ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / drivers / md / dm-cache-policy-mq.c
blob13f547a4eeb61f2715845090b8e2e5ce311c73d1
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
4 * This file is released under the GPL.
5 */
7 #include "dm-cache-policy.h"
8 #include "dm.h"
10 #include <linux/hash.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
16 #define DM_MSG_PREFIX "cache-policy-mq"
18 static struct kmem_cache *mq_entry_cache;
20 /*----------------------------------------------------------------*/
22 static unsigned next_power(unsigned n, unsigned min)
24 return roundup_pow_of_two(max(n, min));
27 /*----------------------------------------------------------------*/
30 * Large, sequential ios are probably better left on the origin device since
31 * spindles tend to have good bandwidth.
33 * The io_tracker tries to spot when the io is in one of these sequential
34 * modes.
36 * Two thresholds to switch between random and sequential io mode are defaulting
37 * as follows and can be adjusted via the constructor and message interfaces.
39 #define RANDOM_THRESHOLD_DEFAULT 4
40 #define SEQUENTIAL_THRESHOLD_DEFAULT 512
42 enum io_pattern {
43 PATTERN_SEQUENTIAL,
44 PATTERN_RANDOM
47 struct io_tracker {
48 enum io_pattern pattern;
50 unsigned nr_seq_samples;
51 unsigned nr_rand_samples;
52 unsigned thresholds[2];
54 dm_oblock_t last_end_oblock;
57 static void iot_init(struct io_tracker *t,
58 int sequential_threshold, int random_threshold)
60 t->pattern = PATTERN_RANDOM;
61 t->nr_seq_samples = 0;
62 t->nr_rand_samples = 0;
63 t->last_end_oblock = 0;
64 t->thresholds[PATTERN_RANDOM] = random_threshold;
65 t->thresholds[PATTERN_SEQUENTIAL] = sequential_threshold;
68 static enum io_pattern iot_pattern(struct io_tracker *t)
70 return t->pattern;
73 static void iot_update_stats(struct io_tracker *t, struct bio *bio)
75 if (bio->bi_iter.bi_sector == from_oblock(t->last_end_oblock) + 1)
76 t->nr_seq_samples++;
77 else {
79 * Just one non-sequential IO is enough to reset the
80 * counters.
82 if (t->nr_seq_samples) {
83 t->nr_seq_samples = 0;
84 t->nr_rand_samples = 0;
87 t->nr_rand_samples++;
90 t->last_end_oblock = to_oblock(bio_end_sector(bio) - 1);
93 static void iot_check_for_pattern_switch(struct io_tracker *t)
95 switch (t->pattern) {
96 case PATTERN_SEQUENTIAL:
97 if (t->nr_rand_samples >= t->thresholds[PATTERN_RANDOM]) {
98 t->pattern = PATTERN_RANDOM;
99 t->nr_seq_samples = t->nr_rand_samples = 0;
101 break;
103 case PATTERN_RANDOM:
104 if (t->nr_seq_samples >= t->thresholds[PATTERN_SEQUENTIAL]) {
105 t->pattern = PATTERN_SEQUENTIAL;
106 t->nr_seq_samples = t->nr_rand_samples = 0;
108 break;
112 static void iot_examine_bio(struct io_tracker *t, struct bio *bio)
114 iot_update_stats(t, bio);
115 iot_check_for_pattern_switch(t);
118 /*----------------------------------------------------------------*/
122 * This queue is divided up into different levels. Allowing us to push
123 * entries to the back of any of the levels. Think of it as a partially
124 * sorted queue.
126 #define NR_QUEUE_LEVELS 16u
128 struct queue {
129 struct list_head qs[NR_QUEUE_LEVELS];
132 static void queue_init(struct queue *q)
134 unsigned i;
136 for (i = 0; i < NR_QUEUE_LEVELS; i++)
137 INIT_LIST_HEAD(q->qs + i);
141 * Checks to see if the queue is empty.
142 * FIXME: reduce cpu usage.
144 static bool queue_empty(struct queue *q)
146 unsigned i;
148 for (i = 0; i < NR_QUEUE_LEVELS; i++)
149 if (!list_empty(q->qs + i))
150 return false;
152 return true;
156 * Insert an entry to the back of the given level.
158 static void queue_push(struct queue *q, unsigned level, struct list_head *elt)
160 list_add_tail(elt, q->qs + level);
163 static void queue_remove(struct list_head *elt)
165 list_del(elt);
169 * Shifts all regions down one level. This has no effect on the order of
170 * the queue.
172 static void queue_shift_down(struct queue *q)
174 unsigned level;
176 for (level = 1; level < NR_QUEUE_LEVELS; level++)
177 list_splice_init(q->qs + level, q->qs + level - 1);
181 * Gives us the oldest entry of the lowest popoulated level. If the first
182 * level is emptied then we shift down one level.
