2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
32 #include "extent_map.h"
34 #include "transaction.h"
35 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
42 #include "dev-replace.h"
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
53 DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 static struct btrfs_fs_devices
*__alloc_fs_devices(void)
58 struct btrfs_fs_devices
*fs_devs
;
60 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_NOFS
);
62 return ERR_PTR(-ENOMEM
);
64 mutex_init(&fs_devs
->device_list_mutex
);
66 INIT_LIST_HEAD(&fs_devs
->devices
);
67 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
68 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
69 INIT_LIST_HEAD(&fs_devs
->list
);
75 * alloc_fs_devices - allocate struct btrfs_fs_devices
76 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
79 * Return: a pointer to a new &struct btrfs_fs_devices on success;
80 * ERR_PTR() on error. Returned struct is not linked onto any lists and
81 * can be destroyed with kfree() right away.
83 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
85 struct btrfs_fs_devices
*fs_devs
;
87 fs_devs
= __alloc_fs_devices();
92 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
94 generate_random_uuid(fs_devs
->fsid
);
99 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
101 struct btrfs_device
*device
;
102 WARN_ON(fs_devices
->opened
);
103 while (!list_empty(&fs_devices
->devices
)) {
104 device
= list_entry(fs_devices
->devices
.next
,
105 struct btrfs_device
, dev_list
);
106 list_del(&device
->dev_list
);
107 rcu_string_free(device
->name
);
113 static void btrfs_kobject_uevent(struct block_device
*bdev
,
114 enum kobject_action action
)
118 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
120 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
122 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
123 &disk_to_dev(bdev
->bd_disk
)->kobj
);
126 void btrfs_cleanup_fs_uuids(void)
128 struct btrfs_fs_devices
*fs_devices
;
130 while (!list_empty(&fs_uuids
)) {
131 fs_devices
= list_entry(fs_uuids
.next
,
132 struct btrfs_fs_devices
, list
);
133 list_del(&fs_devices
->list
);
134 free_fs_devices(fs_devices
);
138 static struct btrfs_device
*__alloc_device(void)
140 struct btrfs_device
*dev
;
142 dev
= kzalloc(sizeof(*dev
), GFP_NOFS
);
144 return ERR_PTR(-ENOMEM
);
146 INIT_LIST_HEAD(&dev
->dev_list
);
147 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
148 INIT_LIST_HEAD(&dev
->resized_list
);
150 spin_lock_init(&dev
->io_lock
);
152 spin_lock_init(&dev
->reada_lock
);
153 atomic_set(&dev
->reada_in_flight
, 0);
154 atomic_set(&dev
->dev_stats_ccnt
, 0);
155 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_WAIT
);
156 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_WAIT
);
161 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
164 struct btrfs_device
*dev
;
166 list_for_each_entry(dev
, head
, dev_list
) {
167 if (dev
->devid
== devid
&&
168 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
175 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
177 struct btrfs_fs_devices
*fs_devices
;
179 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
180 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
187 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
188 int flush
, struct block_device
**bdev
,
189 struct buffer_head
**bh
)
193 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
196 ret
= PTR_ERR(*bdev
);
197 printk(KERN_INFO
"BTRFS: open %s failed\n", device_path
);
202 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
203 ret
= set_blocksize(*bdev
, 4096);
205 blkdev_put(*bdev
, flags
);
208 invalidate_bdev(*bdev
);
209 *bh
= btrfs_read_dev_super(*bdev
);
212 blkdev_put(*bdev
, flags
);
224 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
225 struct bio
*head
, struct bio
*tail
)
228 struct bio
*old_head
;
230 old_head
= pending_bios
->head
;
231 pending_bios
->head
= head
;
232 if (pending_bios
->tail
)
233 tail
->bi_next
= old_head
;
235 pending_bios
->tail
= tail
;
239 * we try to collect pending bios for a device so we don't get a large
240 * number of procs sending bios down to the same device. This greatly
241 * improves the schedulers ability to collect and merge the bios.
243 * But, it also turns into a long list of bios to process and that is sure
244 * to eventually make the worker thread block. The solution here is to
245 * make some progress and then put this work struct back at the end of
246 * the list if the block device is congested. This way, multiple devices
247 * can make progress from a single worker thread.
249 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
252 struct backing_dev_info
*bdi
;
253 struct btrfs_fs_info
*fs_info
;
254 struct btrfs_pending_bios
*pending_bios
;
258 unsigned long num_run
;
259 unsigned long batch_run
= 0;
261 unsigned long last_waited
= 0;
263 int sync_pending
= 0;
264 struct blk_plug plug
;
267 * this function runs all the bios we've collected for
268 * a particular device. We don't want to wander off to
269 * another device without first sending all of these down.
270 * So, setup a plug here and finish it off before we return
272 blk_start_plug(&plug
);
274 bdi
= blk_get_backing_dev_info(device
->bdev
);
275 fs_info
= device
->dev_root
->fs_info
;
276 limit
= btrfs_async_submit_limit(fs_info
);
277 limit
= limit
* 2 / 3;
280 spin_lock(&device
->io_lock
);
285 /* take all the bios off the list at once and process them
286 * later on (without the lock held). But, remember the
287 * tail and other pointers so the bios can be properly reinserted
288 * into the list if we hit congestion
290 if (!force_reg
&& device
->pending_sync_bios
.head
) {
291 pending_bios
= &device
->pending_sync_bios
;
294 pending_bios
= &device
->pending_bios
;
298 pending
= pending_bios
->head
;
299 tail
= pending_bios
->tail
;
300 WARN_ON(pending
&& !tail
);
303 * if pending was null this time around, no bios need processing
304 * at all and we can stop. Otherwise it'll loop back up again
305 * and do an additional check so no bios are missed.
