2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
30 /* magic values for the inode_only field in btrfs_log_inode:
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
40 * directory trouble cases
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
49 * rename foo/some_dir foo2/some_dir
51 * fsync foo/some_dir/some_file
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
96 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
, struct inode
*inode
,
101 struct btrfs_log_ctx
*ctx
);
102 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
,
104 struct btrfs_path
*path
, u64 objectid
);
105 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
106 struct btrfs_root
*root
,
107 struct btrfs_root
*log
,
108 struct btrfs_path
*path
,
109 u64 dirid
, int del_all
);
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
139 static int start_log_trans(struct btrfs_trans_handle
*trans
,
140 struct btrfs_root
*root
,
141 struct btrfs_log_ctx
*ctx
)
146 mutex_lock(&root
->log_mutex
);
147 if (root
->log_root
) {
148 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
152 if (!root
->log_start_pid
) {
153 root
->log_start_pid
= current
->pid
;
154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
155 } else if (root
->log_start_pid
!= current
->pid
) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
159 atomic_inc(&root
->log_batch
);
160 atomic_inc(&root
->log_writers
);
162 index
= root
->log_transid
% 2;
163 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
164 ctx
->log_transid
= root
->log_transid
;
166 mutex_unlock(&root
->log_mutex
);
171 mutex_lock(&root
->fs_info
->tree_log_mutex
);
172 if (!root
->fs_info
->log_root_tree
)
173 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
174 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
178 if (!root
->log_root
) {
179 ret
= btrfs_add_log_tree(trans
, root
);
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
184 root
->log_start_pid
= current
->pid
;
185 atomic_inc(&root
->log_batch
);
186 atomic_inc(&root
->log_writers
);
188 index
= root
->log_transid
% 2;
189 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
190 ctx
->log_transid
= root
->log_transid
;
193 mutex_unlock(&root
->log_mutex
);
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
202 static int join_running_log_trans(struct btrfs_root
*root
)
210 mutex_lock(&root
->log_mutex
);
211 if (root
->log_root
) {
213 atomic_inc(&root
->log_writers
);
215 mutex_unlock(&root
->log_mutex
);
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
224 int btrfs_pin_log_trans(struct btrfs_root
*root
)
228 mutex_lock(&root
->log_mutex
);
229 atomic_inc(&root
->log_writers
);
230 mutex_unlock(&root
->log_mutex
);
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
238 void btrfs_end_log_trans(struct btrfs_root
*root
)
240 if (atomic_dec_and_test(&root
->log_writers
)) {
242 if (waitqueue_active(&root
->log_writer_wait
))
243 wake_up(&root
->log_writer_wait
);
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
254 struct walk_control
{
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
270 /* pin only walk, we record which extents on disk belong to the
275 /* what stage of the replay code we're currently in */
278 /* the root we are currently replaying */
279 struct btrfs_root
*replay_dest
;
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle
*trans
;
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
289 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
290 struct walk_control
*wc
, u64 gen
);
294 * process_func used to pin down extents, write them or wait on them
296 static int process_one_buffer(struct btrfs_root
*log
,
297 struct extent_buffer
*eb
,
298 struct walk_control
*wc
, u64 gen
)
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
)) {
307 ret
= btrfs_read_buffer(eb
, gen
);
313 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
316 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
317 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
318 ret
= btrfs_exclude_logged_extents(log
, eb
);
320 btrfs_write_tree_block(eb
);
322 btrfs_wait_tree_block_writeback(eb
);
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
342 struct btrfs_root
*root
,
343 struct btrfs_path
*path
,
344 struct extent_buffer
*eb
, int slot
,
345 struct btrfs_key
*key
)
349 u64 saved_i_size
= 0;
350 int save_old_i_size
= 0;
351 unsigned long src_ptr
;
352 unsigned long dst_ptr
;
353 int overwrite_root
= 0;
354 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
356 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
359 item_size
= btrfs_item_size_nr(eb
, slot
);
360 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
362 /* look for the key in the destination tree */
363 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
370 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
372 if (dst_size
!= item_size
)
375 if (item_size
== 0) {
376 btrfs_release_path(path
);
379 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
380 src_copy
= kmalloc(item_size
, GFP_NOFS
);
381 if (!dst_copy
|| !src_copy
) {
382 btrfs_release_path(path
);
388 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
390 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
391 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
393 ret
= memcmp(dst_copy
, src_copy
, item_size
);
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
404 btrfs_release_path(path
);
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
413 struct btrfs_inode_item
*item
;
417 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
418 struct btrfs_inode_item
);
419 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
420 item
= btrfs_item_ptr(eb
, slot
,
421 struct btrfs_inode_item
);
422 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
429 mode
= btrfs_inode_mode(eb
, item
);
431 btrfs_set_inode_size(eb
, item
, 0);
433 } else if (inode_item
) {
434 struct btrfs_inode_item
*item
;
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
441 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
442 btrfs_set_inode_nbytes(eb
, item
, 0);
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
449 mode
= btrfs_inode_mode(eb
, item
);
451 btrfs_set_inode_size(eb
, item
, 0);
454 btrfs_release_path(path
);
455 /* try to insert the key into the destination tree */
456 path
->skip_release_on_error
= 1;
457 ret
= btrfs_insert_empty_item(trans
, root
, path
,
459 path
->skip_release_on_error
= 0;
461 /* make sure any existing item is the correct size */
462 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
464 found_size
= btrfs_item_size_nr(path
->nodes
[0],
466 if (found_size
> item_size
)
467 btrfs_truncate_item(root
, path
, item_size
, 1);
468 else if (found_size
< item_size
)
469 btrfs_extend_item(root
, path
,
470 item_size
- found_size
);
474 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
486 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
487 struct btrfs_inode_item
*src_item
;
488 struct btrfs_inode_item
*dst_item
;
490 src_item
= (struct btrfs_inode_item
*)src_ptr
;
491 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
493 if (btrfs_inode_generation(eb
, src_item
) == 0) {
494 struct extent_buffer
*dst_eb
= path
->nodes
[0];
496 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
497 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
))) {
498 struct btrfs_map_token token
;
499 u64 ino_size
= btrfs_inode_size(eb
, src_item
);
501 btrfs_init_map_token(&token
);
502 btrfs_set_token_inode_size(dst_eb
, dst_item
,
508 if (overwrite_root
&&
509 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
510 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
512 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
517 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
520 if (save_old_i_size
) {
521 struct btrfs_inode_item
*dst_item
;
522 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
523 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
526 /* make sure the generation is filled in */
527 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
528 struct btrfs_inode_item
*dst_item
;
529 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
530 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
531 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
536 btrfs_mark_buffer_dirty(path
->nodes
[0]);
537 btrfs_release_path(path
);
542 * simple helper to read an inode off the disk from a given root
543 * This can only be called for subvolume roots and not for the log
545 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
548 struct btrfs_key key
;
551 key
.objectid
= objectid
;
552 key
.type
= BTRFS_INODE_ITEM_KEY
;
554 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
557 } else if (is_bad_inode(inode
)) {
564 /* replays a single extent in 'eb' at 'slot' with 'key' into the
565 * subvolume 'root'. path is released on entry and should be released
568 * extents in the log tree have not been allocated out of the extent
569 * tree yet. So, this completes the allocation, taking a reference
570 * as required if the extent already exists or creating a new extent
571 * if it isn't in the extent allocation tree yet.
573 * The extent is inserted into the file, dropping any existing extents
574 * from the file that overlap the new one.
576 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
577 struct btrfs_root
*root
,
578 struct btrfs_path
*path
,
579 struct extent_buffer
*eb
, int slot
,
580 struct btrfs_key
*key
)
584 u64 start
= key
->offset
;
586 struct btrfs_file_extent_item
*item
;
587 struct inode
*inode
= NULL
;
591 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
592 found_type
= btrfs_file_extent_type(eb
, item
);
594 if (found_type
== BTRFS_FILE_EXTENT_REG
||
595 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
596 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
597 extent_end
= start
+ nbytes
;
600 * We don't add to the inodes nbytes if we are prealloc or a
603 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
605 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
606 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
607 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
608 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
614 inode
= read_one_inode(root
, key
->objectid
);
621 * first check to see if we already have this extent in the
622 * file. This must be done before the btrfs_drop_extents run
623 * so we don't try to drop this extent.
625 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
629 (found_type
== BTRFS_FILE_EXTENT_REG
||
630 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
631 struct btrfs_file_extent_item cmp1
;
632 struct btrfs_file_extent_item cmp2
;
633 struct btrfs_file_extent_item
*existing
;
634 struct extent_buffer
*leaf
;
636 leaf
= path
->nodes
[0];
637 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
638 struct btrfs_file_extent_item
);
640 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
642 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
646 * we already have a pointer to this exact extent,
647 * we don't have to do anything
649 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
650 btrfs_release_path(path
);
654 btrfs_release_path(path
);
656 /* drop any overlapping extents */
657 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
661 if (found_type
== BTRFS_FILE_EXTENT_REG
||
662 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
664 unsigned long dest_offset
;
665 struct btrfs_key ins
;
667 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
671 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
673 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
674 (unsigned long)item
, sizeof(*item
));
676 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
677 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
678 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
679 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
681 if (ins
.objectid
> 0) {
684 LIST_HEAD(ordered_sums
);
686 * is this extent already allocated in the extent
687 * allocation tree? If so, just add a reference
689 ret
= btrfs_lookup_data_extent(root
, ins
.objectid
,
692 ret
= btrfs_inc_extent_ref(trans
, root
,
693 ins
.objectid
, ins
.offset
,
694 0, root
->root_key
.objectid
,
695 key
->objectid
, offset
, 0);
700 * insert the extent pointer in the extent
703 ret
= btrfs_alloc_logged_file_extent(trans
,
704 root
, root
->root_key
.objectid
,
705 key
->objectid
, offset
, &ins
);
709 btrfs_release_path(path
);
711 if (btrfs_file_extent_compression(eb
, item
)) {
712 csum_start
= ins
.objectid
;
713 csum_end
= csum_start
+ ins
.offset
;
715 csum_start
= ins
.objectid
+
716 btrfs_file_extent_offset(eb
, item
);
717 csum_end
= csum_start
+
718 btrfs_file_extent_num_bytes(eb
, item
);
721 ret
= btrfs_lookup_csums_range(root
->log_root
,
722 csum_start
, csum_end
- 1,
726 while (!list_empty(&ordered_sums
)) {
727 struct btrfs_ordered_sum
*sums
;
728 sums
= list_entry(ordered_sums
.next
,
729 struct btrfs_ordered_sum
,
732 ret
= btrfs_csum_file_blocks(trans
,
733 root
->fs_info
->csum_root
,
735 list_del(&sums
->list
);
741 btrfs_release_path(path
);
743 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
744 /* inline extents are easy, we just overwrite them */
745 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
750 inode_add_bytes(inode
, nbytes
);
751 ret
= btrfs_update_inode(trans
, root
, inode
);
759 * when cleaning up conflicts between the directory names in the
760 * subvolume, directory names in the log and directory names in the
761 * inode back references, we may have to unlink inodes from directories.