184 static struct list_head *queue_peek(struct queue *q)
186 unsigned level;
188 for (level = 0; level < NR_QUEUE_LEVELS; level++)
189 if (!list_empty(q->qs + level))
190 return q->qs[level].next;
192 return NULL;
195 static struct list_head *queue_pop(struct queue *q)
197 struct list_head *r = queue_peek(q);
199 if (r) {
200 list_del(r);
202 /* have we just emptied the bottom level? */
203 if (list_empty(q->qs))
204 queue_shift_down(q);
207 return r;
210 static struct list_head *list_pop(struct list_head *lh)
212 struct list_head *r = lh->next;
214 BUG_ON(!r);
215 list_del_init(r);
217 return r;
220 /*----------------------------------------------------------------*/
223 * Describes a cache entry. Used in both the cache and the pre_cache.
225 struct entry {
226 struct hlist_node hlist;
227 struct list_head list;
228 dm_oblock_t oblock;
231 * FIXME: pack these better
233 bool dirty:1;
234 unsigned hit_count;
235 unsigned generation;
236 unsigned tick;
240 * Rather than storing the cblock in an entry, we allocate all entries in
241 * an array, and infer the cblock from the entry position.
243 * Free entries are linked together into a list.
245 struct entry_pool {
246 struct entry *entries, *entries_end;
247 struct list_head free;
248 unsigned nr_allocated;
251 static int epool_init(struct entry_pool *ep, unsigned nr_entries)
253 unsigned i;
255 ep->entries = vzalloc(sizeof(struct entry) * nr_entries);
256 if (!ep->entries)
257 return -ENOMEM;
259 ep->entries_end = ep->entries + nr_entries;
261 INIT_LIST_HEAD(&ep->free);
262 for (i = 0; i < nr_entries; i++)
263 list_add(&ep->entries[i].list, &ep->free);
265 ep->nr_allocated = 0;
267 return 0;
270 static void epool_exit(struct entry_pool *ep)
272 vfree(ep->entries);
275 static struct entry *alloc_entry(struct entry_pool *ep)
277 struct entry *e;
279 if (list_empty(&ep->free))
280 return NULL;
282 e = list_entry(list_pop(&ep->free), struct entry, list);
283 INIT_LIST_HEAD(&e->list);
284 INIT_HLIST_NODE(&e->hlist);
285 ep->nr_allocated++;
287 return e;
291 * This assumes the cblock hasn't already been allocated.
293 static struct entry *alloc_particular_entry(struct entry_pool *ep, dm_cblock_t cblock)
295 struct entry *e = ep->entries + from_cblock(cblock);
297 list_del_init(&e->list);
298 INIT_HLIST_NODE(&e->hlist);
299 ep->nr_allocated++;
301 return e;
304 static void free_entry(struct entry_pool *ep, struct entry *e)
306 BUG_ON(!ep->nr_allocated);
307 ep->nr_allocated--;
308 INIT_HLIST_NODE(&e->hlist);
309 list_add(&e->list, &ep->free);
313 * Returns NULL if the entry is free.
315 static struct entry *epool_find(struct entry_pool *ep, dm_cblock_t cblock)
317 struct entry *e = ep->entries + from_cblock(cblock);
318 return !hlist_unhashed(&e->hlist) ? e : NULL;
321 static bool epool_empty(struct entry_pool *ep)
323 return list_empty(&ep->free);
326 static bool in_pool(struct entry_pool *ep, struct entry *e)
328 return e >= ep->entries && e < ep->entries_end;
331 static dm_cblock_t infer_cblock(struct entry_pool *ep, struct entry *e)
333 return to_cblock(e - ep->entries);
336 /*----------------------------------------------------------------*/
338 struct mq_policy {
339 struct dm_cache_policy policy;
341 /* protects everything */
342 struct mutex lock;
343 dm_cblock_t cache_size;
344 struct io_tracker tracker;
347 * Entries come from two pools, one of pre-cache entries, and one
348 * for the cache proper.
350 struct entry_pool pre_cache_pool;
351 struct entry_pool cache_pool;
354 * We maintain three queues of entries. The cache proper,
355 * consisting of a clean and dirty queue, contains the currently
356 * active mappings. Whereas the pre_cache tracks blocks that
357 * are being hit frequently and potential candidates for promotion
358 * to the cache.
360 struct queue pre_cache;
361 struct queue cache_clean;
362 struct queue cache_dirty;
365 * Keeps track of time, incremented by the core. We use this to
366 * avoid attributing multiple hits within the same tick.
368 * Access to tick_protected should be done with the spin lock held.
369 * It's copied to tick at the start of the map function (within the
370 * mutex).
372 spinlock_t tick_lock;
373 unsigned tick_protected;
374 unsigned tick;
377 * A count of the number of times the map function has been called
378 * and found an entry in the pre_cache or cache. Currently used to
379 * calculate the generation.