307 * device->running_pending is used to synchronize with the
310 if (device
->pending_sync_bios
.head
== NULL
&&
311 device
->pending_bios
.head
== NULL
) {
313 device
->running_pending
= 0;
316 device
->running_pending
= 1;
319 pending_bios
->head
= NULL
;
320 pending_bios
->tail
= NULL
;
322 spin_unlock(&device
->io_lock
);
327 /* we want to work on both lists, but do more bios on the
328 * sync list than the regular list
331 pending_bios
!= &device
->pending_sync_bios
&&
332 device
->pending_sync_bios
.head
) ||
333 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
334 device
->pending_bios
.head
)) {
335 spin_lock(&device
->io_lock
);
336 requeue_list(pending_bios
, pending
, tail
);
341 pending
= pending
->bi_next
;
344 if (atomic_dec_return(&fs_info
->nr_async_bios
) < limit
&&
345 waitqueue_active(&fs_info
->async_submit_wait
))
346 wake_up(&fs_info
->async_submit_wait
);
348 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
351 * if we're doing the sync list, record that our
352 * plug has some sync requests on it
354 * If we're doing the regular list and there are
355 * sync requests sitting around, unplug before
358 if (pending_bios
== &device
->pending_sync_bios
) {
360 } else if (sync_pending
) {
361 blk_finish_plug(&plug
);
362 blk_start_plug(&plug
);
366 btrfsic_submit_bio(cur
->bi_rw
, cur
);
373 * we made progress, there is more work to do and the bdi
374 * is now congested. Back off and let other work structs
377 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
378 fs_info
->fs_devices
->open_devices
> 1) {
379 struct io_context
*ioc
;
381 ioc
= current
->io_context
;
384 * the main goal here is that we don't want to
385 * block if we're going to be able to submit
386 * more requests without blocking.
388 * This code does two great things, it pokes into
389 * the elevator code from a filesystem _and_
390 * it makes assumptions about how batching works.
392 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
393 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
395 ioc
->last_waited
== last_waited
)) {
397 * we want to go through our batch of
398 * requests and stop. So, we copy out
399 * the ioc->last_waited time and test
400 * against it before looping
402 last_waited
= ioc
->last_waited
;
407 spin_lock(&device
->io_lock
);
408 requeue_list(pending_bios
, pending
, tail
);
409 device
->running_pending
= 1;
411 spin_unlock(&device
->io_lock
);
412 btrfs_queue_work(fs_info
->submit_workers
,
416 /* unplug every 64 requests just for good measure */
417 if (batch_run
% 64 == 0) {
418 blk_finish_plug(&plug
);
419 blk_start_plug(&plug
);
428 spin_lock(&device
->io_lock
);
429 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
431 spin_unlock(&device
->io_lock
);
434 blk_finish_plug(&plug
);
437 static void pending_bios_fn(struct btrfs_work
*work
)
439 struct btrfs_device
*device
;
441 device
= container_of(work
, struct btrfs_device
, work
);
442 run_scheduled_bios(device
);
446 * Add new device to list of registered devices
449 * 1 - first time device is seen
450 * 0 - device already known
453 static noinline
int device_list_add(const char *path
,
454 struct btrfs_super_block
*disk_super
,
455 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
457 struct btrfs_device
*device
;
458 struct btrfs_fs_devices
*fs_devices
;
459 struct rcu_string
*name
;
461 u64 found_transid
= btrfs_super_generation(disk_super
);
463 fs_devices
= find_fsid(disk_super
->fsid
);
465 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
466 if (IS_ERR(fs_devices
))
467 return PTR_ERR(fs_devices
);
469 list_add(&fs_devices
->list
, &fs_uuids
);
473 device
= __find_device(&fs_devices
->devices
, devid
,
474 disk_super
->dev_item
.uuid
);
478 if (fs_devices
->opened
)
481 device
= btrfs_alloc_device(NULL
, &devid
,
482 disk_super
->dev_item
.uuid
);
483 if (IS_ERR(device
)) {
484 /* we can safely leave the fs_devices entry around */
485 return PTR_ERR(device
);
488 name
= rcu_string_strdup(path
, GFP_NOFS
);
493 rcu_assign_pointer(device
->name
, name
);
495 mutex_lock(&fs_devices
->device_list_mutex
);
496 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
497 fs_devices
->num_devices
++;
498 mutex_unlock(&fs_devices
->device_list_mutex
);
501 device
->fs_devices
= fs_devices
;
502 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
504 * When FS is already mounted.
505 * 1. If you are here and if the device->name is NULL that
506 * means this device was missing at time of FS mount.
507 * 2. If you are here and if the device->name is different
508 * from 'path' that means either
509 * a. The same device disappeared and reappeared with
511 * b. The missing-disk-which-was-replaced, has
514 * We must allow 1 and 2a above. But 2b would be a spurious
517 * Further in case of 1 and 2a above, the disk at 'path'
518 * would have missed some transaction when it was away and
519 * in case of 2a the stale bdev has to be updated as well.
520 * 2b must not be allowed at all time.
524 * For now, we do allow update to btrfs_fs_device through the
525 * btrfs dev scan cli after FS has been mounted. We're still
526 * tracking a problem where systems fail mount by subvolume id
527 * when we reject replacement on a mounted FS.
529 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
531 * That is if the FS is _not_ mounted and if you
532 * are here, that means there is more than one
533 * disk with same uuid and devid.We keep the one
534 * with larger generation number or the last-in if
535 * generation are equal.