763 * This is a helper function to do the unlink of a specific directory
766 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
767 struct btrfs_root
*root
,
768 struct btrfs_path
*path
,
770 struct btrfs_dir_item
*di
)
775 struct extent_buffer
*leaf
;
776 struct btrfs_key location
;
779 leaf
= path
->nodes
[0];
781 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
782 name_len
= btrfs_dir_name_len(leaf
, di
);
783 name
= kmalloc(name_len
, GFP_NOFS
);
787 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
788 btrfs_release_path(path
);
790 inode
= read_one_inode(root
, location
.objectid
);
796 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
800 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
804 ret
= btrfs_run_delayed_items(trans
, root
);
812 * helper function to see if a given name and sequence number found
813 * in an inode back reference are already in a directory and correctly
814 * point to this inode
816 static noinline
int inode_in_dir(struct btrfs_root
*root
,
817 struct btrfs_path
*path
,
818 u64 dirid
, u64 objectid
, u64 index
,
819 const char *name
, int name_len
)
821 struct btrfs_dir_item
*di
;
822 struct btrfs_key location
;
825 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
826 index
, name
, name_len
, 0);
827 if (di
&& !IS_ERR(di
)) {
828 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
829 if (location
.objectid
!= objectid
)
833 btrfs_release_path(path
);
835 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
836 if (di
&& !IS_ERR(di
)) {
837 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
838 if (location
.objectid
!= objectid
)
844 btrfs_release_path(path
);
849 * helper function to check a log tree for a named back reference in
850 * an inode. This is used to decide if a back reference that is
851 * found in the subvolume conflicts with what we find in the log.
853 * inode backreferences may have multiple refs in a single item,
854 * during replay we process one reference at a time, and we don't
855 * want to delete valid links to a file from the subvolume if that
856 * link is also in the log.
858 static noinline
int backref_in_log(struct btrfs_root
*log
,
859 struct btrfs_key
*key
,
861 const char *name
, int namelen
)
863 struct btrfs_path
*path
;
864 struct btrfs_inode_ref
*ref
;
866 unsigned long ptr_end
;
867 unsigned long name_ptr
;
873 path
= btrfs_alloc_path();
877 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
881 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
883 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
884 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
885 name
, namelen
, NULL
))
891 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
892 ptr_end
= ptr
+ item_size
;
893 while (ptr
< ptr_end
) {
894 ref
= (struct btrfs_inode_ref
*)ptr
;
895 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
896 if (found_name_len
== namelen
) {
897 name_ptr
= (unsigned long)(ref
+ 1);
898 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
905 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
908 btrfs_free_path(path
);
912 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
913 struct btrfs_root
*root
,
914 struct btrfs_path
*path
,
915 struct btrfs_root
*log_root
,
916 struct inode
*dir
, struct inode
*inode
,
917 struct extent_buffer
*eb
,
918 u64 inode_objectid
, u64 parent_objectid
,
919 u64 ref_index
, char *name
, int namelen
,
925 struct extent_buffer
*leaf
;
926 struct btrfs_dir_item
*di
;
927 struct btrfs_key search_key
;
928 struct btrfs_inode_extref
*extref
;
931 /* Search old style refs */
932 search_key
.objectid
= inode_objectid
;
933 search_key
.type
= BTRFS_INODE_REF_KEY
;
934 search_key
.offset
= parent_objectid
;
935 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
937 struct btrfs_inode_ref
*victim_ref
;
939 unsigned long ptr_end
;
941 leaf
= path
->nodes
[0];
943 /* are we trying to overwrite a back ref for the root directory
944 * if so, just jump out, we're done
946 if (search_key
.objectid
== search_key
.offset
)
949 /* check all the names in this back reference to see
950 * if they are in the log. if so, we allow them to stay
951 * otherwise they must be unlinked as a conflict
953 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
954 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
955 while (ptr
< ptr_end
) {
956 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
957 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
959 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
963 read_extent_buffer(leaf
, victim_name
,
964 (unsigned long)(victim_ref
+ 1),
967 if (!backref_in_log(log_root
, &search_key
,
972 btrfs_release_path(path
);
974 ret
= btrfs_unlink_inode(trans
, root
, dir
,
980 ret
= btrfs_run_delayed_items(trans
, root
);
988 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
992 * NOTE: we have searched root tree and checked the
993 * coresponding ref, it does not need to check again.
997 btrfs_release_path(path
);
999 /* Same search but for extended refs */
1000 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1001 inode_objectid
, parent_objectid
, 0,
1003 if (!IS_ERR_OR_NULL(extref
)) {
1007 struct inode
*victim_parent
;
1009 leaf
= path
->nodes
[0];
1011 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1012 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1014 while (cur_offset
< item_size
) {
1015 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1017 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1019 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1022 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1025 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1028 search_key
.objectid
= inode_objectid
;
1029 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1030 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1034 if (!backref_in_log(log_root
, &search_key
,
1035 parent_objectid
, victim_name
,
1038 victim_parent
= read_one_inode(root
,
1040 if (victim_parent
) {
1042 btrfs_release_path(path
);
1044 ret
= btrfs_unlink_inode(trans
, root
,
1050 ret
= btrfs_run_delayed_items(
1053 iput(victim_parent
);
1064 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1068 btrfs_release_path(path
);
1070 /* look for a conflicting sequence number */
1071 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1072 ref_index
, name
, namelen
, 0);
1073 if (di
&& !IS_ERR(di
)) {
1074 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1078 btrfs_release_path(path
);
1080 /* look for a conflicing name */
1081 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1083 if (di
&& !IS_ERR(di
)) {
1084 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1088 btrfs_release_path(path
);
1093 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1094 u32
*namelen
, char **name
, u64
*index
,
1095 u64
*parent_objectid
)
1097 struct btrfs_inode_extref
*extref
;
1099 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1101 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1102 *name
= kmalloc(*namelen
, GFP_NOFS
);
1106 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1109 *index
= btrfs_inode_extref_index(eb
, extref
);
1110 if (parent_objectid
)
1111 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1116 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1117 u32
*namelen
, char **name
, u64
*index
)
1119 struct btrfs_inode_ref
*ref
;
1121 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1123 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1124 *name
= kmalloc(*namelen
, GFP_NOFS
);
1128 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1130 *index
= btrfs_inode_ref_index(eb
, ref
);
1136 * replay one inode back reference item found in the log tree.
1137 * eb, slot and key refer to the buffer and key found in the log tree.
1138 * root is the destination we are replaying into, and path is for temp
1139 * use by this function. (it should be released on return).
1141 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1142 struct btrfs_root
*root
,
1143 struct btrfs_root
*log
,
1144 struct btrfs_path
*path
,
1145 struct extent_buffer
*eb
, int slot
,
1146 struct btrfs_key
*key
)
1148 struct inode
*dir
= NULL
;
1149 struct inode
*inode
= NULL
;
1150 unsigned long ref_ptr
;
1151 unsigned long ref_end
;
1155 int search_done
= 0;
1156 int log_ref_ver
= 0;
1157 u64 parent_objectid
;
1160 int ref_struct_size
;
1162 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1163 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1165 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1166 struct btrfs_inode_extref
*r
;
1168 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1170 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1171 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1173 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1174 parent_objectid
= key
->offset
;
1176 inode_objectid
= key
->objectid
;
1179 * it is possible that we didn't log all the parent directories
1180 * for a given inode. If we don't find the dir, just don't
1181 * copy the back ref in. The link count fixup code will take
1184 dir
= read_one_inode(root
, parent_objectid
);
1190 inode
= read_one_inode(root
, inode_objectid
);
1196 while (ref_ptr
< ref_end
) {
1198 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1199 &ref_index
, &parent_objectid
);
1201 * parent object can change from one array
1205 dir
= read_one_inode(root
, parent_objectid
);
1211 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1217 /* if we already have a perfect match, we're done */
1218 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1219 ref_index
, name
, namelen
)) {
1221 * look for a conflicting back reference in the
1222 * metadata. if we find one we have to unlink that name
1223 * of the file before we add our new link. Later on, we
1224 * overwrite any existing back reference, and we don't
1225 * want to create dangling pointers in the directory.
1229 ret
= __add_inode_ref(trans
, root
, path
, log
,
1233 ref_index
, name
, namelen
,
1242 /* insert our name */
1243 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1248 btrfs_update_inode(trans
, root
, inode
);
1251 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1260 /* finally write the back reference in the inode */
1261 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1263 btrfs_release_path(path
);
1270 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1271 struct btrfs_root
*root
, u64 ino
)
1275 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1282 static int count_inode_extrefs(struct btrfs_root
*root
,
1283 struct inode
*inode
, struct btrfs_path
*path
)
1287 unsigned int nlink
= 0;
1290 u64 inode_objectid
= btrfs_ino(inode
);
1293 struct btrfs_inode_extref
*extref
;
1294 struct extent_buffer
*leaf
;
1297 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1302 leaf
= path
->nodes
[0];
1303 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1304 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1307 while (cur_offset
< item_size
) {
1308 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1309 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1313 cur_offset
+= name_len
+ sizeof(*extref
);
1317 btrfs_release_path(path
);
1319 btrfs_release_path(path
);
1321 if (ret
< 0 && ret
!= -ENOENT
)
1326 static int count_inode_refs(struct btrfs_root
*root
,
1327 struct inode
*inode
, struct btrfs_path
*path
)
1330 struct btrfs_key key
;
1331 unsigned int nlink
= 0;
1333 unsigned long ptr_end
;
1335 u64 ino
= btrfs_ino(inode
);
1338 key
.type
= BTRFS_INODE_REF_KEY
;
1339 key
.offset
= (u64
)-1;
1342 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1346 if (path
->slots
[0] == 0)
1351 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1353 if (key
.objectid
!= ino
||
1354 key
.type
!= BTRFS_INODE_REF_KEY
)
1356 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1357 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1359 while (ptr
< ptr_end
) {
1360 struct btrfs_inode_ref
*ref
;
1362 ref
= (struct btrfs_inode_ref
*)ptr
;
1363 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1365 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1369 if (key
.offset
== 0)
1371 if (path
->slots
[0] > 0) {
1376 btrfs_release_path(path
);
1378 btrfs_release_path(path
);
1384 * There are a few corners where the link count of the file can't
1385 * be properly maintained during replay. So, instead of adding
1386 * lots of complexity to the log code, we just scan the backrefs
1387 * for any file that has been through replay.
1389 * The scan will update the link count on the inode to reflect the
1390 * number of back refs found. If it goes down to zero, the iput
1391 * will free the inode.