381 unsigned hit_count;
384 * A generation is a longish period that is used to trigger some
385 * book keeping effects. eg, decrementing hit counts on entries.
386 * This is needed to allow the cache to evolve as io patterns
387 * change.
389 unsigned generation;
390 unsigned generation_period; /* in lookups (will probably change) */
392 unsigned discard_promote_adjustment;
393 unsigned read_promote_adjustment;
394 unsigned write_promote_adjustment;
397 * The hash table allows us to quickly find an entry by origin
398 * block. Both pre_cache and cache entries are in here.
400 unsigned nr_buckets;
401 dm_block_t hash_bits;
402 struct hlist_head *table;
405 #define DEFAULT_DISCARD_PROMOTE_ADJUSTMENT 1
406 #define DEFAULT_READ_PROMOTE_ADJUSTMENT 4
407 #define DEFAULT_WRITE_PROMOTE_ADJUSTMENT 8
408 #define DISCOURAGE_DEMOTING_DIRTY_THRESHOLD 128
410 /*----------------------------------------------------------------*/
413 * Simple hash table implementation. Should replace with the standard hash
414 * table that's making its way upstream.
416 static void hash_insert(struct mq_policy *mq, struct entry *e)
418 unsigned h = hash_64(from_oblock(e->oblock), mq->hash_bits);
420 hlist_add_head(&e->hlist, mq->table + h);
423 static struct entry *hash_lookup(struct mq_policy *mq, dm_oblock_t oblock)
425 unsigned h = hash_64(from_oblock(oblock), mq->hash_bits);
426 struct hlist_head *bucket = mq->table + h;
427 struct entry *e;
429 hlist_for_each_entry(e, bucket, hlist)
430 if (e->oblock == oblock) {
431 hlist_del(&e->hlist);
432 hlist_add_head(&e->hlist, bucket);
433 return e;
436 return NULL;
439 static void hash_remove(struct entry *e)
441 hlist_del(&e->hlist);
444 /*----------------------------------------------------------------*/
446 static bool any_free_cblocks(struct mq_policy *mq)
448 return !epool_empty(&mq->cache_pool);
451 static bool any_clean_cblocks(struct mq_policy *mq)
453 return !queue_empty(&mq->cache_clean);
456 /*----------------------------------------------------------------*/
459 * Now we get to the meat of the policy. This section deals with deciding
460 * when to to add entries to the pre_cache and cache, and move between
461 * them.
465 * The queue level is based on the log2 of the hit count.
467 static unsigned queue_level(struct entry *e)
469 return min((unsigned) ilog2(e->hit_count), NR_QUEUE_LEVELS - 1u);
472 static bool in_cache(struct mq_policy *mq, struct entry *e)
474 return in_pool(&mq->cache_pool, e);
478 * Inserts the entry into the pre_cache or the cache. Ensures the cache
479 * block is marked as allocated if necc. Inserts into the hash table.
480 * Sets the tick which records when the entry was last moved about.
482 static void push(struct mq_policy *mq, struct entry *e)
484 e->tick = mq->tick;
485 hash_insert(mq, e);
487 if (in_cache(mq, e))
488 queue_push(e->dirty ? &mq->cache_dirty : &mq->cache_clean,
489 queue_level(e), &e->list);
490 else
491 queue_push(&mq->pre_cache, queue_level(e), &e->list);
495 * Removes an entry from pre_cache or cache. Removes from the hash table.
497 static void del(struct mq_policy *mq, struct entry *e)
499 queue_remove(&e->list);
500 hash_remove(e);
504 * Like del, except it removes the first entry in the queue (ie. the least
505 * recently used).
507 static struct entry *pop(struct mq_policy *mq, struct queue *q)
509 struct entry *e;
510 struct list_head *h = queue_pop(q);
512 if (!h)
513 return NULL;
515 e = container_of(h, struct entry, list);
516 hash_remove(e);
518 return e;
521 static struct entry *peek(struct queue *q)
523 struct list_head *h = queue_peek(q);
524 return h ? container_of(h, struct entry, list) : NULL;
528 * Has this entry already been updated?
530 static bool updated_this_tick(struct mq_policy *mq, struct entry *e)
532 return mq->tick == e->tick;
536 * The promotion threshold is adjusted every generation. As are the counts
537 * of the entries.
539 * At the moment the threshold is taken by averaging the hit counts of some
540 * of the entries in the cache (the first 20 entries across all levels in
541 * ascending order, giving preference to the clean entries at each level).
543 * We can be much cleverer than this though. For example, each promotion
544 * could bump up the threshold helping to prevent churn. Much more to do
545 * here.