540 name
= rcu_string_strdup(path
, GFP_NOFS
);
543 rcu_string_free(device
->name
);
544 rcu_assign_pointer(device
->name
, name
);
545 if (device
->missing
) {
546 fs_devices
->missing_devices
--;
552 * Unmount does not free the btrfs_device struct but would zero
553 * generation along with most of the other members. So just update
554 * it back. We need it to pick the disk with largest generation
557 if (!fs_devices
->opened
)
558 device
->generation
= found_transid
;
560 *fs_devices_ret
= fs_devices
;
565 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
567 struct btrfs_fs_devices
*fs_devices
;
568 struct btrfs_device
*device
;
569 struct btrfs_device
*orig_dev
;
571 fs_devices
= alloc_fs_devices(orig
->fsid
);
572 if (IS_ERR(fs_devices
))
575 mutex_lock(&orig
->device_list_mutex
);
576 fs_devices
->total_devices
= orig
->total_devices
;
578 /* We have held the volume lock, it is safe to get the devices. */
579 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
580 struct rcu_string
*name
;
582 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
588 * This is ok to do without rcu read locked because we hold the
589 * uuid mutex so nothing we touch in here is going to disappear.
591 if (orig_dev
->name
) {
592 name
= rcu_string_strdup(orig_dev
->name
->str
, GFP_NOFS
);
597 rcu_assign_pointer(device
->name
, name
);
600 list_add(&device
->dev_list
, &fs_devices
->devices
);
601 device
->fs_devices
= fs_devices
;
602 fs_devices
->num_devices
++;
604 mutex_unlock(&orig
->device_list_mutex
);
607 mutex_unlock(&orig
->device_list_mutex
);
608 free_fs_devices(fs_devices
);
609 return ERR_PTR(-ENOMEM
);
612 void btrfs_close_extra_devices(struct btrfs_fs_info
*fs_info
,
613 struct btrfs_fs_devices
*fs_devices
, int step
)
615 struct btrfs_device
*device
, *next
;
616 struct btrfs_device
*latest_dev
= NULL
;
618 mutex_lock(&uuid_mutex
);
620 /* This is the initialized path, it is safe to release the devices. */
621 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
622 if (device
->in_fs_metadata
) {
623 if (!device
->is_tgtdev_for_dev_replace
&&
625 device
->generation
> latest_dev
->generation
)) {
631 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
633 * In the first step, keep the device which has
634 * the correct fsid and the devid that is used
635 * for the dev_replace procedure.
636 * In the second step, the dev_replace state is
637 * read from the device tree and it is known
638 * whether the procedure is really active or
639 * not, which means whether this device is
640 * used or whether it should be removed.
642 if (step
== 0 || device
->is_tgtdev_for_dev_replace
) {
647 blkdev_put(device
->bdev
, device
->mode
);
649 fs_devices
->open_devices
--;
651 if (device
->writeable
) {
652 list_del_init(&device
->dev_alloc_list
);
653 device
->writeable
= 0;
654 if (!device
->is_tgtdev_for_dev_replace
)
655 fs_devices
->rw_devices
--;
657 list_del_init(&device
->dev_list
);
658 fs_devices
->num_devices
--;
659 rcu_string_free(device
->name
);
663 if (fs_devices
->seed
) {
664 fs_devices
= fs_devices
->seed
;
668 fs_devices
->latest_bdev
= latest_dev
->bdev
;
670 mutex_unlock(&uuid_mutex
);
673 static void __free_device(struct work_struct
*work
)
675 struct btrfs_device
*device
;
677 device
= container_of(work
, struct btrfs_device
, rcu_work
);
680 blkdev_put(device
->bdev
, device
->mode
);
682 rcu_string_free(device
->name
);
686 static void free_device(struct rcu_head
*head
)
688 struct btrfs_device
*device
;
690 device
= container_of(head
, struct btrfs_device
, rcu
);
692 INIT_WORK(&device
->rcu_work
, __free_device
);
693 schedule_work(&device
->rcu_work
);
696 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
698 struct btrfs_device
*device
;
700 if (--fs_devices
->opened
> 0)
703 mutex_lock(&fs_devices
->device_list_mutex
);
704 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
705 struct btrfs_device
*new_device
;
706 struct rcu_string
*name
;
709 fs_devices
->open_devices
--;
711 if (device
->writeable
&&
712 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
713 list_del_init(&device
->dev_alloc_list
);
714 fs_devices
->rw_devices
--;
718 fs_devices
->missing_devices
--;
720 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
722 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
724 /* Safe because we are under uuid_mutex */
726 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
727 BUG_ON(!name
); /* -ENOMEM */
728 rcu_assign_pointer(new_device
->name
, name
);
731 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
732 new_device
->fs_devices
= device
->fs_devices
;
734 call_rcu(&device
->rcu
, free_device
);
736 mutex_unlock(&fs_devices
->device_list_mutex
);
738 WARN_ON(fs_devices
->open_devices
);
739 WARN_ON(fs_devices
->rw_devices
);
740 fs_devices
->opened
= 0;
741 fs_devices
->seeding
= 0;
746 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
748 struct btrfs_fs_devices
*seed_devices
= NULL
;
751 mutex_lock(&uuid_mutex
);
752 ret
= __btrfs_close_devices(fs_devices
);
753 if (!fs_devices
->opened
) {
754 seed_devices
= fs_devices
->seed
;
755 fs_devices
->seed
= NULL
;
757 mutex_unlock(&uuid_mutex
);
759 while (seed_devices
) {
760 fs_devices
= seed_devices
;
761 seed_devices
= fs_devices
->seed
;
762 __btrfs_close_devices(fs_devices
);
763 free_fs_devices(fs_devices
);
766 * Wait for rcu kworkers under __btrfs_close_devices
767 * to finish all blkdev_puts so device is really
768 * free when umount is done.