1393 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1394 struct btrfs_root
*root
,
1395 struct inode
*inode
)
1397 struct btrfs_path
*path
;
1400 u64 ino
= btrfs_ino(inode
);
1402 path
= btrfs_alloc_path();
1406 ret
= count_inode_refs(root
, inode
, path
);
1412 ret
= count_inode_extrefs(root
, inode
, path
);
1420 if (nlink
!= inode
->i_nlink
) {
1421 set_nlink(inode
, nlink
);
1422 btrfs_update_inode(trans
, root
, inode
);
1424 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1426 if (inode
->i_nlink
== 0) {
1427 if (S_ISDIR(inode
->i_mode
)) {
1428 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1433 ret
= insert_orphan_item(trans
, root
, ino
);
1437 btrfs_free_path(path
);
1441 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1442 struct btrfs_root
*root
,
1443 struct btrfs_path
*path
)
1446 struct btrfs_key key
;
1447 struct inode
*inode
;
1449 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1450 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1451 key
.offset
= (u64
)-1;
1453 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1458 if (path
->slots
[0] == 0)
1463 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1464 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1465 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1468 ret
= btrfs_del_item(trans
, root
, path
);
1472 btrfs_release_path(path
);
1473 inode
= read_one_inode(root
, key
.offset
);
1477 ret
= fixup_inode_link_count(trans
, root
, inode
);
1483 * fixup on a directory may create new entries,
1484 * make sure we always look for the highset possible
1487 key
.offset
= (u64
)-1;
1491 btrfs_release_path(path
);
1497 * record a given inode in the fixup dir so we can check its link
1498 * count when replay is done. The link count is incremented here
1499 * so the inode won't go away until we check it
1501 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1502 struct btrfs_root
*root
,
1503 struct btrfs_path
*path
,
1506 struct btrfs_key key
;
1508 struct inode
*inode
;
1510 inode
= read_one_inode(root
, objectid
);
1514 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1515 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1516 key
.offset
= objectid
;
1518 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1520 btrfs_release_path(path
);
1522 if (!inode
->i_nlink
)
1523 set_nlink(inode
, 1);
1526 ret
= btrfs_update_inode(trans
, root
, inode
);
1527 } else if (ret
== -EEXIST
) {
1530 BUG(); /* Logic Error */
1538 * when replaying the log for a directory, we only insert names
1539 * for inodes that actually exist. This means an fsync on a directory
1540 * does not implicitly fsync all the new files in it
1542 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1543 struct btrfs_root
*root
,
1544 struct btrfs_path
*path
,
1545 u64 dirid
, u64 index
,
1546 char *name
, int name_len
, u8 type
,
1547 struct btrfs_key
*location
)
1549 struct inode
*inode
;
1553 inode
= read_one_inode(root
, location
->objectid
);
1557 dir
= read_one_inode(root
, dirid
);
1563 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1565 /* FIXME, put inode into FIXUP list */
1573 * Return true if an inode reference exists in the log for the given name,
1574 * inode and parent inode.
1576 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1577 const char *name
, const int name_len
,
1578 const u64 dirid
, const u64 ino
)
1580 struct btrfs_key search_key
;
1582 search_key
.objectid
= ino
;
1583 search_key
.type
= BTRFS_INODE_REF_KEY
;
1584 search_key
.offset
= dirid
;
1585 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1588 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1589 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1590 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1597 * take a single entry in a log directory item and replay it into
1600 * if a conflicting item exists in the subdirectory already,
1601 * the inode it points to is unlinked and put into the link count
1604 * If a name from the log points to a file or directory that does
1605 * not exist in the FS, it is skipped. fsyncs on directories
1606 * do not force down inodes inside that directory, just changes to the
1607 * names or unlinks in a directory.
1609 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1610 struct btrfs_root
*root
,
1611 struct btrfs_path
*path
,
1612 struct extent_buffer
*eb
,
1613 struct btrfs_dir_item
*di
,
1614 struct btrfs_key
*key
)
1618 struct btrfs_dir_item
*dst_di
;
1619 struct btrfs_key found_key
;
1620 struct btrfs_key log_key
;
1625 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1627 dir
= read_one_inode(root
, key
->objectid
);
1631 name_len
= btrfs_dir_name_len(eb
, di
);
1632 name
= kmalloc(name_len
, GFP_NOFS
);
1638 log_type
= btrfs_dir_type(eb
, di
);
1639 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1642 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1643 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1648 btrfs_release_path(path
);
1650 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1651 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1653 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1654 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1663 if (IS_ERR_OR_NULL(dst_di
)) {
1664 /* we need a sequence number to insert, so we only
1665 * do inserts for the BTRFS_DIR_INDEX_KEY types
1667 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1672 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1673 /* the existing item matches the logged item */
1674 if (found_key
.objectid
== log_key
.objectid
&&
1675 found_key
.type
== log_key
.type
&&
1676 found_key
.offset
== log_key
.offset
&&
1677 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1678 update_size
= false;
1683 * don't drop the conflicting directory entry if the inode
1684 * for the new entry doesn't exist
1689 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1693 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1696 btrfs_release_path(path
);
1697 if (!ret
&& update_size
) {
1698 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1699 ret
= btrfs_update_inode(trans
, root
, dir
);
1706 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1707 key
->objectid
, log_key
.objectid
)) {
1708 /* The dentry will be added later. */
1710 update_size
= false;
1713 btrfs_release_path(path
);
1714 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1715 name
, name_len
, log_type
, &log_key
);
1716 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1718 update_size
= false;
1724 * find all the names in a directory item and reconcile them into
1725 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1726 * one name in a directory item, but the same code gets used for
1727 * both directory index types
1729 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1730 struct btrfs_root
*root
,
1731 struct btrfs_path
*path
,
1732 struct extent_buffer
*eb
, int slot
,
1733 struct btrfs_key
*key
)
1736 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1737 struct btrfs_dir_item
*di
;
1740 unsigned long ptr_end
;
1742 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1743 ptr_end
= ptr
+ item_size
;
1744 while (ptr
< ptr_end
) {
1745 di
= (struct btrfs_dir_item
*)ptr
;
1746 if (verify_dir_item(root
, eb
, di
))
1748 name_len
= btrfs_dir_name_len(eb
, di
);
1749 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1752 ptr
= (unsigned long)(di
+ 1);
1759 * directory replay has two parts. There are the standard directory
1760 * items in the log copied from the subvolume, and range items
1761 * created in the log while the subvolume was logged.
1763 * The range items tell us which parts of the key space the log
1764 * is authoritative for. During replay, if a key in the subvolume
1765 * directory is in a logged range item, but not actually in the log
1766 * that means it was deleted from the directory before the fsync
1767 * and should be removed.
1769 static noinline
int find_dir_range(struct btrfs_root
*root
,
1770 struct btrfs_path
*path
,
1771 u64 dirid
, int key_type
,
1772 u64
*start_ret
, u64
*end_ret
)
1774 struct btrfs_key key
;
1776 struct btrfs_dir_log_item
*item
;
1780 if (*start_ret
== (u64
)-1)
1783 key
.objectid
= dirid
;
1784 key
.type
= key_type
;
1785 key
.offset
= *start_ret
;
1787 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1791 if (path
->slots
[0] == 0)
1796 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1798 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1802 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1803 struct btrfs_dir_log_item
);
1804 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1806 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1808 *start_ret
= key
.offset
;
1809 *end_ret
= found_end
;
1814 /* check the next slot in the tree to see if it is a valid item */
1815 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1816 if (path
->slots
[0] >= nritems
) {
1817 ret
= btrfs_next_leaf(root
, path
);
1824 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1826 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1830 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1831 struct btrfs_dir_log_item
);
1832 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1833 *start_ret
= key
.offset
;
1834 *end_ret
= found_end
;
1837 btrfs_release_path(path
);
1842 * this looks for a given directory item in the log. If the directory
1843 * item is not in the log, the item is removed and the inode it points
1846 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1847 struct btrfs_root
*root
,
1848 struct btrfs_root
*log
,
1849 struct btrfs_path
*path
,
1850 struct btrfs_path
*log_path
,
1852 struct btrfs_key
*dir_key
)
1855 struct extent_buffer
*eb
;
1858 struct btrfs_dir_item
*di
;
1859 struct btrfs_dir_item
*log_di
;
1862 unsigned long ptr_end
;
1864 struct inode
*inode
;
1865 struct btrfs_key location
;
1868 eb
= path
->nodes
[0];
1869 slot
= path
->slots
[0];
1870 item_size
= btrfs_item_size_nr(eb
, slot
);
1871 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1872 ptr_end
= ptr
+ item_size
;
1873 while (ptr
< ptr_end
) {
1874 di
= (struct btrfs_dir_item
*)ptr
;
1875 if (verify_dir_item(root
, eb
, di
)) {
1880 name_len
= btrfs_dir_name_len(eb
, di
);
1881 name
= kmalloc(name_len
, GFP_NOFS
);
1886 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1889 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1890 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1893 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1894 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1900 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
1901 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1902 btrfs_release_path(path
);
1903 btrfs_release_path(log_path
);
1904 inode
= read_one_inode(root
, location
.objectid
);
1910 ret
= link_to_fixup_dir(trans
, root
,
1911 path
, location
.objectid
);
1919 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1922 ret
= btrfs_run_delayed_items(trans
, root
);
1928 /* there might still be more names under this key
1929 * check and repeat if required
1931 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1937 } else if (IS_ERR(log_di
)) {
1939 return PTR_ERR(log_di
);
1941 btrfs_release_path(log_path
);
1944 ptr
= (unsigned long)(di
+ 1);
1949 btrfs_release_path(path
);
1950 btrfs_release_path(log_path
);
1955 * deletion replay happens before we copy any new directory items
1956 * out of the log or out of backreferences from inodes. It
1957 * scans the log to find ranges of keys that log is authoritative for,
1958 * and then scans the directory to find items in those ranges that are
1959 * not present in the log.
1961 * Anything we don't find in the log is unlinked and removed from the
1964 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1965 struct btrfs_root
*root
,
1966 struct btrfs_root
*log
,
1967 struct btrfs_path
*path
,
1968 u64 dirid
, int del_all
)
1972 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1974 struct btrfs_key dir_key
;
1975 struct btrfs_key found_key
;
1976 struct btrfs_path
*log_path
;
1979 dir_key
.objectid
= dirid
;
1980 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1981 log_path
= btrfs_alloc_path();
1985 dir
= read_one_inode(root
, dirid
);
1986 /* it isn't an error if the inode isn't there, that can happen
1987 * because we replay the deletes before we copy in the inode item
1991 btrfs_free_path(log_path
);
1999 range_end
= (u64
)-1;
2001 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2002 &range_start
, &range_end
);
2007 dir_key
.offset
= range_start
;
2010 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2015 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2016 if (path
->slots
[0] >= nritems
) {
2017 ret
= btrfs_next_leaf(root
, path
);
2021 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2023 if (found_key
.objectid
!= dirid
||
2024 found_key
.type
!= dir_key
.type
)
2027 if (found_key
.offset
> range_end
)
2030 ret
= check_item_in_log(trans
, root
, log
, path
,
2035 if (found_key
.offset
== (u64
)-1)
2037 dir_key
.offset
= found_key
.offset
+ 1;
2039 btrfs_release_path(path
);
2040 if (range_end
== (u64
)-1)
2042 range_start
= range_end
+ 1;
2047 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2048 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2049 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2050 btrfs_release_path(path
);
2054 btrfs_release_path(path
);
2055 btrfs_free_path(log_path
);
2061 * the process_func used to replay items from the log tree. This
2062 * gets called in two different stages. The first stage just looks
2063 * for inodes and makes sure they are all copied into the subvolume.
2065 * The second stage copies all the other item types from the log into
2066 * the subvolume. The two stage approach is slower, but gets rid of
2067 * lots of complexity around inodes referencing other inodes that exist
2068 * only in the log (references come from either directory items or inode
2071 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2072 struct walk_control
*wc
, u64 gen
)
2075 struct btrfs_path
*path
;
2076 struct btrfs_root
*root
= wc
->replay_dest
;
2077 struct btrfs_key key
;
2082 ret
= btrfs_read_buffer(eb
, gen
);
2086 level
= btrfs_header_level(eb
);
2091 path
= btrfs_alloc_path();
2095 nritems
= btrfs_header_nritems(eb
);
2096 for (i
= 0; i
< nritems
; i
++) {
2097 btrfs_item_key_to_cpu(eb
, &key
, i
);
2099 /* inode keys are done during the first stage */
2100 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2101 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2102 struct btrfs_inode_item
*inode_item
;
2105 inode_item
= btrfs_item_ptr(eb
, i
,
2106 struct btrfs_inode_item
);
2107 mode
= btrfs_inode_mode(eb
, inode_item
);
2108 if (S_ISDIR(mode
)) {
2109 ret
= replay_dir_deletes(wc
->trans
,
2110 root
, log
, path
, key
.objectid
, 0);
2114 ret
= overwrite_item(wc
->trans
, root
, path
,
2119 /* for regular files, make sure corresponding
2120 * orhpan item exist. extents past the new EOF
2121 * will be truncated later by orphan cleanup.