548 #define MAX_TO_AVERAGE 20
550 static void check_generation(struct mq_policy *mq)
552 unsigned total = 0, nr = 0, count = 0, level;
553 struct list_head *head;
554 struct entry *e;
556 if ((mq->hit_count >= mq->generation_period) && (epool_empty(&mq->cache_pool))) {
557 mq->hit_count = 0;
558 mq->generation++;
560 for (level = 0; level < NR_QUEUE_LEVELS && count < MAX_TO_AVERAGE; level++) {
561 head = mq->cache_clean.qs + level;
562 list_for_each_entry(e, head, list) {
563 nr++;
564 total += e->hit_count;
566 if (++count >= MAX_TO_AVERAGE)
567 break;
570 head = mq->cache_dirty.qs + level;
571 list_for_each_entry(e, head, list) {
572 nr++;
573 total += e->hit_count;
575 if (++count >= MAX_TO_AVERAGE)
576 break;
583 * Whenever we use an entry we bump up it's hit counter, and push it to the
584 * back to it's current level.
586 static void requeue_and_update_tick(struct mq_policy *mq, struct entry *e)
588 if (updated_this_tick(mq, e))
589 return;
591 e->hit_count++;
592 mq->hit_count++;
593 check_generation(mq);
595 /* generation adjustment, to stop the counts increasing forever. */
596 /* FIXME: divide? */
597 /* e->hit_count -= min(e->hit_count - 1, mq->generation - e->generation); */
598 e->generation = mq->generation;
600 del(mq, e);
601 push(mq, e);
605 * Demote the least recently used entry from the cache to the pre_cache.
606 * Returns the new cache entry to use, and the old origin block it was
607 * mapped to.
609 * We drop the hit count on the demoted entry back to 1 to stop it bouncing
610 * straight back into the cache if it's subsequently hit. There are
611 * various options here, and more experimentation would be good:
613 * - just forget about the demoted entry completely (ie. don't insert it
614 into the pre_cache).
615 * - divide the hit count rather that setting to some hard coded value.
616 * - set the hit count to a hard coded value other than 1, eg, is it better
617 * if it goes in at level 2?
619 static int demote_cblock(struct mq_policy *mq, dm_oblock_t *oblock)
621 struct entry *demoted = pop(mq, &mq->cache_clean);
623 if (!demoted)
625 * We could get a block from mq->cache_dirty, but that
626 * would add extra latency to the triggering bio as it
627 * waits for the writeback. Better to not promote this
628 * time and hope there's a clean block next time this block
629 * is hit.
631 return -ENOSPC;
633 *oblock = demoted->oblock;
634 free_entry(&mq->cache_pool, demoted);
637 * We used to put the demoted block into the pre-cache, but I think
638 * it's simpler to just let it work it's way up from zero again.
639 * Stops blocks flickering in and out of the cache.
642 return 0;
646 * Entries in the pre_cache whose hit count passes the promotion
647 * threshold move to the cache proper. Working out the correct
648 * value for the promotion_threshold is crucial to this policy.
650 static unsigned promote_threshold(struct mq_policy *mq)
652 struct entry *e;
654 if (any_free_cblocks(mq))
655 return 0;
657 e = peek(&mq->cache_clean);
658 if (e)
659 return e->hit_count;
661 e = peek(&mq->cache_dirty);
662 if (e)
663 return e->hit_count + DISCOURAGE_DEMOTING_DIRTY_THRESHOLD;
665 /* This should never happen */
666 return 0;
670 * We modify the basic promotion_threshold depending on the specific io.
672 * If the origin block has been discarded then there's no cost to copy it
673 * to the cache.
675 * We bias towards reads, since they can be demoted at no cost if they
676 * haven't been dirtied.
678 static unsigned adjusted_promote_threshold(struct mq_policy *mq,
679 bool discarded_oblock, int data_dir)
681 if (data_dir == READ)
682 return promote_threshold(mq) + mq->read_promote_adjustment;
684 if (discarded_oblock && (any_free_cblocks(mq) || any_clean_cblocks(mq))) {
686 * We don't need to do any copying at all, so give this a
687 * very low threshold.
689 return mq->discard_promote_adjustment;
692 return promote_threshold(mq) + mq->write_promote_adjustment;
695 static bool should_promote(struct mq_policy *mq, struct entry *e,
696 bool discarded_oblock, int data_dir)
698 return e->hit_count >=
699 adjusted_promote_threshold(mq, discarded_oblock, data_dir);
702 static int cache_entry_found(struct mq_policy *mq,
703 struct entry *e,
704 struct policy_result *result)
706 requeue_and_update_tick(mq, e);
708 if (in_cache(mq, e)) {
709 result->op = POLICY_HIT;
710 result->cblock = infer_cblock(&mq->cache_pool, e);
713 return 0;
717 * Moves an entry from the pre_cache to the cache. The main work is
718 * finding which cache block to use.