774 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
775 fmode_t flags
, void *holder
)
777 struct request_queue
*q
;
778 struct block_device
*bdev
;
779 struct list_head
*head
= &fs_devices
->devices
;
780 struct btrfs_device
*device
;
781 struct btrfs_device
*latest_dev
= NULL
;
782 struct buffer_head
*bh
;
783 struct btrfs_super_block
*disk_super
;
790 list_for_each_entry(device
, head
, dev_list
) {
796 /* Just open everything we can; ignore failures here */
797 if (btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
801 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
802 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
803 if (devid
!= device
->devid
)
806 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
810 device
->generation
= btrfs_super_generation(disk_super
);
812 device
->generation
> latest_dev
->generation
)
815 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
816 device
->writeable
= 0;
818 device
->writeable
= !bdev_read_only(bdev
);
822 q
= bdev_get_queue(bdev
);
823 if (blk_queue_discard(q
))
824 device
->can_discard
= 1;
827 device
->in_fs_metadata
= 0;
828 device
->mode
= flags
;
830 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
831 fs_devices
->rotating
= 1;
833 fs_devices
->open_devices
++;
834 if (device
->writeable
&&
835 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
836 fs_devices
->rw_devices
++;
837 list_add(&device
->dev_alloc_list
,
838 &fs_devices
->alloc_list
);
845 blkdev_put(bdev
, flags
);
848 if (fs_devices
->open_devices
== 0) {
852 fs_devices
->seeding
= seeding
;
853 fs_devices
->opened
= 1;
854 fs_devices
->latest_bdev
= latest_dev
->bdev
;
855 fs_devices
->total_rw_bytes
= 0;
860 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
861 fmode_t flags
, void *holder
)
865 mutex_lock(&uuid_mutex
);
866 if (fs_devices
->opened
) {
867 fs_devices
->opened
++;
870 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
872 mutex_unlock(&uuid_mutex
);
877 * Look for a btrfs signature on a device. This may be called out of the mount path
878 * and we are not allowed to call set_blocksize during the scan. The superblock
879 * is read via pagecache
881 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
882 struct btrfs_fs_devices
**fs_devices_ret
)
884 struct btrfs_super_block
*disk_super
;
885 struct block_device
*bdev
;
896 * we would like to check all the supers, but that would make
897 * a btrfs mount succeed after a mkfs from a different FS.
898 * So, we need to add a special mount option to scan for
899 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
901 bytenr
= btrfs_sb_offset(0);
903 mutex_lock(&uuid_mutex
);
905 bdev
= blkdev_get_by_path(path
, flags
, holder
);
912 /* make sure our super fits in the device */
913 if (bytenr
+ PAGE_CACHE_SIZE
>= i_size_read(bdev
->bd_inode
))
916 /* make sure our super fits in the page */
917 if (sizeof(*disk_super
) > PAGE_CACHE_SIZE
)
920 /* make sure our super doesn't straddle pages on disk */
921 index
= bytenr
>> PAGE_CACHE_SHIFT
;
922 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_CACHE_SHIFT
!= index
)
925 /* pull in the page with our super */
926 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
929 if (IS_ERR_OR_NULL(page
))
934 /* align our pointer to the offset of the super block */
935 disk_super
= p
+ (bytenr
& ~PAGE_CACHE_MASK
);
937 if (btrfs_super_bytenr(disk_super
) != bytenr
||
938 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
)
941 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
942 transid
= btrfs_super_generation(disk_super
);
943 total_devices
= btrfs_super_num_devices(disk_super
);
945 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
947 if (disk_super
->label
[0]) {
948 if (disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
949 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
950 printk(KERN_INFO
"BTRFS: device label %s ", disk_super
->label
);
952 printk(KERN_INFO
"BTRFS: device fsid %pU ", disk_super
->fsid
);
955 printk(KERN_CONT
"devid %llu transid %llu %s\n", devid
, transid
, path
);
958 if (!ret
&& fs_devices_ret
)
959 (*fs_devices_ret
)->total_devices
= total_devices
;
963 page_cache_release(page
);
966 blkdev_put(bdev
, flags
);
968 mutex_unlock(&uuid_mutex
);
972 /* helper to account the used device space in the range */
973 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
974 u64 end
, u64
*length
)
976 struct btrfs_key key
;
977 struct btrfs_root
*root
= device
->dev_root
;
978 struct btrfs_dev_extent
*dev_extent
;
979 struct btrfs_path
*path
;
983 struct extent_buffer
*l
;
987 if (start
>= device
->total_bytes
|| device
->is_tgtdev_for_dev_replace
)
990 path
= btrfs_alloc_path();
995 key
.objectid
= device
->devid
;
997 key
.type
= BTRFS_DEV_EXTENT_KEY
;
999 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1003 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1010 slot
= path
->slots
[0];
1011 if (slot
>= btrfs_header_nritems(l
)) {
1012 ret
= btrfs_next_leaf(root
, path
);
1020 btrfs_item_key_to_cpu(l
, &key
, slot
);
1022 if (key
.objectid
< device
->devid
)
1025 if (key
.objectid
> device
->devid
)
1028 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1031 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1032 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1034 if (key
.offset
<= start
&& extent_end
> end
) {
1035 *length
= end
- start
+ 1;
1037 } else if (key
.offset
<= start
&& extent_end
> start
)
1038 *length
+= extent_end
- start
;
1039 else if (key
.offset
> start
&& extent_end
<= end
)
1040 *length
+= extent_end
- key
.offset
;
1041 else if (key
.offset
> start
&& key
.offset
<= end
) {
1042 *length
+= end
- key
.offset
+ 1;
1044 } else if (key
.offset
> end
)
1052 btrfs_free_path(path
);
1056 static int contains_pending_extent(struct btrfs_trans_handle
*trans
,
1057 struct btrfs_device
*device
,
1058 u64
*start
, u64 len
)
1060 struct extent_map
*em
;
1061 struct list_head
*search_list
= &trans
->transaction
->pending_chunks
;
1065 list_for_each_entry(em
, search_list
, list
) {
1066 struct map_lookup
*map
;
1069 map
= (struct map_lookup
*)em
->bdev
;
1070 for (i
= 0; i
< map
->num_stripes
; i
++) {
1071 if (map
->stripes
[i
].dev
!= device
)
1073 if (map
->stripes
[i
].physical
>= *start
+ len
||
1074 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1077 *start
= map
->stripes
[i
].physical
+
1082 if (search_list
== &trans
->transaction
->pending_chunks
) {
1083 search_list
= &trans
->root
->fs_info
->pinned_chunks
;
1092 * find_free_dev_extent - find free space in the specified device
1093 * @device: the device which we search the free space in
1094 * @num_bytes: the size of the free space that we need
1095 * @start: store the start of the free space.