2123 if (S_ISREG(mode
)) {
2124 ret
= insert_orphan_item(wc
->trans
, root
,
2130 ret
= link_to_fixup_dir(wc
->trans
, root
,
2131 path
, key
.objectid
);
2136 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2137 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2138 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2144 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2147 /* these keys are simply copied */
2148 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2149 ret
= overwrite_item(wc
->trans
, root
, path
,
2153 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2154 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2155 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2157 if (ret
&& ret
!= -ENOENT
)
2160 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2161 ret
= replay_one_extent(wc
->trans
, root
, path
,
2165 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2166 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2172 btrfs_free_path(path
);
2176 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2177 struct btrfs_root
*root
,
2178 struct btrfs_path
*path
, int *level
,
2179 struct walk_control
*wc
)
2184 struct extent_buffer
*next
;
2185 struct extent_buffer
*cur
;
2186 struct extent_buffer
*parent
;
2190 WARN_ON(*level
< 0);
2191 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2193 while (*level
> 0) {
2194 WARN_ON(*level
< 0);
2195 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2196 cur
= path
->nodes
[*level
];
2198 WARN_ON(btrfs_header_level(cur
) != *level
);
2200 if (path
->slots
[*level
] >=
2201 btrfs_header_nritems(cur
))
2204 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2205 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2206 blocksize
= root
->nodesize
;
2208 parent
= path
->nodes
[*level
];
2209 root_owner
= btrfs_header_owner(parent
);
2211 next
= btrfs_find_create_tree_block(root
, bytenr
);
2216 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2218 free_extent_buffer(next
);
2222 path
->slots
[*level
]++;
2224 ret
= btrfs_read_buffer(next
, ptr_gen
);
2226 free_extent_buffer(next
);
2231 btrfs_tree_lock(next
);
2232 btrfs_set_lock_blocking(next
);
2233 clean_tree_block(trans
, root
, next
);
2234 btrfs_wait_tree_block_writeback(next
);
2235 btrfs_tree_unlock(next
);
2238 WARN_ON(root_owner
!=
2239 BTRFS_TREE_LOG_OBJECTID
);
2240 ret
= btrfs_free_and_pin_reserved_extent(root
,
2243 free_extent_buffer(next
);
2247 free_extent_buffer(next
);
2250 ret
= btrfs_read_buffer(next
, ptr_gen
);
2252 free_extent_buffer(next
);
2256 WARN_ON(*level
<= 0);
2257 if (path
->nodes
[*level
-1])
2258 free_extent_buffer(path
->nodes
[*level
-1]);
2259 path
->nodes
[*level
-1] = next
;
2260 *level
= btrfs_header_level(next
);
2261 path
->slots
[*level
] = 0;
2264 WARN_ON(*level
< 0);
2265 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2267 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2273 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2274 struct btrfs_root
*root
,
2275 struct btrfs_path
*path
, int *level
,
2276 struct walk_control
*wc
)
2283 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2284 slot
= path
->slots
[i
];
2285 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2288 WARN_ON(*level
== 0);
2291 struct extent_buffer
*parent
;
2292 if (path
->nodes
[*level
] == root
->node
)
2293 parent
= path
->nodes
[*level
];
2295 parent
= path
->nodes
[*level
+ 1];
2297 root_owner
= btrfs_header_owner(parent
);
2298 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2299 btrfs_header_generation(path
->nodes
[*level
]));
2304 struct extent_buffer
*next
;
2306 next
= path
->nodes
[*level
];
2309 btrfs_tree_lock(next
);
2310 btrfs_set_lock_blocking(next
);
2311 clean_tree_block(trans
, root
, next
);
2312 btrfs_wait_tree_block_writeback(next
);
2313 btrfs_tree_unlock(next
);
2316 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2317 ret
= btrfs_free_and_pin_reserved_extent(root
,
2318 path
->nodes
[*level
]->start
,
2319 path
->nodes
[*level
]->len
);
2323 free_extent_buffer(path
->nodes
[*level
]);
2324 path
->nodes
[*level
] = NULL
;
2332 * drop the reference count on the tree rooted at 'snap'. This traverses
2333 * the tree freeing any blocks that have a ref count of zero after being
2336 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2337 struct btrfs_root
*log
, struct walk_control
*wc
)
2342 struct btrfs_path
*path
;
2345 path
= btrfs_alloc_path();
2349 level
= btrfs_header_level(log
->node
);
2351 path
->nodes
[level
] = log
->node
;
2352 extent_buffer_get(log
->node
);
2353 path
->slots
[level
] = 0;
2356 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2364 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2373 /* was the root node processed? if not, catch it here */
2374 if (path
->nodes
[orig_level
]) {
2375 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2376 btrfs_header_generation(path
->nodes
[orig_level
]));
2380 struct extent_buffer
*next
;
2382 next
= path
->nodes
[orig_level
];
2385 btrfs_tree_lock(next
);
2386 btrfs_set_lock_blocking(next
);
2387 clean_tree_block(trans
, log
, next
);
2388 btrfs_wait_tree_block_writeback(next
);
2389 btrfs_tree_unlock(next
);
2392 WARN_ON(log
->root_key
.objectid
!=
2393 BTRFS_TREE_LOG_OBJECTID
);
2394 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2402 btrfs_free_path(path
);
2407 * helper function to update the item for a given subvolumes log root
2408 * in the tree of log roots
2410 static int update_log_root(struct btrfs_trans_handle
*trans
,
2411 struct btrfs_root
*log
)
2415 if (log
->log_transid
== 1) {
2416 /* insert root item on the first sync */
2417 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2418 &log
->root_key
, &log
->root_item
);
2420 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2421 &log
->root_key
, &log
->root_item
);
2426 static void wait_log_commit(struct btrfs_trans_handle
*trans
,
2427 struct btrfs_root
*root
, int transid
)
2430 int index
= transid
% 2;
2433 * we only allow two pending log transactions at a time,
2434 * so we know that if ours is more than 2 older than the
2435 * current transaction, we're done
2438 prepare_to_wait(&root
->log_commit_wait
[index
],
2439 &wait
, TASK_UNINTERRUPTIBLE
);
2440 mutex_unlock(&root
->log_mutex
);
2442 if (root
->log_transid_committed
< transid
&&
2443 atomic_read(&root
->log_commit
[index
]))
2446 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2447 mutex_lock(&root
->log_mutex
);
2448 } while (root
->log_transid_committed
< transid
&&
2449 atomic_read(&root
->log_commit
[index
]));
2452 static void wait_for_writer(struct btrfs_trans_handle
*trans
,
2453 struct btrfs_root
*root
)
2457 while (atomic_read(&root
->log_writers
)) {
2458 prepare_to_wait(&root
->log_writer_wait
,
2459 &wait
, TASK_UNINTERRUPTIBLE
);
2460 mutex_unlock(&root
->log_mutex
);
2461 if (atomic_read(&root
->log_writers
))
2463 finish_wait(&root
->log_writer_wait
, &wait
);
2464 mutex_lock(&root
->log_mutex
);
2468 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2469 struct btrfs_log_ctx
*ctx
)
2474 mutex_lock(&root
->log_mutex
);
2475 list_del_init(&ctx
->list
);
2476 mutex_unlock(&root
->log_mutex
);
2480 * Invoked in log mutex context, or be sure there is no other task which
2481 * can access the list.
2483 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2484 int index
, int error
)
2486 struct btrfs_log_ctx
*ctx
;
2489 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2493 list_for_each_entry(ctx
, &root
->log_ctxs
[index
], list
)
2494 ctx
->log_ret
= error
;
2496 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2500 * btrfs_sync_log does sends a given tree log down to the disk and
2501 * updates the super blocks to record it. When this call is done,
2502 * you know that any inodes previously logged are safely on disk only
2505 * Any other return value means you need to call btrfs_commit_transaction.
2506 * Some of the edge cases for fsyncing directories that have had unlinks
2507 * or renames done in the past mean that sometimes the only safe
2508 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2509 * that has happened.
2511 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2512 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2518 struct btrfs_root
*log
= root
->log_root
;
2519 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2520 int log_transid
= 0;
2521 struct btrfs_log_ctx root_log_ctx
;
2522 struct blk_plug plug
;
2524 mutex_lock(&root
->log_mutex
);
2525 log_transid
= ctx
->log_transid
;
2526 if (root
->log_transid_committed
>= log_transid
) {
2527 mutex_unlock(&root
->log_mutex
);
2528 return ctx
->log_ret
;
2531 index1
= log_transid
% 2;
2532 if (atomic_read(&root
->log_commit
[index1
])) {
2533 wait_log_commit(trans
, root
, log_transid
);
2534 mutex_unlock(&root
->log_mutex
);
2535 return ctx
->log_ret
;
2537 ASSERT(log_transid
== root
->log_transid
);
2538 atomic_set(&root
->log_commit
[index1
], 1);
2540 /* wait for previous tree log sync to complete */
2541 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2542 wait_log_commit(trans
, root
, log_transid
- 1);
2545 int batch
= atomic_read(&root
->log_batch
);
2546 /* when we're on an ssd, just kick the log commit out */
2547 if (!btrfs_test_opt(root
, SSD
) &&
2548 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2549 mutex_unlock(&root
->log_mutex
);
2550 schedule_timeout_uninterruptible(1);
2551 mutex_lock(&root
->log_mutex
);
2553 wait_for_writer(trans
, root
);
2554 if (batch
== atomic_read(&root
->log_batch
))
2558 /* bail out if we need to do a full commit */
2559 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2561 btrfs_free_logged_extents(log
, log_transid
);
2562 mutex_unlock(&root
->log_mutex
);
2566 if (log_transid
% 2 == 0)
2567 mark
= EXTENT_DIRTY
;
2571 /* we start IO on all the marked extents here, but we don't actually
2572 * wait for them until later.
2574 blk_start_plug(&plug
);
2575 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2577 blk_finish_plug(&plug
);
2578 btrfs_abort_transaction(trans
, root
, ret
);
2579 btrfs_free_logged_extents(log
, log_transid
);
2580 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2581 mutex_unlock(&root
->log_mutex
);
2585 btrfs_set_root_node(&log
->root_item
, log
->node
);
2587 root
->log_transid
++;
2588 log
->log_transid
= root
->log_transid
;
2589 root
->log_start_pid
= 0;
2591 * IO has been started, blocks of the log tree have WRITTEN flag set
2592 * in their headers. new modifications of the log will be written to
2593 * new positions. so it's safe to allow log writers to go in.
