp
, &domain
->devices
, link
) {
4282 if (info
->iommu
== iommu
&& info
->bus
== bus
&&
4283 info
->devfn
== devfn
) {
4284 unlink_domain_info(info
);
4285 spin_unlock_irqrestore(&device_domain_lock
, flags
);
4287 iommu_disable_dev_iotlb(info
);
4288 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
4289 iommu_detach_dependent_devices(iommu
, dev
);
4290 free_devinfo_mem(info
);
4292 spin_lock_irqsave(&device_domain_lock
, flags
);
4300 /* if there is no other devices under the same iommu
4301 * owned by this domain, clear this iommu in iommu_bmp
4302 * update iommu count and coherency
4304 if (info
->iommu
== iommu
)
4308 spin_unlock_irqrestore(&device_domain_lock
, flags
);
4311 domain_detach_iommu(domain
, iommu
);
4312 if (!domain_type_is_vm_or_si(domain
))
4313 iommu_detach_domain(domain
, iommu
);
4317 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
4321 init_iova_domain(&domain
->iovad
, VTD_PAGE_SIZE
, IOVA_START_PFN
,
4323 domain_reserve_special_ranges(domain
);
4325 /* calculate AGAW */
4326 domain
->gaw
= guest_width
;
4327 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
4328 domain
->agaw
= width_to_agaw(adjust_width
);
4330 domain
->iommu_coherency
= 0;
4331 domain
->iommu_snooping
= 0;
4332 domain
->iommu_superpage
= 0;
4333 domain
->max_addr
= 0;
4335 /* always allocate the top pgd */
4336 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
4339 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
4343 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
4345 struct dmar_domain
*dmar_domain
;
4347 dmar_domain
= alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE
);
4350 "intel_iommu_domain_init: dmar_domain == NULL\n");
4353 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
4355 "intel_iommu_domain_init() failed\n");
4356 domain_exit(dmar_domain
);
4359 domain_update_iommu_cap(dmar_domain
);
4360 domain
->priv
= dmar_domain
;
4362 domain
->geometry
.aperture_start
= 0;
4363 domain
->geometry
.aperture_end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
);
4364 domain
->geometry
.force_aperture
= true;
4369 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
4371 struct dmar_domain
*dmar_domain
= domain
->priv
;
4373 domain
->priv
= NULL
;
4374 domain_exit(dmar_domain
);
4377 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
4380 struct dmar_domain
*dmar_domain
= domain
->priv
;
4381 struct intel_iommu
*iommu
;
4385 if (device_is_rmrr_locked(dev
)) {
4386 dev_warn(dev
, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
4390 /* normally dev is not mapped */
4391 if (unlikely(domain_context_mapped(dev
))) {
4392 struct dmar_domain
*old_domain
;
4394 old_domain
= find_domain(dev
);
4396 if (domain_type_is_vm_or_si(dmar_domain
))
4397 domain_remove_one_dev_info(old_domain
, dev
);
4399 domain_remove_dev_info(old_domain
);
4401 if (!domain_type_is_vm_or_si(old_domain
) &&
4402 list_empty(&old_domain
->devices
))
4403 domain_exit(old_domain
);
4407 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
4411 /* check if this iommu agaw is sufficient for max mapped address */
4412 addr_width
= agaw_to_width(iommu
->agaw
);
4413 if (addr_width
> cap_mgaw(iommu
->cap
))
4414 addr_width
= cap_mgaw(iommu
->cap
);
4416 if (dmar_domain
->max_addr
> (1LL << addr_width
)) {
4417 printk(KERN_ERR
"%s: iommu width (%d) is not "
4418 "sufficient for the mapped address (%llx)\n",
4419 __func__
, addr_width
, dmar_domain
->max_addr
);
4422 dmar_domain
->gaw
= addr_width
;
4425 * Knock out extra levels of page tables if necessary
4427 while (iommu
->agaw
< dmar_domain
->agaw
) {
4428 struct dma_pte
*pte
;
4430 pte
= dmar_domain
->pgd
;
4431 if (dma_pte_present(pte
)) {
4432 dmar_domain
->pgd
= (struct dma_pte
*)
4433 phys_to_virt(dma_pte_addr(pte
));
4434 free_pgtable_page(pte
);
4436 dmar_domain
->agaw
--;
4439 return domain_add_dev_info(dmar_domain
, dev
, CONTEXT_TT_MULTI_LEVEL
);
4442 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
4445 struct dmar_domain
*dmar_domain
= domain
->priv
;
4447 domain_remove_one_dev_info(dmar_domain
, dev
);
4450 static int intel_iommu_map(struct iommu_domain
*domain
,
4451 unsigned long iova
, phys_addr_t hpa
,
4452 size_t size
, int iommu_prot
)