1096 * @len: the size of the free space. that we find, or the size of the max
1097 * free space if we don't find suitable free space
1099 * this uses a pretty simple search, the expectation is that it is
1100 * called very infrequently and that a given device has a small number
1103 * @start is used to store the start of the free space if we find. But if we
1104 * don't find suitable free space, it will be used to store the start position
1105 * of the max free space.
1107 * @len is used to store the size of the free space that we find.
1108 * But if we don't find suitable free space, it is used to store the size of
1109 * the max free space.
1111 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1112 struct btrfs_device
*device
, u64 num_bytes
,
1113 u64
*start
, u64
*len
)
1115 struct btrfs_key key
;
1116 struct btrfs_root
*root
= device
->dev_root
;
1117 struct btrfs_dev_extent
*dev_extent
;
1118 struct btrfs_path
*path
;
1124 u64 search_end
= device
->total_bytes
;
1127 struct extent_buffer
*l
;
1129 /* FIXME use last free of some kind */
1131 /* we don't want to overwrite the superblock on the drive,
1132 * so we make sure to start at an offset of at least 1MB
1134 search_start
= max(root
->fs_info
->alloc_start
, 1024ull * 1024);
1136 path
= btrfs_alloc_path();
1140 max_hole_start
= search_start
;
1144 if (search_start
>= search_end
|| device
->is_tgtdev_for_dev_replace
) {
1150 path
->search_commit_root
= 1;
1151 path
->skip_locking
= 1;
1153 key
.objectid
= device
->devid
;
1154 key
.offset
= search_start
;
1155 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1157 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1161 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1168 slot
= path
->slots
[0];
1169 if (slot
>= btrfs_header_nritems(l
)) {
1170 ret
= btrfs_next_leaf(root
, path
);
1178 btrfs_item_key_to_cpu(l
, &key
, slot
);
1180 if (key
.objectid
< device
->devid
)
1183 if (key
.objectid
> device
->devid
)
1186 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1189 if (key
.offset
> search_start
) {
1190 hole_size
= key
.offset
- search_start
;
1193 * Have to check before we set max_hole_start, otherwise
1194 * we could end up sending back this offset anyway.
1196 if (contains_pending_extent(trans
, device
,
1201 if (hole_size
> max_hole_size
) {
1202 max_hole_start
= search_start
;
1203 max_hole_size
= hole_size
;
1207 * If this free space is greater than which we need,
1208 * it must be the max free space that we have found
1209 * until now, so max_hole_start must point to the start
1210 * of this free space and the length of this free space
1211 * is stored in max_hole_size. Thus, we return
1212 * max_hole_start and max_hole_size and go back to the
1215 if (hole_size
>= num_bytes
) {
1221 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1222 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1224 if (extent_end
> search_start
)
1225 search_start
= extent_end
;
1232 * At this point, search_start should be the end of
1233 * allocated dev extents, and when shrinking the device,
1234 * search_end may be smaller than search_start.