2595 mutex_unlock(&root
->log_mutex
);
2597 btrfs_init_log_ctx(&root_log_ctx
);
2599 mutex_lock(&log_root_tree
->log_mutex
);
2600 atomic_inc(&log_root_tree
->log_batch
);
2601 atomic_inc(&log_root_tree
->log_writers
);
2603 index2
= log_root_tree
->log_transid
% 2;
2604 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2605 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2607 mutex_unlock(&log_root_tree
->log_mutex
);
2609 ret
= update_log_root(trans
, log
);
2611 mutex_lock(&log_root_tree
->log_mutex
);
2612 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2614 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2615 wake_up(&log_root_tree
->log_writer_wait
);
2619 if (!list_empty(&root_log_ctx
.list
))
2620 list_del_init(&root_log_ctx
.list
);
2622 blk_finish_plug(&plug
);
2623 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2625 if (ret
!= -ENOSPC
) {
2626 btrfs_abort_transaction(trans
, root
, ret
);
2627 mutex_unlock(&log_root_tree
->log_mutex
);
2630 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2631 btrfs_free_logged_extents(log
, log_transid
);
2632 mutex_unlock(&log_root_tree
->log_mutex
);
2637 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2638 blk_finish_plug(&plug
);
2639 mutex_unlock(&log_root_tree
->log_mutex
);
2640 ret
= root_log_ctx
.log_ret
;
2644 index2
= root_log_ctx
.log_transid
% 2;
2645 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2646 blk_finish_plug(&plug
);
2647 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
,
2649 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2650 wait_log_commit(trans
, log_root_tree
,
2651 root_log_ctx
.log_transid
);
2652 mutex_unlock(&log_root_tree
->log_mutex
);
2654 ret
= root_log_ctx
.log_ret
;
2657 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2658 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2660 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2661 wait_log_commit(trans
, log_root_tree
,
2662 root_log_ctx
.log_transid
- 1);
2665 wait_for_writer(trans
, log_root_tree
);
2668 * now that we've moved on to the tree of log tree roots,
2669 * check the full commit flag again
2671 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2672 blk_finish_plug(&plug
);
2673 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2674 btrfs_free_logged_extents(log
, log_transid
);
2675 mutex_unlock(&log_root_tree
->log_mutex
);
2677 goto out_wake_log_root
;
2680 ret
= btrfs_write_marked_extents(log_root_tree
,
2681 &log_root_tree
->dirty_log_pages
,
2682 EXTENT_DIRTY
| EXTENT_NEW
);
2683 blk_finish_plug(&plug
);
2685 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2686 btrfs_abort_transaction(trans
, root
, ret
);
2687 btrfs_free_logged_extents(log
, log_transid
);
2688 mutex_unlock(&log_root_tree
->log_mutex
);
2689 goto out_wake_log_root
;
2691 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2693 ret
= btrfs_wait_marked_extents(log_root_tree
,
2694 &log_root_tree
->dirty_log_pages
,
2695 EXTENT_NEW
| EXTENT_DIRTY
);
2697 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2698 btrfs_free_logged_extents(log
, log_transid
);
2699 mutex_unlock(&log_root_tree
->log_mutex
);
2700 goto out_wake_log_root
;
2702 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2704 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2705 log_root_tree
->node
->start
);
2706 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2707 btrfs_header_level(log_root_tree
->node
));
2709 log_root_tree
->log_transid
++;
2710 mutex_unlock(&log_root_tree
->log_mutex
);
2713 * nobody else is going to jump in and write the the ctree
2714 * super here because the log_commit atomic below is protecting
2715 * us. We must be called with a transaction handle pinning
2716 * the running transaction open, so a full commit can't hop
2717 * in and cause problems either.
2719 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2721 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2722 btrfs_abort_transaction(trans
, root
, ret
);
2723 goto out_wake_log_root
;
2726 mutex_lock(&root
->log_mutex
);
2727 if (root
->last_log_commit
< log_transid
)
2728 root
->last_log_commit
= log_transid
;
2729 mutex_unlock(&root
->log_mutex
);
2733 * We needn't get log_mutex here because we are sure all
2734 * the other tasks are blocked.
2736 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2738 mutex_lock(&log_root_tree
->log_mutex
);
2739 log_root_tree
->log_transid_committed
++;
2740 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2741 mutex_unlock(&log_root_tree
->log_mutex
);
2743 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2744 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2747 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2749 mutex_lock(&root
->log_mutex
);
2750 root
->log_transid_committed
++;
2751 atomic_set(&root
->log_commit
[index1
], 0);
2752 mutex_unlock(&root
->log_mutex
);
2754 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2755 wake_up(&root
->log_commit_wait
[index1
]);
2759 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2760 struct btrfs_root
*log
)
2765 struct walk_control wc
= {
2767 .process_func
= process_one_buffer
2770 ret
= walk_log_tree(trans
, log
, &wc
);
2771 /* I don't think this can happen but just in case */
2773 btrfs_abort_transaction(trans
, log
, ret
);
2776 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2777 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
2782 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2783 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2787 * We may have short-circuited the log tree with the full commit logic
2788 * and left ordered extents on our list, so clear these out to keep us
2789 * from leaking inodes and memory.
2791 btrfs_free_logged_extents(log
, 0);
2792 btrfs_free_logged_extents(log
, 1);
2794 free_extent_buffer(log
->node
);
2799 * free all the extents used by the tree log. This should be called
2800 * at commit time of the full transaction
2802 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2804 if (root
->log_root
) {
2805 free_log_tree(trans
, root
->log_root
);
2806 root
->log_root
= NULL
;
2811 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2812 struct btrfs_fs_info
*fs_info
)
2814 if (fs_info
->log_root_tree
) {
2815 free_log_tree(trans
, fs_info
->log_root_tree
);
2816 fs_info
->log_root_tree
= NULL
;
2822 * If both a file and directory are logged, and unlinks or renames are
2823 * mixed in, we have a few interesting corners:
2825 * create file X in dir Y
2826 * link file X to X.link in dir Y
2828 * unlink file X but leave X.link
2831 * After a crash we would expect only X.link to exist. But file X
2832 * didn't get fsync'd again so the log has back refs for X and X.link.
2834 * We solve this by removing directory entries and inode backrefs from the
2835 * log when a file that was logged in the current transaction is
2836 * unlinked. Any later fsync will include the updated log entries, and
2837 * we'll be able to reconstruct the proper directory items from backrefs.
2839 * This optimizations allows us to avoid relogging the entire inode
2840 * or the entire directory.
2842 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2843 struct btrfs_root
*root
,
2844 const char *name
, int name_len
,
2845 struct inode
*dir
, u64 index
)
2847 struct btrfs_root
*log
;
2848 struct btrfs_dir_item
*di
;
2849 struct btrfs_path
*path
;
2853 u64 dir_ino
= btrfs_ino(dir
);
2855 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2858 ret
= join_running_log_trans(root
);
2862 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2864 log
= root
->log_root
;
2865 path
= btrfs_alloc_path();
2871 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
2872 name
, name_len
, -1);
2878 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2879 bytes_del
+= name_len
;
2885 btrfs_release_path(path
);
2886 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
2887 index
, name
, name_len
, -1);
2893 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2894 bytes_del
+= name_len
;
2901 /* update the directory size in the log to reflect the names
2905 struct btrfs_key key
;
2907 key
.objectid
= dir_ino
;
2909 key
.type
= BTRFS_INODE_ITEM_KEY
;
2910 btrfs_release_path(path
);
2912 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2918 struct btrfs_inode_item
*item
;
2921 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2922 struct btrfs_inode_item
);
2923 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2924 if (i_size
> bytes_del
)
2925 i_size
-= bytes_del
;
2928 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2929 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2932 btrfs_release_path(path
);
2935 btrfs_free_path(path
);
2937 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2938 if (ret
== -ENOSPC
) {
2939 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2942 btrfs_abort_transaction(trans
, root
, ret
);
2944 btrfs_end_log_trans(root
);
2949 /* see comments for btrfs_del_dir_entries_in_log */
2950 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2951 struct btrfs_root
*root
,
2952 const char *name
, int name_len
,
2953 struct inode
*inode
, u64 dirid
)
2955 struct btrfs_root
*log
;
2959 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2962 ret
= join_running_log_trans(root
);
2965 log
= root
->log_root
;
2966 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2968 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
2970 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2971 if (ret
== -ENOSPC
) {
2972 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2974 } else if (ret
< 0 && ret
!= -ENOENT
)
2975 btrfs_abort_transaction(trans
, root
, ret
);
2976 btrfs_end_log_trans(root
);
2982 * creates a range item in the log for 'dirid'. first_offset and
2983 * last_offset tell us which parts of the key space the log should
2984 * be considered authoritative for.
2986 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2987 struct btrfs_root
*log
,
2988 struct btrfs_path
*path
,
2989 int key_type
, u64 dirid
,
2990 u64 first_offset
, u64 last_offset
)
2993 struct btrfs_key key
;
2994 struct btrfs_dir_log_item
*item
;
2996 key
.objectid
= dirid
;
2997 key
.offset
= first_offset
;
2998 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2999 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3001 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3002 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3006 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3007 struct btrfs_dir_log_item
);
3008 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3009 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3010 btrfs_release_path(path
);
3015 * log all the items included in the current transaction for a given
3016 * directory. This also creates the range items in the log tree required
3017 * to replay anything deleted before the fsync
3019 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3020 struct btrfs_root
*root
, struct inode
*inode
,
3021 struct btrfs_path
*path
,
3022 struct btrfs_path
*dst_path
, int key_type
,
3023 u64 min_offset
, u64
*last_offset_ret
)
3025 struct btrfs_key min_key
;
3026 struct btrfs_root
*log
= root
->log_root
;
3027 struct extent_buffer
*src
;
3032 u64 first_offset
= min_offset
;
3033 u64 last_offset
= (u64
)-1;
3034 u64 ino
= btrfs_ino(inode
);
3036 log
= root
->log_root
;
3038 min_key
.objectid
= ino
;
3039 min_key
.type
= key_type
;
3040 min_key
.offset
= min_offset
;
3042 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3045 * we didn't find anything from this transaction, see if there
3046 * is anything at all
3048 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3049 min_key
.objectid
= ino
;
3050 min_key
.type
= key_type
;
3051 min_key
.offset
= (u64
)-1;
3052 btrfs_release_path(path
);
3053 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3055 btrfs_release_path(path
);
3058 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3060 /* if ret == 0 there are items for this type,
3061 * create a range to tell us the last key of this type.
3062 * otherwise, there are no items in this directory after
3063 * *min_offset, and we create a range to indicate that.
3066 struct btrfs_key tmp
;
3067 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3069 if (key_type
== tmp
.type
)
3070 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3075 /* go backward to find any previous key */
3076 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3078 struct btrfs_key tmp
;
3079 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3080 if (key_type
== tmp
.type
) {
3081 first_offset
= tmp
.offset
;
3082 ret
= overwrite_item(trans
, log
, dst_path
,
3083 path
->nodes
[0], path
->slots
[0],
3091 btrfs_release_path(path
);
3093 /* find the first key from this transaction again */
3094 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3095 if (WARN_ON(ret
!= 0))
3099 * we have a block from this transaction, log every item in it
3100 * from our directory
3103 struct btrfs_key tmp
;
3104 src
= path
->nodes
[0];
3105 nritems
= btrfs_header_nritems(src
);
3106 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3107 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3109 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3111 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3118 path
->slots
[0] = nritems
;
3121 * look ahead to the next item and see if it is also
3122 * from this directory and from this transaction
3124 ret
= btrfs_next_leaf(root
, path
);
3126 last_offset
= (u64
)-1;
3129 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3130 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3131 last_offset
= (u64
)-1;
3134 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3135 ret
= overwrite_item(trans
, log
, dst_path
,
3136 path
->nodes
[0], path
->slots
[0],
3141 last_offset
= tmp
.offset
;
3146 btrfs_release_path(path
);
3147 btrfs_release_path(dst_path
);
3150 *last_offset_ret
= last_offset
;
3152 * insert the log range keys to indicate where the log
3155 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3156 ino
, first_offset
, last_offset
);
3164 * logging directories is very similar to logging inodes, We find all the items
3165 * from the current transaction and write them to the log.