720 static int pre_cache_to_cache(struct mq_policy *mq, struct entry *e,
721 struct policy_result *result)
723 int r;
724 struct entry *new_e;
726 /* Ensure there's a free cblock in the cache */
727 if (epool_empty(&mq->cache_pool)) {
728 result->op = POLICY_REPLACE;
729 r = demote_cblock(mq, &result->old_oblock);
730 if (r) {
731 result->op = POLICY_MISS;
732 return 0;
734 } else
735 result->op = POLICY_NEW;
737 new_e = alloc_entry(&mq->cache_pool);
738 BUG_ON(!new_e);
740 new_e->oblock = e->oblock;
741 new_e->dirty = false;
742 new_e->hit_count = e->hit_count;
743 new_e->generation = e->generation;
744 new_e->tick = e->tick;
746 del(mq, e);
747 free_entry(&mq->pre_cache_pool, e);
748 push(mq, new_e);
750 result->cblock = infer_cblock(&mq->cache_pool, new_e);
752 return 0;
755 static int pre_cache_entry_found(struct mq_policy *mq, struct entry *e,
756 bool can_migrate, bool discarded_oblock,
757 int data_dir, struct policy_result *result)
759 int r = 0;
760 bool updated = updated_this_tick(mq, e);
762 if ((!discarded_oblock && updated) ||
763 !should_promote(mq, e, discarded_oblock, data_dir)) {
764 requeue_and_update_tick(mq, e);
765 result->op = POLICY_MISS;
767 } else if (!can_migrate)
768 r = -EWOULDBLOCK;
770 else {
771 requeue_and_update_tick(mq, e);
772 r = pre_cache_to_cache(mq, e, result);
775 return r;
778 static void insert_in_pre_cache(struct mq_policy *mq,
779 dm_oblock_t oblock)
781 struct entry *e = alloc_entry(&mq->pre_cache_pool);
783 if (!e)
785 * There's no spare entry structure, so we grab the least
786 * used one from the pre_cache.
788 e = pop(mq, &mq->pre_cache);
790 if (unlikely(!e)) {
791 DMWARN("couldn't pop from pre cache");
792 return;
795 e->dirty = false;
796 e->oblock = oblock;
797 e->hit_count = 1;
798 e->generation = mq->generation;
799 push(mq, e);
802 static void insert_in_cache(struct mq_policy *mq, dm_oblock_t oblock,
803 struct policy_result *result)
805 int r;
806 struct entry *e;
808 if (epool_empty(&mq->cache_pool)) {
809 result->op = POLICY_REPLACE;
810 r = demote_cblock(mq, &result->old_oblock);
811 if (unlikely(r)) {
812 result->op = POLICY_MISS;
813 insert_in_pre_cache(mq, oblock);
814 return;
818 * This will always succeed, since we've just demoted.
820 e = alloc_entry(&mq->cache_pool);
821 BUG_ON(!e);
823 } else {
824 e = alloc_entry(&mq->cache_pool);
825 result->op = POLICY_NEW;
828 e->oblock = oblock;
829 e->dirty = false;
830 e->hit_count = 1;
831 e->generation = mq->generation;
832 push(mq, e);
834 result->cblock = infer_cblock(&mq->cache_pool, e);
837 static int no_entry_found(struct mq_policy *mq, dm_oblock_t oblock,
838 bool can_migrate, bool discarded_oblock,
839 int data_dir, struct policy_result *result)
841 if (adjusted_promote_threshold(mq, discarded_oblock, data_dir) <= 1) {
842 if (can_migrate)
843 insert_in_cache(mq, oblock, result);
844 else
845 return -EWOULDBLOCK;
846 } else {
847 insert_in_pre_cache(mq, oblock);
848 result->op = POLICY_MISS;
851 return 0;
855 * Looks the oblock up in the hash table, then decides whether to put in
856 * pre_cache, or cache etc.
858 static int map(struct mq_policy *mq, dm_oblock_t oblock,
859 bool can_migrate, bool discarded_oblock,
860 int data_dir, struct policy_result *result)
862 int r = 0;
863 struct entry *e = hash_lookup(mq, oblock);
865 if (e && in_cache(mq, e))
866 r = cache_entry_found(mq, e, result);
868 else if (mq->tracker.thresholds[PATTERN_SEQUENTIAL] &&
869 iot_pattern(&mq->tracker) == PATTERN_SEQUENTIAL)
870 result->op = POLICY_MISS;
872 else if (e)
873 r = pre_cache_entry_found(mq, e, can_migrate, discarded_oblock,
874 data_dir, result);
876 else
877 r = no_entry_found(mq, oblock, can_migrate, discarded_oblock,
878 data_dir, result);
880 if (r == -EWOULDBLOCK)
881 result->op = POLICY_MISS;
883 return r;
886 /*----------------------------------------------------------------*/
889 * Public interface, via the policy struct. See dm-cache-policy.h for a
890 * description of these.