1236 if (search_end
> search_start
)
1237 hole_size
= search_end
- search_start
;
1239 if (hole_size
> max_hole_size
) {
1240 max_hole_start
= search_start
;
1241 max_hole_size
= hole_size
;
1244 if (contains_pending_extent(trans
, device
, &search_start
, hole_size
)) {
1245 btrfs_release_path(path
);
1250 if (hole_size
< num_bytes
)
1256 btrfs_free_path(path
);
1257 *start
= max_hole_start
;
1259 *len
= max_hole_size
;
1263 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1264 struct btrfs_device
*device
,
1265 u64 start
, u64
*dev_extent_len
)
1268 struct btrfs_path
*path
;
1269 struct btrfs_root
*root
= device
->dev_root
;
1270 struct btrfs_key key
;
1271 struct btrfs_key found_key
;
1272 struct extent_buffer
*leaf
= NULL
;
1273 struct btrfs_dev_extent
*extent
= NULL
;
1275 path
= btrfs_alloc_path();
1279 key
.objectid
= device
->devid
;
1281 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1283 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1285 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1286 BTRFS_DEV_EXTENT_KEY
);
1289 leaf
= path
->nodes
[0];
1290 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1291 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1292 struct btrfs_dev_extent
);
1293 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1294 btrfs_dev_extent_length(leaf
, extent
) < start
);
1296 btrfs_release_path(path
);
1298 } else if (ret
== 0) {
1299 leaf
= path
->nodes
[0];
1300 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1301 struct btrfs_dev_extent
);
1303 btrfs_error(root
->fs_info
, ret
, "Slot search failed");
1307 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1309 ret
= btrfs_del_item(trans
, root
, path
);
1311 btrfs_error(root
->fs_info
, ret
,
1312 "Failed to remove dev extent item");
1314 trans
->transaction
->have_free_bgs
= 1;
1317 btrfs_free_path(path
);
1321 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1322 struct btrfs_device
*device
,
1323 u64 chunk_tree
, u64 chunk_objectid
,
1324 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1327 struct btrfs_path
*path
;
1328 struct btrfs_root
*root
= device
->dev_root
;
1329 struct btrfs_dev_extent
*extent
;
1330 struct extent_buffer
*leaf
;
1331 struct btrfs_key key
;
1333 WARN_ON(!device
->in_fs_metadata
);
1334 WARN_ON(device
->is_tgtdev_for_dev_replace
);
1335 path
= btrfs_alloc_path();
1339 key
.objectid
= device
->devid
;
1341 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1342 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1347 leaf
= path
->nodes
[0];
1348 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1349 struct btrfs_dev_extent
);
1350 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
1351 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
1352 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1354 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
1355 btrfs_dev_extent_chunk_tree_uuid(extent
), BTRFS_UUID_SIZE
);
1357 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1358 btrfs_mark_buffer_dirty(leaf
);
1360 btrfs_free_path(path
);
1364 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1366 struct extent_map_tree
*em_tree
;
1367 struct extent_map
*em
;
1371 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1372 read_lock(&em_tree
->lock
);
1373 n
= rb_last(&em_tree
->map
);
1375 em
= rb_entry(n
, struct extent_map
, rb_node
);
1376 ret
= em
->start
+ em
->len
;
1378 read_unlock(&em_tree
->lock
);
1383 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1387 struct btrfs_key key
;
1388 struct btrfs_key found_key
;
1389 struct btrfs_path
*path
;
1391 path
= btrfs_alloc_path();
1395 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1396 key
.type
= BTRFS_DEV_ITEM_KEY
;
1397 key
.offset
= (u64
)-1;
1399 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1403 BUG_ON(ret
== 0); /* Corruption */
1405 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1406 BTRFS_DEV_ITEMS_OBJECTID
,
1407 BTRFS_DEV_ITEM_KEY
);
1411 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1413 *devid_ret
= found_key
.offset
+ 1;
1417 btrfs_free_path(path
);
1422 * the device information is stored in the chunk root
1423 * the btrfs_device struct should be fully filled in
1425 static int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1426 struct btrfs_root
*root
,
1427 struct btrfs_device
*device
)
1430 struct btrfs_path
*path
;
1431 struct btrfs_dev_item
*dev_item
;
1432 struct extent_buffer
*leaf
;
1433 struct btrfs_key key
;
1436 root
= root
->fs_info
->chunk_root
;
1438 path
= btrfs_alloc_path();
1442 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1443 key
.type
= BTRFS_DEV_ITEM_KEY
;
1444 key
.offset
= device
->devid
;
1446 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1451 leaf
= path
->nodes
[0];
1452 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1454 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1455 btrfs_set_device_generation(leaf
, dev_item
, 0);
1456 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1457 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1458 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1459 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1460 btrfs_set_device_total_bytes(leaf
, dev_item
,
1461 btrfs_device_get_disk_total_bytes(device
));
1462 btrfs_set_device_bytes_used(leaf
, dev_item
,
1463 btrfs_device_get_bytes_used(device
));
1464 btrfs_set_device_group(leaf
, dev_item
, 0);
1465 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1466 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1467 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1469 ptr
= btrfs_device_uuid(dev_item
);
1470 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1471 ptr
= btrfs_device_fsid(dev_item
);
1472 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1473 btrfs_mark_buffer_dirty(leaf
);
1477 btrfs_free_path(path
);
1482 * Function to update ctime/mtime for a given device path.
1483 * Mainly used for ctime/mtime based probe like libblkid.
1485 static void update_dev_time(char *path_name
)
1489 filp
= filp_open(path_name
, O_RDWR
, 0);
1492 file_update_time(filp
);
1493 filp_close(filp
, NULL
);
1497 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1498 struct btrfs_device
*device
)
1501 struct btrfs_path
*path
;
1502 struct btrfs_key key
;
1503 struct btrfs_trans_handle
*trans
;
1505 root
= root
->fs_info
->chunk_root
;
1507 path
= btrfs_alloc_path();
1511 trans
= btrfs_start_transaction(root
, 0);
1512 if (IS_ERR(trans
)) {
1513 btrfs_free_path(path
);
1514 return PTR_ERR(trans
);
1516 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1517 key
.type
= BTRFS_DEV_ITEM_KEY
;
1518 key
.offset
= device
->devid
;
1520 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1529 ret
= btrfs_del_item(trans
, root
, path
);
1533 btrfs_free_path(path
);
1534 btrfs_commit_transaction(trans
, root
);
1538 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1540 struct btrfs_device
*device
;
1541 struct btrfs_device
*next_device
;
1542 struct block_device
*bdev