3167 * The recovery code scans the directory in the subvolume, and if it finds a
3168 * key in the range logged that is not present in the log tree, then it means
3169 * that dir entry was unlinked during the transaction.
3171 * In order for that scan to work, we must include one key smaller than
3172 * the smallest logged by this transaction and one key larger than the largest
3173 * key logged by this transaction.
3175 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3176 struct btrfs_root
*root
, struct inode
*inode
,
3177 struct btrfs_path
*path
,
3178 struct btrfs_path
*dst_path
)
3183 int key_type
= BTRFS_DIR_ITEM_KEY
;
3189 ret
= log_dir_items(trans
, root
, inode
, path
,
3190 dst_path
, key_type
, min_key
,
3194 if (max_key
== (u64
)-1)
3196 min_key
= max_key
+ 1;
3199 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3200 key_type
= BTRFS_DIR_INDEX_KEY
;
3207 * a helper function to drop items from the log before we relog an
3208 * inode. max_key_type indicates the highest item type to remove.
3209 * This cannot be run for file data extents because it does not
3210 * free the extents they point to.
3212 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3213 struct btrfs_root
*log
,
3214 struct btrfs_path
*path
,
3215 u64 objectid
, int max_key_type
)
3218 struct btrfs_key key
;
3219 struct btrfs_key found_key
;
3222 key
.objectid
= objectid
;
3223 key
.type
= max_key_type
;
3224 key
.offset
= (u64
)-1;
3227 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3228 BUG_ON(ret
== 0); /* Logic error */
3232 if (path
->slots
[0] == 0)
3236 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3239 if (found_key
.objectid
!= objectid
)
3242 found_key
.offset
= 0;
3244 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3247 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3248 path
->slots
[0] - start_slot
+ 1);
3250 * If start slot isn't 0 then we don't need to re-search, we've
3251 * found the last guy with the objectid in this tree.
3253 if (ret
|| start_slot
!= 0)
3255 btrfs_release_path(path
);
3257 btrfs_release_path(path
);
3263 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3264 struct extent_buffer
*leaf
,
3265 struct btrfs_inode_item
*item
,
3266 struct inode
*inode
, int log_inode_only
,
3269 struct btrfs_map_token token
;
3271 btrfs_init_map_token(&token
);
3273 if (log_inode_only
) {
3274 /* set the generation to zero so the recover code
3275 * can tell the difference between an logging
3276 * just to say 'this inode exists' and a logging
3277 * to say 'update this inode with these values'
3279 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3280 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3282 btrfs_set_token_inode_generation(leaf
, item
,
3283 BTRFS_I(inode
)->generation
,
3285 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3288 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3289 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3290 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3291 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3293 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3294 inode
->i_atime
.tv_sec
, &token
);
3295 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3296 inode
->i_atime
.tv_nsec
, &token
);
3298 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3299 inode
->i_mtime
.tv_sec
, &token
);
3300 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3301 inode
->i_mtime
.tv_nsec
, &token
);
3303 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3304 inode
->i_ctime
.tv_sec
, &token
);
3305 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3306 inode
->i_ctime
.tv_nsec
, &token
);
3308 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3311 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3312 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3313 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3314 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3315 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3318 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3319 struct btrfs_root
*log
, struct btrfs_path
*path
,
3320 struct inode
*inode
)
3322 struct btrfs_inode_item
*inode_item
;
3325 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3326 &BTRFS_I(inode
)->location
,
3327 sizeof(*inode_item
));
3328 if (ret
&& ret
!= -EEXIST
)
3330 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3331 struct btrfs_inode_item
);
3332 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3333 btrfs_release_path(path
);
3337 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3338 struct inode
*inode
,
3339 struct btrfs_path
*dst_path
,
3340 struct btrfs_path
*src_path
, u64
*last_extent
,
3341 int start_slot
, int nr
, int inode_only
,
3344 unsigned long src_offset
;
3345 unsigned long dst_offset
;
3346 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3347 struct btrfs_file_extent_item
*extent
;
3348 struct btrfs_inode_item
*inode_item
;
3349 struct extent_buffer
*src
= src_path
->nodes
[0];
3350 struct btrfs_key first_key
, last_key
, key
;
3352 struct btrfs_key
*ins_keys
;
3356 struct list_head ordered_sums
;
3357 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3358 bool has_extents
= false;
3359 bool need_find_last_extent
= true;
3362 INIT_LIST_HEAD(&ordered_sums
);
3364 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3365 nr
* sizeof(u32
), GFP_NOFS
);
3369 first_key
.objectid
= (u64
)-1;
3371 ins_sizes
= (u32
*)ins_data
;
3372 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3374 for (i
= 0; i
< nr
; i
++) {
3375 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3376 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3378 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3379 ins_keys
, ins_sizes
, nr
);
3385 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3386 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3387 dst_path
->slots
[0]);
3389 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3391 if ((i
== (nr
- 1)))
3392 last_key
= ins_keys
[i
];
3394 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3395 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3397 struct btrfs_inode_item
);
3398 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3399 inode
, inode_only
== LOG_INODE_EXISTS
,
3402 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3403 src_offset
, ins_sizes
[i
]);
3407 * We set need_find_last_extent here in case we know we were
3408 * processing other items and then walk into the first extent in
3409 * the inode. If we don't hit an extent then nothing changes,
3410 * we'll do the last search the next time around.
3412 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3414 if (first_key
.objectid
== (u64
)-1)
3415 first_key
= ins_keys
[i
];
3417 need_find_last_extent
= false;
3420 /* take a reference on file data extents so that truncates
3421 * or deletes of this inode don't have to relog the inode
3424 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3427 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3428 struct btrfs_file_extent_item
);
3430 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3433 found_type
= btrfs_file_extent_type(src
, extent
);
3434 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3436 ds
= btrfs_file_extent_disk_bytenr(src
,
3438 /* ds == 0 is a hole */
3442 dl
= btrfs_file_extent_disk_num_bytes(src
,
3444 cs
= btrfs_file_extent_offset(src
, extent
);
3445 cl
= btrfs_file_extent_num_bytes(src
,
3447 if (btrfs_file_extent_compression(src
,
3453 ret
= btrfs_lookup_csums_range(
3454 log
->fs_info
->csum_root
,
3455 ds
+ cs
, ds
+ cs
+ cl
- 1,
3458 btrfs_release_path(dst_path
);
3466 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3467 btrfs_release_path(dst_path
);
3471 * we have to do this after the loop above to avoid changing the
3472 * log tree while trying to change the log tree.
3475 while (!list_empty(&ordered_sums
)) {
3476 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3477 struct btrfs_ordered_sum
,
3480 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3481 list_del(&sums
->list
);
3488 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3490 * We don't have any leafs between our current one and the one
3491 * we processed before that can have file extent items for our
3492 * inode (and have a generation number smaller than our current
3495 need_find_last_extent
= false;
3499 * Because we use btrfs_search_forward we could skip leaves that were
3500 * not modified and then assume *last_extent is valid when it really
3501 * isn't. So back up to the previous leaf and read the end of the last
3502 * extent before we go and fill in holes.
3504 if (need_find_last_extent
) {
3507 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3512 if (src_path
->slots
[0])
3513 src_path
->slots
[0]--;
3514 src
= src_path
->nodes
[0];
3515 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3516 if (key
.objectid
!= btrfs_ino(inode
) ||
3517 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3519 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3520 struct btrfs_file_extent_item
);
3521 if (btrfs_file_extent_type(src
, extent
) ==
3522 BTRFS_FILE_EXTENT_INLINE
) {
3523 len
= btrfs_file_extent_inline_len(src
,
3526 *last_extent
= ALIGN(key
.offset
+ len
,
3529 len
= btrfs_file_extent_num_bytes(src
, extent
);
3530 *last_extent
= key
.offset
+ len
;
3534 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3535 * things could have happened
3537 * 1) A merge could have happened, so we could currently be on a leaf
3538 * that holds what we were copying in the first place.
3539 * 2) A split could have happened, and now not all of the items we want
3540 * are on the same leaf.
3542 * So we need to adjust how we search for holes, we need to drop the
3543 * path and re-search for the first extent key we found, and then walk
3544 * forward until we hit the last one we copied.
3546 if (need_find_last_extent
) {
3547 /* btrfs_prev_leaf could return 1 without releasing the path */
3548 btrfs_release_path(src_path
);
3549 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3554 src
= src_path
->nodes
[0];
3555 i
= src_path
->slots
[0];
3561 * Ok so here we need to go through and fill in any holes we may have
3562 * to make sure that holes are punched for those areas in case they had
3563 * extents previously.
3569 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3570 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3574 src
= src_path
->nodes
[0];
3578 btrfs_item_key_to_cpu(src
, &key
, i
);
3579 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3581 if (key
.objectid
!= btrfs_ino(inode
) ||
3582 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3586 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3587 if (btrfs_file_extent_type(src
, extent
) ==
3588 BTRFS_FILE_EXTENT_INLINE
) {
3589 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3590 extent_end
= ALIGN(key
.offset
+ len
, log
->sectorsize
);
3592 len
= btrfs_file_extent_num_bytes(src
, extent
);
3593 extent_end
= key
.offset
+ len
;
3597 if (*last_extent
== key
.offset
) {
3598 *last_extent
= extent_end
;
3601 offset
= *last_extent
;
3602 len
= key
.offset
- *last_extent
;
3603 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3604 offset
, 0, 0, len
, 0, len
, 0,
3608 *last_extent
= extent_end
;
3611 * Need to let the callers know we dropped the path so they should
3614 if (!ret
&& need_find_last_extent
)
3619 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3621 struct extent_map
*em1
, *em2
;
3623 em1
= list_entry(a
, struct extent_map
, list
);
3624 em2
= list_entry(b
, struct extent_map
, list
);
3626 if (em1
->start
< em2
->start
)
3628 else if (em1
->start
> em2
->start
)
3633 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3634 struct inode
*inode
,
3635 struct btrfs_root
*root
,
3636 const struct extent_map
*em
,
3637 const struct list_head
*logged_list
,
3638 bool *ordered_io_error
)
3640 struct btrfs_ordered_extent
*ordered
;
3641 struct btrfs_root
*log
= root
->log_root
;
3642 u64 mod_start
= em
->mod_start
;
3643 u64 mod_len
= em
->mod_len
;
3644 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3647 LIST_HEAD(ordered_sums
);
3650 *ordered_io_error
= false;
3652 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3653 em
->block_start
== EXTENT_MAP_HOLE
)
3657 * Wait far any ordered extent that covers our extent map. If it
3658 * finishes without an error, first check and see if our csums are on
3659 * our outstanding ordered extents.
3661 list_for_each_entry(ordered
, logged_list
, log_list
) {
3662 struct btrfs_ordered_sum
*sum
;
3667 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3668 mod_start
+ mod_len
<= ordered
->file_offset
)
3671 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3672 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3673 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3674 const u64 start
= ordered
->file_offset
;
3675 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3677 WARN_ON(ordered
->inode
!= inode
);
3678 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3681 wait_event(ordered
->wait
,
3682 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3683 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3685 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3687 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3688 * i_mapping flags, so that the next fsync won't get
3689 * an outdated io error too.