893 static struct mq_policy *to_mq_policy(struct dm_cache_policy *p)
895 return container_of(p, struct mq_policy, policy);
898 static void mq_destroy(struct dm_cache_policy *p)
900 struct mq_policy *mq = to_mq_policy(p);
902 vfree(mq->table);
903 epool_exit(&mq->cache_pool);
904 epool_exit(&mq->pre_cache_pool);
905 kfree(mq);
908 static void copy_tick(struct mq_policy *mq)
910 unsigned long flags;
912 spin_lock_irqsave(&mq->tick_lock, flags);
913 mq->tick = mq->tick_protected;
914 spin_unlock_irqrestore(&mq->tick_lock, flags);
917 static int mq_map(struct dm_cache_policy *p, dm_oblock_t oblock,
918 bool can_block, bool can_migrate, bool discarded_oblock,
919 struct bio *bio, struct policy_result *result)
921 int r;
922 struct mq_policy *mq = to_mq_policy(p);
924 result->op = POLICY_MISS;
926 if (can_block)
927 mutex_lock(&mq->lock);
928 else if (!mutex_trylock(&mq->lock))
929 return -EWOULDBLOCK;
931 copy_tick(mq);
933 iot_examine_bio(&mq->tracker, bio);
934 r = map(mq, oblock, can_migrate, discarded_oblock,
935 bio_data_dir(bio), result);
937 mutex_unlock(&mq->lock);
939 return r;
942 static int mq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock)
944 int r;
945 struct mq_policy *mq = to_mq_policy(p);
946 struct entry *e;
948 if (!mutex_trylock(&mq->lock))
949 return -EWOULDBLOCK;
951 e = hash_lookup(mq, oblock);
952 if (e && in_cache(mq, e)) {
953 *cblock = infer_cblock(&mq->cache_pool, e);
954 r = 0;
955 } else
956 r = -ENOENT;
958 mutex_unlock(&mq->lock);
960 return r;
963 static void __mq_set_clear_dirty(struct mq_policy *mq, dm_oblock_t oblock, bool set)
965 struct entry *e;
967 e = hash_lookup(mq, oblock);
968 BUG_ON(!e || !in_cache(mq, e));
970 del(mq, e);
971 e->dirty = set;
972 push(mq, e);
975 static void mq_set_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
977 struct mq_policy *mq = to_mq_policy(p);
979 mutex_lock(&mq->lock);
980 __mq_set_clear_dirty(mq, oblock, true);
981 mutex_unlock(&mq->lock);
984 static void mq_clear_dirty(struct dm_cache_policy *p, dm_oblock_t oblock)
986 struct mq_policy *mq = to_mq_policy(p);
988 mutex_lock(&mq->lock);
989 __mq_set_clear_dirty(mq, oblock, false);
990 mutex_unlock(&mq->lock);
993 static int mq_load_mapping(struct dm_cache_policy *p,
994 dm_oblock_t oblock, dm_cblock_t cblock,
995 uint32_t hint, bool hint_valid)
997 struct mq_policy *mq = to_mq_policy(p);
998 struct entry *e;
1000 e = alloc_particular_entry(&mq->cache_pool, cblock);
1001 e->oblock = oblock;
1002 e->dirty = false; /* this gets corrected in a minute */
1003 e->hit_count = hint_valid ? hint : 1;
1004 e->generation = mq->generation;
1005 push(mq, e);
1007 return 0;
1010 static int mq_save_hints(struct mq_policy *mq, struct queue *q,
1011 policy_walk_fn fn, void *context)
1013 int r;
1014 unsigned level;
1015 struct entry *e;
1017 for (level = 0; level < NR_QUEUE_LEVELS; level++)
1018 list_for_each_entry(e, q->qs + level, list) {
1019 r = fn(context, infer_cblock(&mq->cache_pool, e),
1020 e->oblock, e->hit_count);
1021 if (r)
1022 return r;
1025 return 0;
1028 static int mq_walk_mappings(struct dm_cache_policy *p, policy_walk_fn fn,
1029 void *context)
1031 struct mq_policy *mq = to_mq_policy(p);
1032 int r = 0;
1034 mutex_lock(&mq->lock);
1036 r = mq_save_hints(mq, &mq->cache_clean, fn, context);
1037 if (!r)
1038 r = mq_save_hints(mq, &mq->cache_dirty, fn, context);
1040 mutex_unlock(&mq->lock);
1042 return r;
1045 static void __remove_mapping(struct mq_policy *mq, dm_oblock_t oblock)
1047 struct entry *e;
1049 e = hash_lookup(mq, oblock);
1050 BUG_ON(!e || !in_cache(mq, e));
1052 del(mq, e);
1053 free_entry(&mq->cache_pool, e);
1056 static void mq_remove_mapping(struct dm_cache_policy *p, dm_oblock_t oblock)
1058 struct mq_policy *mq = to_mq_policy(p);
1060 mutex_lock(&mq->lock);
1061 __remove_mapping(mq, oblock);