;
1543 struct buffer_head
*bh
= NULL
;
1544 struct btrfs_super_block
*disk_super
;
1545 struct btrfs_fs_devices
*cur_devices
;
1552 bool clear_super
= false;
1554 mutex_lock(&uuid_mutex
);
1557 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
1559 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1560 root
->fs_info
->avail_system_alloc_bits
|
1561 root
->fs_info
->avail_metadata_alloc_bits
;
1562 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
1564 num_devices
= root
->fs_info
->fs_devices
->num_devices
;
1565 btrfs_dev_replace_lock(&root
->fs_info
->dev_replace
);
1566 if (btrfs_dev_replace_is_ongoing(&root
->fs_info
->dev_replace
)) {
1567 WARN_ON(num_devices
< 1);
1570 btrfs_dev_replace_unlock(&root
->fs_info
->dev_replace
);
1572 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) && num_devices
<= 4) {
1573 ret
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
;
1577 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) && num_devices
<= 2) {
1578 ret
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
;
1582 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID5
) &&
1583 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1584 ret
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
;
1587 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID6
) &&
1588 root
->fs_info
->fs_devices
->rw_devices
<= 3) {
1589 ret
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
;
1593 if (strcmp(device_path
, "missing") == 0) {
1594 struct list_head
*devices
;
1595 struct btrfs_device
*tmp
;
1598 devices
= &root
->fs_info
->fs_devices
->devices
;
1600 * It is safe to read the devices since the volume_mutex
1603 list_for_each_entry(tmp
, devices
, dev_list
) {
1604 if (tmp
->in_fs_metadata
&&
1605 !tmp
->is_tgtdev_for_dev_replace
&&
1615 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1619 ret
= btrfs_get_bdev_and_sb(device_path
,
1620 FMODE_WRITE
| FMODE_EXCL
,
1621 root
->fs_info
->bdev_holder
, 0,
1625 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1626 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1627 dev_uuid
= disk_super
->dev_item
.uuid
;
1628 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1636 if (device
->is_tgtdev_for_dev_replace
) {
1637 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1641 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1642 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1646 if (device
->writeable
) {
1648 list_del_init(&device
->dev_alloc_list
);
1649 device
->fs_devices
->rw_devices
--;
1650 unlock_chunks(root
);
1654 mutex_unlock(&uuid_mutex
);
1655 ret
= btrfs_shrink_device(device
, 0);
1656 mutex_lock(&uuid_mutex
);
1661 * TODO: the superblock still includes this device in its num_devices
1662 * counter although write_all_supers() is not locked out. This
1663 * could give a filesystem state which requires a degraded mount.
1665 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1669 device
->in_fs_metadata
= 0;
1670 btrfs_scrub_cancel_dev(root
->fs_info
, device
);
1673 * the device list mutex makes sure that we don't change
1674 * the device list while someone else is writing out all
1675 * the device supers. Whoever is writing all supers, should
1676 * lock the device list mutex before getting the number of
1677 * devices in the super block (super_copy). Conversely,
1678 * whoever updates the number of devices in the super block
1679 * (super_copy) should hold the device list mutex.
1682 cur_devices
= device
->fs_devices
;
1683 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1684 list_del_rcu(&device
->dev_list
);
1686 device
->fs_devices
->num_devices
--;
1687 device
->fs_devices
->total_devices
--;
1689 if (device
->missing
)
1690 device
->fs_devices
->missing_devices
--;
1692 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1693 struct btrfs_device
, dev_list
);
1694 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1695 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1696 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1697 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1700 device
->fs_devices
->open_devices
--;
1701 /* remove sysfs entry */
1702 btrfs_kobj_rm_device(root
->fs_info
, device
);
1705 call_rcu(&device
->rcu
, free_device
);
1707 num_devices
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
1708 btrfs_set_super_num_devices(root
->fs_info
->super_copy
, num_devices
);
1709 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1711 if (cur_devices
->open_devices
== 0) {
1712 struct btrfs_fs_devices
*fs_devices
;
1713 fs_devices
= root
->fs_info
->fs_devices
;
1714 while (fs_devices
) {
1715 if (fs_devices
->seed
== cur_devices
) {
1716 fs_devices
->seed
= cur_devices
->seed
;
1719 fs_devices
= fs_devices
->seed
;
1721 cur_devices
->seed
= NULL
;
1722 __btrfs_close_devices(cur_devices
);
1723 free_fs_devices(cur_devices
);
1726 root
->fs_info
->num_tolerated_disk_barrier_failures
=
1727 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
1730 * at this point, the device is zero sized. We want to
1731 * remove it from the devices list and zero out the old super
1733 if (clear_super
&& disk_super
) {
1737 /* make sure this device isn't detected as part of
1740 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1741 set_buffer_dirty(bh
);
1742 sync_dirty_buffer(bh
);
1744 /* clear the mirror copies of super block on the disk
1745 * being removed, 0th copy is been taken care above and
1746 * the below would take of the rest
1748 for (i
= 1; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
1749 bytenr
= btrfs_sb_offset(i
);
1750 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
1751 i_size_read(bdev
->bd_inode
))
1755 bh
= __bread(bdev
, bytenr
/ 4096,
1756 BTRFS_SUPER_INFO_SIZE
);
1760 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1762 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1763 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1766 memset(&disk_super
->magic
, 0,
1767 sizeof(disk_super
->magic
));
1768 set_buffer_dirty(bh
);
1769 sync_dirty_buffer(bh
);
1776 /* Notify udev that device has changed */
1777 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
1779 /* Update ctime/mtime for device path for libblkid */
1780 update_dev_time(device_path
);
1786 blkdev_put(bdev
, FMODE_READ
| FMODE_EXCL
);
1788 mutex_unlock(&uuid_mutex
);
1791 if (device
->writeable
) {
1793 list_add(&device
->dev_alloc_list
,
1794 &root
->fs_info
->fs_devices
->alloc_list
);
1795 device
->fs_devices
->rw_devices
++;
1796 unlock_chunks(root
);
1801 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
1802 struct btrfs_device
*srcdev
)
1804 struct btrfs_fs_devices
*fs_devices
;
1806 WARN_ON(!mutex_is_locked(&fs_info
->fs_devices
->device_list_mutex
));
1809 * in case of fs with no seed, srcdev->fs_devices will point
1810 * to fs_devices of fs_info. However when the dev being replaced is
1811 * a seed dev it will point to the seed's local fs_devices. In short
1812 * srcdev will have its correct fs_devices in both the cases.