3691 btrfs_inode_check_errors(inode
);
3692 *ordered_io_error
= true;
3696 * We are going to copy all the csums on this ordered extent, so
3697 * go ahead and adjust mod_start and mod_len in case this
3698 * ordered extent has already been logged.
3700 if (ordered
->file_offset
> mod_start
) {
3701 if (ordered
->file_offset
+ ordered
->len
>=
3702 mod_start
+ mod_len
)
3703 mod_len
= ordered
->file_offset
- mod_start
;
3705 * If we have this case
3707 * |--------- logged extent ---------|
3708 * |----- ordered extent ----|
3710 * Just don't mess with mod_start and mod_len, we'll
3711 * just end up logging more csums than we need and it
3715 if (ordered
->file_offset
+ ordered
->len
<
3716 mod_start
+ mod_len
) {
3717 mod_len
= (mod_start
+ mod_len
) -
3718 (ordered
->file_offset
+ ordered
->len
);
3719 mod_start
= ordered
->file_offset
+
3730 * To keep us from looping for the above case of an ordered
3731 * extent that falls inside of the logged extent.
3733 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
3737 if (ordered
->csum_bytes_left
) {
3738 btrfs_start_ordered_extent(inode
, ordered
, 0);
3739 wait_event(ordered
->wait
,
3740 ordered
->csum_bytes_left
== 0);
3743 list_for_each_entry(sum
, &ordered
->list
, list
) {
3744 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
3750 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
3753 if (em
->compress_type
) {
3755 csum_len
= max(em
->block_len
, em
->orig_block_len
);
3757 csum_offset
= mod_start
- em
->start
;
3761 /* block start is already adjusted for the file extent offset. */
3762 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
3763 em
->block_start
+ csum_offset
,
3764 em
->block_start
+ csum_offset
+
3765 csum_len
- 1, &ordered_sums
, 0);
3769 while (!list_empty(&ordered_sums
)) {
3770 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3771 struct btrfs_ordered_sum
,
3774 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3775 list_del(&sums
->list
);
3782 static int log_one_extent(struct btrfs_trans_handle
*trans
,
3783 struct inode
*inode
, struct btrfs_root
*root
,
3784 const struct extent_map
*em
,
3785 struct btrfs_path
*path
,
3786 const struct list_head
*logged_list
,
3787 struct btrfs_log_ctx
*ctx
)
3789 struct btrfs_root
*log
= root
->log_root
;
3790 struct btrfs_file_extent_item
*fi
;
3791 struct extent_buffer
*leaf
;
3792 struct btrfs_map_token token
;
3793 struct btrfs_key key
;
3794 u64 extent_offset
= em
->start
- em
->orig_start
;
3797 int extent_inserted
= 0;
3798 bool ordered_io_err
= false;
3800 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
3805 if (ordered_io_err
) {
3810 btrfs_init_map_token(&token
);
3812 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
3813 em
->start
+ em
->len
, NULL
, 0, 1,
3814 sizeof(*fi
), &extent_inserted
);
3818 if (!extent_inserted
) {
3819 key
.objectid
= btrfs_ino(inode
);
3820 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3821 key
.offset
= em
->start
;
3823 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
3828 leaf
= path
->nodes
[0];
3829 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3830 struct btrfs_file_extent_item
);
3832 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
3834 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3835 btrfs_set_token_file_extent_type(leaf
, fi
,
3836 BTRFS_FILE_EXTENT_PREALLOC
,
3839 btrfs_set_token_file_extent_type(leaf
, fi
,
3840 BTRFS_FILE_EXTENT_REG
,
3843 block_len
= max(em
->block_len
, em
->orig_block_len
);
3844 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
3845 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
3848 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
3850 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
3851 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
3853 extent_offset
, &token
);
3854 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
3857 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
3858 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
3862 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
3863 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
3864 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
3865 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
3867 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
3868 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
3869 btrfs_mark_buffer_dirty(leaf
);
3871 btrfs_release_path(path
);
3876 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
3877 struct btrfs_root
*root
,
3878 struct inode
*inode
,
3879 struct btrfs_path
*path
,
3880 struct list_head
*logged_list
,
3881 struct btrfs_log_ctx
*ctx
)
3883 struct extent_map
*em
, *n
;
3884 struct list_head extents
;
3885 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
3890 INIT_LIST_HEAD(&extents
);
3892 write_lock(&tree
->lock
);
3893 test_gen
= root
->fs_info
->last_trans_committed
;
3895 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
3896 list_del_init(&em
->list
);
3899 * Just an arbitrary number, this can be really CPU intensive
3900 * once we start getting a lot of extents, and really once we
3901 * have a bunch of extents we just want to commit since it will
3904 if (++num
> 32768) {
3905 list_del_init(&tree
->modified_extents
);
3910 if (em
->generation
<= test_gen
)
3912 /* Need a ref to keep it from getting evicted from cache */
3913 atomic_inc(&em
->refs
);
3914 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
3915 list_add_tail(&em
->list
, &extents
);
3919 list_sort(NULL
, &extents
, extent_cmp
);
3922 while (!list_empty(&extents
)) {
3923 em
= list_entry(extents
.next
, struct extent_map
, list
);
3925 list_del_init(&em
->list
);
3928 * If we had an error we just need to delete everybody from our
3932 clear_em_logging(tree
, em
);
3933 free_extent_map(em
);
3937 write_unlock(&tree
->lock
);
3939 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
3941 write_lock(&tree
->lock
);
3942 clear_em_logging(tree
, em
);
3943 free_extent_map(em
);
3945 WARN_ON(!list_empty(&extents
));
3946 write_unlock(&tree
->lock
);
3948 btrfs_release_path(path
);
3952 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
3953 struct btrfs_path
*path
, u64
*size_ret
)
3955 struct btrfs_key key
;
3958 key
.objectid
= btrfs_ino(inode
);
3959 key
.type
= BTRFS_INODE_ITEM_KEY
;
3962 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
3965 } else if (ret
> 0) {
3966 *size_ret
= i_size_read(inode
);
3968 struct btrfs_inode_item
*item
;
3970 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3971 struct btrfs_inode_item
);
3972 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
3975 btrfs_release_path(path
);
3979 /* log a single inode in the tree log.
3980 * At least one parent directory for this inode must exist in the tree
3981 * or be logged already.
3983 * Any items from this inode changed by the current transaction are copied
3984 * to the log tree. An extra reference is taken on any extents in this
3985 * file, allowing us to avoid a whole pile of corner cases around logging
3986 * blocks that have been removed from the tree.
3988 * See LOG_INODE_ALL and related defines for a description of what inode_only
3991 * This handles both files and directories.
3993 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
3994 struct btrfs_root
*root
, struct inode
*inode
,
3998 struct btrfs_log_ctx
*ctx
)
4000 struct btrfs_path
*path
;
4001 struct btrfs_path
*dst_path
;
4002 struct btrfs_key min_key
;
4003 struct btrfs_key max_key
;
4004 struct btrfs_root
*log
= root
->log_root
;
4005 struct extent_buffer
*src
= NULL
;
4006 LIST_HEAD(logged_list
);
4007 u64 last_extent
= 0;
4011 int ins_start_slot
= 0;
4013 bool fast_search
= false;
4014 u64 ino
= btrfs_ino(inode
);
4015 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4016 u64 logged_isize
= 0;
4018 path
= btrfs_alloc_path();
4021 dst_path
= btrfs_alloc_path();
4023 btrfs_free_path(path
);
4027 min_key
.objectid
= ino
;
4028 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4031 max_key
.objectid
= ino
;
4034 /* today the code can only do partial logging of directories */
4035 if (S_ISDIR(inode
->i_mode
) ||
4036 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4037 &BTRFS_I(inode
)->runtime_flags
) &&
4038 inode_only
== LOG_INODE_EXISTS
))
4039 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4041 max_key
.type
= (u8
)-1;
4042 max_key
.offset
= (u64
)-1;
4045 * Only run delayed items if we are a dir or a new file.
4046 * Otherwise commit the delayed inode only, which is needed in
4047 * order for the log replay code to mark inodes for link count
4048 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4050 if (S_ISDIR(inode
->i_mode
) ||
4051 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
)
4052 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4054 ret
= btrfs_commit_inode_delayed_inode(inode
);
4057 btrfs_free_path(path
);
4058 btrfs_free_path(dst_path
);
4062 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4064 btrfs_get_logged_extents(inode
, &logged_list
, start
, end
);
4067 * a brute force approach to making sure we get the most uptodate
4068 * copies of everything.
4070 if (S_ISDIR(inode
->i_mode
)) {
4071 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4073 if (inode_only
== LOG_INODE_EXISTS
) {
4074 max_key_type
= BTRFS_INODE_EXTREF_KEY
;
4075 max_key
.type
= max_key_type
;
4077 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4079 if (inode_only
== LOG_INODE_EXISTS
) {
4081 * Make sure the new inode item we write to the log has
4082 * the same isize as the current one (if it exists).
4083 * This is necessary to prevent data loss after log
4084 * replay, and also to prevent doing a wrong expanding
4085 * truncate - for e.g. create file, write 4K into offset
4086 * 0, fsync, write 4K into offset 4096, add hard link,
4087 * fsync some other file (to sync log), power fail - if
4088 * we use the inode's current i_size, after log replay
4089 * we get a 8Kb file, with the last 4Kb extent as a hole
4090 * (zeroes), as if an expanding truncate happened,
4091 * instead of getting a file of 4Kb only.
4093 err
= logged_inode_size(log
, inode
, path
,
4098 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4099 &BTRFS_I(inode
)->runtime_flags
)) {
4100 if (inode_only
== LOG_INODE_EXISTS
) {
4101 max_key
.type
= BTRFS_INODE_EXTREF_KEY
;
4102 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4105 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4106 &BTRFS_I(inode
)->runtime_flags
);
4107 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4108 &BTRFS_I(inode
)->runtime_flags
);
4109 ret
= btrfs_truncate_inode_items(trans
, log
,
4112 } else if (test_bit(BTRFS_INODE_COPY_EVERYTHING
,
4113 &BTRFS_I(inode
)->runtime_flags
) ||
4114 inode_only
== LOG_INODE_EXISTS
) {
4115 if (inode_only
== LOG_INODE_ALL
) {
4116 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4117 &BTRFS_I(inode
)->runtime_flags
);
4119 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4121 max_key
.type
= BTRFS_INODE_EXTREF_KEY
;
4123 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4126 if (inode_only
== LOG_INODE_ALL
)
4128 ret
= log_inode_item(trans
, log
, dst_path
, inode
);
4144 ret
= btrfs_search_forward(root
, &min_key
,
4145 path
, trans
->transid
);
4149 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4150 if (min_key
.objectid
!= ino
)
4152 if (min_key
.type
> max_key
.type
)
4155 src
= path
->nodes
[0];
4156 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4159 } else if (!ins_nr
) {
4160 ins_start_slot
= path
->slots
[0];
4165 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4166 ins_start_slot
, ins_nr
, inode_only
,
4174 btrfs_release_path(path
);
4178 ins_start_slot
= path
->slots
[0];
4181 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4183 if (path
->slots
[0] < nritems
) {
4184 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4189 ret
= copy_items(trans
, inode
, dst_path
, path
,
4190 &last_extent
, ins_start_slot
,
4191 ins_nr
, inode_only
, logged_isize
);
4199 btrfs_release_path(path
);
4201 if (min_key
.offset
< (u64
)-1) {
4203 } else if (min_key
.type
< max_key
.type
) {
4211 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4212 ins_start_slot
, ins_nr
, inode_only
,
4223 btrfs_release_path(path
);
4224 btrfs_release_path(dst_path
);
4227 * Some ordered extents started by fsync might have completed
4228 * before we collected the ordered extents in logged_list, which
4229 * means they're gone, not in our logged_list nor in the inode's
4230 * ordered tree. We want the application/user space to know an
4231 * error happened while attempting to persist file data so that
4232 * it can take proper action. If such error happened, we leave
4233 * without writing to the log tree and the fsync must report the
4234 * file data write error and not commit the current transaction.