4454 struct dmar_domain
*dmar_domain
= domain
->priv
;
4459 if (iommu_prot
& IOMMU_READ
)
4460 prot
|= DMA_PTE_READ
;
4461 if (iommu_prot
& IOMMU_WRITE
)
4462 prot
|= DMA_PTE_WRITE
;
4463 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
4464 prot
|= DMA_PTE_SNP
;
4466 max_addr
= iova
+ size
;
4467 if (dmar_domain
->max_addr
< max_addr
) {
4470 /* check if minimum agaw is sufficient for mapped address */
4471 end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
) + 1;
4472 if (end
< max_addr
) {
4473 printk(KERN_ERR
"%s: iommu width (%d) is not "
4474 "sufficient for the mapped address (%llx)\n",
4475 __func__
, dmar_domain
->gaw
, max_addr
);
4478 dmar_domain
->max_addr
= max_addr
;
4480 /* Round up size to next multiple of PAGE_SIZE, if it and
4481 the low bits of hpa would take us onto the next page */
4482 size
= aligned_nrpages(hpa
, size
);
4483 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
4484 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
4488 static size_t intel_iommu_unmap(struct iommu_domain
*domain
,
4489 unsigned long iova
, size_t size
)
4491 struct dmar_domain
*dmar_domain
= domain
->priv
;
4492 struct page
*freelist
= NULL
;
4493 struct intel_iommu
*iommu
;
4494 unsigned long start_pfn
, last_pfn
;
4495 unsigned int npages
;
4496 int iommu_id
, num
, ndomains
, level
= 0;
4498 /* Cope with horrid API which requires us to unmap more than the
4499 size argument if it happens to be a large-page mapping. */
4500 if (!pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
, &level
))
4503 if (size
< VTD_PAGE_SIZE
<< level_to_offset_bits(level
))
4504 size
= VTD_PAGE_SIZE
<< level_to_offset_bits(level
);
4506 start_pfn
= iova
>> VTD_PAGE_SHIFT
;
4507 last_pfn
= (iova
+ size
- 1) >> VTD_PAGE_SHIFT
;
4509 freelist
= domain_unmap(dmar_domain
, start_pfn
, last_pfn
);
4511 npages
= last_pfn
- start_pfn
+ 1;
4513 for_each_set_bit(iommu_id
, dmar_domain
->iommu_bmp
, g_num_of_iommus
) {
4514 iommu
= g_iommus
[iommu_id
];
4517 * find bit position of dmar_domain
4519 ndomains
= cap_ndoms(iommu
->cap
);
4520 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
4521 if (iommu
->domains
[num
] == dmar_domain
)
4522 iommu_flush_iotlb_psi(iommu
, num
, start_pfn
,
4523 npages
, !freelist
, 0);
4528 dma_free_pagelist(freelist
);
4530 if (dmar_domain
->max_addr
== iova
+ size
)
4531 dmar_domain
->max_addr
= iova
;
4536 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
4539 struct dmar_domain
*dmar_domain
= domain
->priv
;
4540 struct dma_pte
*pte
;
4544 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
, &level
);
4546 phys
= dma_pte_addr(pte
);
4551 static bool intel_iommu_capable(enum iommu_cap cap
)
4553 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
4554 return domain_update_iommu_snooping(NULL
) == 1;
4555 if (cap
== IOMMU_CAP_INTR_REMAP
)
4556 return irq_remapping_enabled
== 1;
4561 static int intel_iommu_add_device(struct device
*dev
)
4563 struct intel_iommu
*iommu
;
4564 struct iommu_group
*group
;
4567 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
4571 iommu_device_link(iommu
->iommu_dev
, dev
);
4573 group
= iommu_group_get_for_dev(dev
);
4576 return PTR_ERR(group
);
4578 iommu_group_put(group
);
4582 static void intel_iommu_remove_device(struct device
*dev
)
4584 struct intel_iommu
*iommu
;
4587 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
4591 iommu_group_remove_device(dev
);
4593 iommu_device_unlink(iommu
->iommu_dev
, dev
);
4596 static const struct iommu_ops intel_iommu_ops
= {
4597 .capable
= intel_iommu_capable
,
4598 .domain_init
= intel_iommu_domain_init
,
4599 .domain_destroy
= intel_iommu_domain_destroy
,
4600 .attach_dev
= intel_iommu_attach_device
,
4601 .detach_dev
= intel_iommu_detach_device
,
4602 .map
= intel_iommu_map
,
4603 .unmap
= intel_iommu_unmap
,
4604 .map_sg
= default_iommu_map_sg
,
4605 .iova_to_phys
= intel_iommu_iova_to_phys
,
4606 .add_device
= intel_iommu_add_device
,
4607 .remove_device
= intel_iommu_remove_device
,
4608 .pgsize_bitmap
= INTEL_IOMMU_PGSIZES
,
4611 static void quirk_iommu_g4x_gfx(struct pci_dev
*dev
)
4613 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4614 printk(KERN_INFO
"DMAR: Disabling IOMMU for graphics on this chipset\n");