1062 mutex_unlock(&mq->lock);
1065 static int __remove_cblock(struct mq_policy *mq, dm_cblock_t cblock)
1067 struct entry *e = epool_find(&mq->cache_pool, cblock);
1069 if (!e)
1070 return -ENODATA;
1072 del(mq, e);
1073 free_entry(&mq->cache_pool, e);
1075 return 0;
1078 static int mq_remove_cblock(struct dm_cache_policy *p, dm_cblock_t cblock)
1080 int r;
1081 struct mq_policy *mq = to_mq_policy(p);
1083 mutex_lock(&mq->lock);
1084 r = __remove_cblock(mq, cblock);
1085 mutex_unlock(&mq->lock);
1087 return r;
1090 static int __mq_writeback_work(struct mq_policy *mq, dm_oblock_t *oblock,
1091 dm_cblock_t *cblock)
1093 struct entry *e = pop(mq, &mq->cache_dirty);
1095 if (!e)
1096 return -ENODATA;
1098 *oblock = e->oblock;
1099 *cblock = infer_cblock(&mq->cache_pool, e);
1100 e->dirty = false;
1101 push(mq, e);
1103 return 0;
1106 static int mq_writeback_work(struct dm_cache_policy *p, dm_oblock_t *oblock,
1107 dm_cblock_t *cblock)
1109 int r;
1110 struct mq_policy *mq = to_mq_policy(p);
1112 mutex_lock(&mq->lock);
1113 r = __mq_writeback_work(mq, oblock, cblock);
1114 mutex_unlock(&mq->lock);
1116 return r;
1119 static void __force_mapping(struct mq_policy *mq,
1120 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1122 struct entry *e = hash_lookup(mq, current_oblock);
1124 if (e && in_cache(mq, e)) {
1125 del(mq, e);
1126 e->oblock = new_oblock;
1127 e->dirty = true;
1128 push(mq, e);
1132 static void mq_force_mapping(struct dm_cache_policy *p,
1133 dm_oblock_t current_oblock, dm_oblock_t new_oblock)
1135 struct mq_policy *mq = to_mq_policy(p);
1137 mutex_lock(&mq->lock);
1138 __force_mapping(mq, current_oblock, new_oblock);
1139 mutex_unlock(&mq->lock);
1142 static dm_cblock_t mq_residency(struct dm_cache_policy *p)
1144 dm_cblock_t r;
1145 struct mq_policy *mq = to_mq_policy(p);
1147 mutex_lock(&mq->lock);
1148 r = to_cblock(mq->cache_pool.nr_allocated);
1149 mutex_unlock(&mq->lock);
1151 return r;
1154 static void mq_tick(struct dm_cache_policy *p)
1156 struct mq_policy *mq = to_mq_policy(p);
1157 unsigned long flags;
1159 spin_lock_irqsave(&mq->tick_lock, flags);
1160 mq->tick_protected++;
1161 spin_unlock_irqrestore(&mq->tick_lock, flags);
1164 static int mq_set_config_value(struct dm_cache_policy *p,
1165 const char *key, const char *value)
1167 struct mq_policy *mq = to_mq_policy(p);
1168 unsigned long tmp;
1170 if (kstrtoul(value, 10, &tmp))
1171 return -EINVAL;
1173 if (!strcasecmp(key, "random_threshold")) {
1174 mq->tracker.thresholds[PATTERN_RANDOM] = tmp;
1176 } else if (!strcasecmp(key, "sequential_threshold")) {
1177 mq->tracker.thresholds[PATTERN_SEQUENTIAL] = tmp;
1179 } else if (!strcasecmp(key, "discard_promote_adjustment"))
1180 mq->discard_promote_adjustment = tmp;
1182 else if (!strcasecmp(key, "read_promote_adjustment"))
1183 mq->read_promote_adjustment = tmp;
1185 else if (!strcasecmp(key, "write_promote_adjustment"))
1186 mq->write_promote_adjustment = tmp;
1188 else
1189 return -EINVAL;
1191 return 0;
1194 static int mq_emit_config_values(struct dm_cache_policy *p, char *result, unsigned maxlen)
1196 ssize_t sz = 0;
1197 struct mq_policy *mq = to_mq_policy(p);
1199 DMEMIT("10 random_threshold %u "
1200 "sequential_threshold %u "
1201 "discard_promote_adjustment %u "
1202 "read_promote_adjustment %u "
1203 "write_promote_adjustment %u",
1204 mq->tracker.thresholds[PATTERN_RANDOM],
1205 mq->tracker.thresholds[PATTERN_SEQUENTIAL],
1206 mq->discard_promote_adjustment,
1207 mq->read_promote_adjustment,
1208 mq->write_promote_adjustment);
1210 return 0;
1213 /* Init the policy plugin interface function pointers. */
1214 static void init_policy_functions(struct mq_policy *mq)
1216 mq->policy.destroy = mq_destroy;
1217 mq->policy.map = mq_map;
1218 mq->policy.lookup = mq_lookup;
1219 mq->policy.set_dirty = mq_set_dirty;