4236 err
= btrfs_inode_check_errors(inode
);
4241 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4247 } else if (inode_only
== LOG_INODE_ALL
) {
4248 struct extent_map
*em
, *n
;
4250 write_lock(&em_tree
->lock
);
4252 * We can't just remove every em if we're called for a ranged
4253 * fsync - that is, one that doesn't cover the whole possible
4254 * file range (0 to LLONG_MAX). This is because we can have
4255 * em's that fall outside the range we're logging and therefore
4256 * their ordered operations haven't completed yet
4257 * (btrfs_finish_ordered_io() not invoked yet). This means we
4258 * didn't get their respective file extent item in the fs/subvol
4259 * tree yet, and need to let the next fast fsync (one which
4260 * consults the list of modified extent maps) find the em so
4261 * that it logs a matching file extent item and waits for the
4262 * respective ordered operation to complete (if it's still
4265 * Removing every em outside the range we're logging would make
4266 * the next fast fsync not log their matching file extent items,
4267 * therefore making us lose data after a log replay.
4269 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4271 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4273 if (em
->mod_start
>= start
&& mod_end
<= end
)
4274 list_del_init(&em
->list
);
4276 write_unlock(&em_tree
->lock
);
4279 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
4280 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
4287 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4288 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
4291 btrfs_put_logged_extents(&logged_list
);
4293 btrfs_submit_logged_extents(&logged_list
, log
);
4294 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4296 btrfs_free_path(path
);
4297 btrfs_free_path(dst_path
);
4302 * follow the dentry parent pointers up the chain and see if any
4303 * of the directories in it require a full commit before they can
4304 * be logged. Returns zero if nothing special needs to be done or 1 if
4305 * a full commit is required.
4307 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
4308 struct inode
*inode
,
4309 struct dentry
*parent
,
4310 struct super_block
*sb
,
4314 struct btrfs_root
*root
;
4315 struct dentry
*old_parent
= NULL
;
4316 struct inode
*orig_inode
= inode
;
4319 * for regular files, if its inode is already on disk, we don't
4320 * have to worry about the parents at all. This is because
4321 * we can use the last_unlink_trans field to record renames
4322 * and other fun in this file.
4324 if (S_ISREG(inode
->i_mode
) &&
4325 BTRFS_I(inode
)->generation
<= last_committed
&&
4326 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
4329 if (!S_ISDIR(inode
->i_mode
)) {
4330 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
4332 inode
= parent
->d_inode
;
4337 * If we are logging a directory then we start with our inode,
4338 * not our parents inode, so we need to skipp setting the
4339 * logged_trans so that further down in the log code we don't
4340 * think this inode has already been logged.
4342 if (inode
!= orig_inode
)
4343 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4346 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
4347 root
= BTRFS_I(inode
)->root
;
4350 * make sure any commits to the log are forced
4351 * to be full commits
4353 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4358 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
4361 if (IS_ROOT(parent
))
4364 parent
= dget_parent(parent
);
4366 old_parent
= parent
;
4367 inode
= parent
->d_inode
;
4376 * helper function around btrfs_log_inode to make sure newly created
4377 * parent directories also end up in the log. A minimal inode and backref
4378 * only logging is done of any parent directories that are older than
4379 * the last committed transaction
4381 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
4382 struct btrfs_root
*root
, struct inode
*inode
,
4383 struct dentry
*parent
,
4387 struct btrfs_log_ctx
*ctx
)
4389 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
4390 struct super_block
*sb
;
4391 struct dentry
*old_parent
= NULL
;
4393 u64 last_committed
= root
->fs_info
->last_trans_committed
;
4394 const struct dentry
* const first_parent
= parent
;
4395 const bool did_unlink
= (BTRFS_I(inode
)->last_unlink_trans
>
4400 if (btrfs_test_opt(root
, NOTREELOG
)) {
4406 * The prev transaction commit doesn't complete, we need do
4407 * full commit by ourselves.
4409 if (root
->fs_info
->last_trans_log_full_commit
>
4410 root
->fs_info
->last_trans_committed
) {
4415 if (root
!= BTRFS_I(inode
)->root
||
4416 btrfs_root_refs(&root
->root_item
) == 0) {
4421 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
4422 sb
, last_committed
);
4426 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
4427 ret
= BTRFS_NO_LOG_SYNC
;
4431 ret
= start_log_trans(trans
, root
, ctx
);
4435 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
4440 * for regular files, if its inode is already on disk, we don't
4441 * have to worry about the parents at all. This is because
4442 * we can use the last_unlink_trans field to record renames
4443 * and other fun in this file.
4445 if (S_ISREG(inode
->i_mode
) &&
4446 BTRFS_I(inode
)->generation
<= last_committed
&&
4447 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
4453 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
4456 inode
= parent
->d_inode
;
4457 if (root
!= BTRFS_I(inode
)->root
)
4461 * On unlink we must make sure our immediate parent directory
4462 * inode is fully logged. This is to prevent leaving dangling
4463 * directory index entries and a wrong directory inode's i_size.
4464 * Not doing so can result in a directory being impossible to
4465 * delete after log replay (rmdir will always fail with error
4468 if (did_unlink
&& parent
== first_parent
)
4469 inode_only
= LOG_INODE_ALL
;
4471 inode_only
= LOG_INODE_EXISTS
;
4473 if (BTRFS_I(inode
)->generation
>
4474 root
->fs_info
->last_trans_committed
||
4475 inode_only
== LOG_INODE_ALL
) {
4476 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
,
4481 if (IS_ROOT(parent
))
4484 parent
= dget_parent(parent
);
4486 old_parent
= parent
;
4492 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4497 btrfs_remove_log_ctx(root
, ctx
);
4498 btrfs_end_log_trans(root
);
4504 * it is not safe to log dentry if the chunk root has added new
4505 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4506 * If this returns 1, you must commit the transaction to safely get your
4509 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
4510 struct btrfs_root
*root
, struct dentry
*dentry
,
4513 struct btrfs_log_ctx
*ctx
)
4515 struct dentry
*parent
= dget_parent(dentry
);
4518 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
,
4519 start
, end
, 0, ctx
);
4526 * should be called during mount to recover any replay any log trees
4529 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
4532 struct btrfs_path
*path
;
4533 struct btrfs_trans_handle
*trans
;
4534 struct btrfs_key key
;
4535 struct btrfs_key found_key
;
4536 struct btrfs_key tmp_key
;
4537 struct btrfs_root
*log
;
4538 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
4539 struct walk_control wc
= {
4540 .process_func
= process_one_buffer
,
4544 path
= btrfs_alloc_path();
4548 fs_info
->log_root_recovering
= 1;
4550 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
4551 if (IS_ERR(trans
)) {
4552 ret
= PTR_ERR(trans
);
4559 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
4561 btrfs_error(fs_info
, ret
, "Failed to pin buffers while "
4562 "recovering log root tree.");
4567 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
4568 key
.offset
= (u64
)-1;
4569 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4572 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
4575 btrfs_error(fs_info
, ret
,
4576 "Couldn't find tree log root.");
4580 if (path
->slots
[0] == 0)
4584 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
4586 btrfs_release_path(path
);
4587 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4590 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
4593 btrfs_error(fs_info
, ret
,
4594 "Couldn't read tree log root.");
4598 tmp_key
.objectid
= found_key
.offset
;
4599 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4600 tmp_key
.offset
= (u64
)-1;
4602 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
4603 if (IS_ERR(wc
.replay_dest
)) {
4604 ret
= PTR_ERR(wc
.replay_dest
);
4605 free_extent_buffer(log
->node
);
4606 free_extent_buffer(log
->commit_root
);
4608 btrfs_error(fs_info
, ret
, "Couldn't read target root "
4609 "for tree log recovery.");
4613 wc
.replay_dest
->log_root
= log
;
4614 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
4615 ret
= walk_log_tree(trans
, log
, &wc
);
4617 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
4618 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
4622 key
.offset
= found_key
.offset
- 1;
4623 wc
.replay_dest
->log_root
= NULL
;
4624 free_extent_buffer(log
->node
);
4625 free_extent_buffer(log
->commit_root
);
4631 if (found_key
.offset
== 0)
4634 btrfs_release_path(path
);
4636 /* step one is to pin it all, step two is to replay just inodes */
4639 wc
.process_func
= replay_one_buffer
;
4640 wc
.stage
= LOG_WALK_REPLAY_INODES
;
4643 /* step three is to replay everything */
4644 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
4649 btrfs_free_path(path
);
4651 /* step 4: commit the transaction, which also unpins the blocks */
4652 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
4656 free_extent_buffer(log_root_tree
->node
);
4657 log_root_tree
->log_root
= NULL
;
4658 fs_info
->log_root_recovering
= 0;
4659 kfree(log_root_tree
);
4664 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
4665 btrfs_free_path(path
);
4670 * there are some corner cases where we want to force a full
4671 * commit instead of allowing a directory to be logged.
4673 * They revolve around files there were unlinked from the directory, and
4674 * this function updates the parent directory so that a full commit is
4675 * properly done if it is fsync'd later after the unlinks are done.
4677 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
4678 struct inode
*dir
, struct inode
*inode
,
4682 * when we're logging a file, if it hasn't been renamed
4683 * or unlinked, and its inode is fully committed on disk,
4684 * we don't have to worry about walking up the directory chain
4685 * to log its parents.
4687 * So, we use the last_unlink_trans field to put this transid
4688 * into the file. When the file is logged we check it and
4689 * don't log the parents if the file is fully on disk.
4691 if (S_ISREG(inode
->i_mode
))
4692 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
4695 * if this directory was already logged any new
4696 * names for this file/dir will get recorded
4699 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
4703 * if the inode we're about to unlink was logged,
4704 * the log will be properly updated for any new names
4706 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
4710 * when renaming files across directories, if the directory
4711 * there we're unlinking from gets fsync'd later on, there's
4712 * no way to find the destination directory later and fsync it
4713 * properly. So, we have to be conservative and force commits
4714 * so the new name gets discovered.
4719 /* we can safely do the unlink without any special recording */
4723 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
4727 * Call this after adding a new name for a file and it will properly
4728 * update the log to reflect the new name.
4730 * It will return zero if all goes well, and it will return 1 if a
4731 * full transaction commit is required.
4733 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
4734 struct inode
*inode
, struct inode
*old_dir
,
4735 struct dentry
*parent
)
4737 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
4740 * this will force the logging code to walk the dentry chain
4743 if (S_ISREG(inode
->i_mode
))
4744 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
4747 * if this inode hasn't been logged and directory we're renaming it
4748 * from hasn't been logged, we don't need to log it
4750 if (BTRFS_I(inode
)->logged_trans
<=
4751 root
->fs_info
->last_trans_committed
&&
4752 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
4753 root
->fs_info
->last_trans_committed
))
4756 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
4757 LLONG_MAX
, 1, NULL
);