4618 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_g4x_gfx
);
4619 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_g4x_gfx
);
4620 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_g4x_gfx
);
4621 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_g4x_gfx
);
4622 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_g4x_gfx
);
4623 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_g4x_gfx
);
4624 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_g4x_gfx
);
4626 static void quirk_iommu_rwbf(struct pci_dev
*dev
)
4629 * Mobile 4 Series Chipset neglects to set RWBF capability,
4630 * but needs it. Same seems to hold for the desktop versions.
4632 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
4636 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);
4637 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_rwbf
);
4638 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_rwbf
);
4639 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_rwbf
);
4640 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_rwbf
);
4641 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_rwbf
);
4642 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_rwbf
);
4645 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4646 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4647 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4648 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4649 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4650 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4651 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4652 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4654 static void quirk_calpella_no_shadow_gtt(struct pci_dev
*dev
)
4658 if (pci_read_config_word(dev
, GGC
, &ggc
))
4661 if (!(ggc
& GGC_MEMORY_VT_ENABLED
)) {
4662 printk(KERN_INFO
"DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4664 } else if (dmar_map_gfx
) {
4665 /* we have to ensure the gfx device is idle before we flush */
4666 printk(KERN_INFO
"DMAR: Disabling batched IOTLB flush on Ironlake\n");
4667 intel_iommu_strict
= 1;
4670 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0040, quirk_calpella_no_shadow_gtt
);
4671 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0044, quirk_calpella_no_shadow_gtt
);
4672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0062, quirk_calpella_no_shadow_gtt
);
4673 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x006a, quirk_calpella_no_shadow_gtt
);
4675 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4676 ISOCH DMAR unit for the Azalia sound device, but not give it any
4677 TLB entries, which causes it to deadlock. Check for that. We do
4678 this in a function called from init_dmars(), instead of in a PCI
4679 quirk, because we don't want to print the obnoxious "BIOS broken"
4680 message if VT-d is actually disabled.
4682 static void __init
check_tylersburg_isoch(void)
4684 struct pci_dev
*pdev
;
4685 uint32_t vtisochctrl
;
4687 /* If there's no Azalia in the system anyway, forget it. */
4688 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x3a3e, NULL
);
4693 /* System Management Registers. Might be hidden, in which case
4694 we can't do the sanity check. But that's OK, because the
4695 known-broken BIOSes _don't_ actually hide it, so far. */
4696 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x342e, NULL
);
4700 if (pci_read_config_dword(pdev
, 0x188, &vtisochctrl
)) {
4707 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4708 if (vtisochctrl
& 1)
4711 /* Drop all bits other than the number of TLB entries */
4712 vtisochctrl
&= 0x1c;
4714 /* If we have the recommended number of TLB entries (16), fine. */
4715 if (vtisochctrl
== 0x10)
4718 /* Zero TLB entries? You get to ride the short bus to school. */
4720 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4721 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4722 dmi_get_system_info(DMI_BIOS_VENDOR
),
4723 dmi_get_system_info(DMI_BIOS_VERSION
),
4724 dmi_get_system_info(DMI_PRODUCT_VERSION
));
4725 iommu_identity_mapping
|= IDENTMAP_AZALIA
;
4729 printk(KERN_WARNING
"DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",