1220 mq->policy.clear_dirty = mq_clear_dirty;
1221 mq->policy.load_mapping = mq_load_mapping;
1222 mq->policy.walk_mappings = mq_walk_mappings;
1223 mq->policy.remove_mapping = mq_remove_mapping;
1224 mq->policy.remove_cblock = mq_remove_cblock;
1225 mq->policy.writeback_work = mq_writeback_work;
1226 mq->policy.force_mapping = mq_force_mapping;
1227 mq->policy.residency = mq_residency;
1228 mq->policy.tick = mq_tick;
1229 mq->policy.emit_config_values = mq_emit_config_values;
1230 mq->policy.set_config_value = mq_set_config_value;
1233 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1234 sector_t origin_size,
1235 sector_t cache_block_size)
1237 struct mq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1239 if (!mq)
1240 return NULL;
1242 init_policy_functions(mq);
1243 iot_init(&mq->tracker, SEQUENTIAL_THRESHOLD_DEFAULT, RANDOM_THRESHOLD_DEFAULT);
1244 mq->cache_size = cache_size;
1246 if (epool_init(&mq->pre_cache_pool, from_cblock(cache_size))) {
1247 DMERR("couldn't initialize pool of pre-cache entries");
1248 goto bad_pre_cache_init;
1251 if (epool_init(&mq->cache_pool, from_cblock(cache_size))) {
1252 DMERR("couldn't initialize pool of cache entries");
1253 goto bad_cache_init;
1256 mq->tick_protected = 0;
1257 mq->tick = 0;
1258 mq->hit_count = 0;
1259 mq->generation = 0;
1260 mq->discard_promote_adjustment = DEFAULT_DISCARD_PROMOTE_ADJUSTMENT;
1261 mq->read_promote_adjustment = DEFAULT_READ_PROMOTE_ADJUSTMENT;
1262 mq->write_promote_adjustment = DEFAULT_WRITE_PROMOTE_ADJUSTMENT;
1263 mutex_init(&mq->lock);
1264 spin_lock_init(&mq->tick_lock);
1266 queue_init(&mq->pre_cache);
1267 queue_init(&mq->cache_clean);
1268 queue_init(&mq->cache_dirty);
1270 mq->generation_period = max((unsigned) from_cblock(cache_size), 1024U);
1272 mq->nr_buckets = next_power(from_cblock(cache_size) / 2, 16);
1273 mq->hash_bits = ffs(mq->nr_buckets) - 1;
1274 mq->table = vzalloc(sizeof(*mq->table) * mq->nr_buckets);
1275 if (!mq->table)
1276 goto bad_alloc_table;
1278 return &mq->policy;
1280 bad_alloc_table:
1281 epool_exit(&mq->cache_pool);
1282 bad_cache_init:
1283 epool_exit(&mq->pre_cache_pool);
1284 bad_pre_cache_init:
1285 kfree(mq);
1287 return NULL;
1290 /*----------------------------------------------------------------*/
1292 static struct dm_cache_policy_type mq_policy_type = {
1293 .name = "mq",
1294 .version = {1, 3, 0},
1295 .hint_size = 4,
1296 .owner = THIS_MODULE,
1297 .create = mq_create
1300 static struct dm_cache_policy_type default_policy_type = {
1301 .name = "default",
1302 .version = {1, 3, 0},
1303 .hint_size = 4,
1304 .owner = THIS_MODULE,
1305 .create = mq_create,
1306 .real = &mq_policy_type
1309 static int __init mq_init(void)
1311 int r;
1313 mq_entry_cache = kmem_cache_create("dm_mq_policy_cache_entry",
1314 sizeof(struct entry),
1315 __alignof__(struct entry),
1316 0, NULL);
1317 if (!mq_entry_cache)
1318 goto bad;
1320 r = dm_cache_policy_register(&mq_policy_type);
1321 if (r) {
1322 DMERR("register failed %d", r);
1323 goto bad_register_mq;
1326 r = dm_cache_policy_register(&default_policy_type);
1327 if (!r) {
1328 DMINFO("version %u.%u.%u loaded",
1329 mq_policy_type.version[0],
1330 mq_policy_type.version[1],
1331 mq_policy_type.version[2]);
1332 return 0;
1335 DMERR("register failed (as default) %d", r);
1337 dm_cache_policy_unregister(&mq_policy_type);
1338 bad_register_mq:
1339 kmem_cache_destroy(mq_entry_cache);
1340 bad:
1341 return -ENOMEM;
1344 static void __exit mq_exit(void)
1346 dm_cache_policy_unregister(&mq_policy_type);
1347 dm_cache_policy_unregister(&default_policy_type);
1349 kmem_cache_destroy(mq_entry_cache);
1352 module_init(mq_init);
1353 module_exit(mq_exit);
1355 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1356 MODULE_LICENSE("GPL");
1357 MODULE_DESCRIPTION("mq cache policy");
1359 MODULE_ALIAS("dm-cache-default");