1814 fs_devices
= srcdev
->fs_devices
;
1816 list_del_rcu(&srcdev
->dev_list
);
1817 list_del_rcu(&srcdev
->dev_alloc_list
);
1818 fs_devices
->num_devices
--;
1819 if (srcdev
->missing
)
1820 fs_devices
->missing_devices
--;
1822 if (srcdev
->writeable
) {
1823 fs_devices
->rw_devices
--;
1824 /* zero out the old super if it is writable */
1825 btrfs_scratch_superblock(srcdev
);
1829 fs_devices
->open_devices
--;
1832 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
1833 struct btrfs_device
*srcdev
)
1835 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
1837 call_rcu(&srcdev
->rcu
, free_device
);
1840 * unless fs_devices is seed fs, num_devices shouldn't go
1843 BUG_ON(!fs_devices
->num_devices
&& !fs_devices
->seeding
);
1845 /* if this is no devs we rather delete the fs_devices */
1846 if (!fs_devices
->num_devices
) {
1847 struct btrfs_fs_devices
*tmp_fs_devices
;
1849 tmp_fs_devices
= fs_info
->fs_devices
;
1850 while (tmp_fs_devices
) {
1851 if (tmp_fs_devices
->seed
== fs_devices
) {
1852 tmp_fs_devices
->seed
= fs_devices
->seed
;
1855 tmp_fs_devices
= tmp_fs_devices
->seed
;
1857 fs_devices
->seed
= NULL
;
1858 __btrfs_close_devices(fs_devices
);
1859 free_fs_devices(fs_devices
);
1863 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
1864 struct btrfs_device
*tgtdev
)
1866 struct btrfs_device
*next_device
;
1868 mutex_lock(&uuid_mutex
);
1870 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
1872 btrfs_scratch_superblock(tgtdev
);
1873 fs_info
->fs_devices
->open_devices
--;
1875 fs_info
->fs_devices
->num_devices
--;
1877 next_device
= list_entry(fs_info
->fs_devices
->devices
.next
,
1878 struct btrfs_device
, dev_list
);
1879 if (tgtdev
->bdev
== fs_info
->sb
->s_bdev
)
1880 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1881 if (tgtdev
->bdev
== fs_info
->fs_devices
->latest_bdev
)
1882 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1883 list_del_rcu(&tgtdev
->dev_list
);
1885 call_rcu(&tgtdev
->rcu
, free_device
);
1887 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
1888 mutex_unlock(&uuid_mutex
);
1891 static int btrfs_find_device_by_path(struct btrfs_root
*root
, char *device_path
,
1892 struct btrfs_device
**device
)
1895 struct btrfs_super_block
*disk_super
;
1898 struct block_device
*bdev
;
1899 struct buffer_head
*bh
;
1902 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
1903 root
->fs_info
->bdev_holder
, 0, &bdev
, &bh
);
1906 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1907 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1908 dev_uuid
= disk_super
->dev_item
.uuid
;
1909 *device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
1914 blkdev_put(bdev
, FMODE_READ
);
1918 int btrfs_find_device_missing_or_by_path(struct btrfs_root
*root
,
1920 struct btrfs_device
**device
)
1923 if (strcmp(device_path
, "missing") == 0) {
1924 struct list_head
*devices
;
1925 struct btrfs_device
*tmp
;
1927 devices
= &root
->fs_info
->fs_devices
->devices
;
1929 * It is safe to read the devices since the volume_mutex
1930 * is held by the caller.
1932 list_for_each_entry(tmp
, devices
, dev_list
) {
1933 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1940 btrfs_err(root
->fs_info
, "no missing device found");
1946 return btrfs_find_device_by_path(root
, device_path
, device
);
1951 * does all the dirty work required for changing file system's UUID.
1953 static int btrfs_prepare_sprout(struct btrfs_root
*root
)
1955 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1956 struct btrfs_fs_devices
*old_devices
;
1957 struct btrfs_fs_devices
*seed_devices
;
1958 struct btrfs_super_block
*disk_super
= root
->fs_info
->super_copy
;
1959 struct btrfs_device
*device
;
1962 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1963 if (!fs_devices
->seeding
)
1966 seed_devices
= __alloc_fs_devices();
1967 if (IS_ERR(seed_devices
))
1968 return PTR_ERR(seed_devices
);
1970 old_devices
= clone_fs_devices(fs_devices
);
1971 if (IS_ERR(old_devices
)) {
1972 kfree(seed_devices
);
1973 return PTR_ERR(old_devices
);
1976 list_add(&old_devices
->list
, &fs_uuids
);
1978 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1979 seed_devices
->opened
= 1;
1980 INIT_LIST_HEAD(&seed_devices
->devices
);
1981 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1982 mutex_init(&seed_devices
->device_list_mutex
);
1984 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1985 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
1987 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
1988 device
->fs_devices
= seed_devices
;
1991 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1992 unlock_chunks(root
);
1994 fs_devices
->seeding
= 0;
1995 fs_devices
->num_devices
= 0;
1996 fs_devices
->open_devices
= 0;
1997 fs_devices
->missing_devices
= 0;
1998 fs_devices
->rotating
= 0;
1999 fs_devices
->seed
= seed_devices
;
2001 generate_random_uuid(fs_devices
->fsid
);
2002 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2003 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2004 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2006 super_flags
= btrfs_super_flags(disk_super
) &
2007 ~BTRFS_SUPER_FLAG_SEEDING
;
2008 btrfs_set_super_flags(disk_super
, super_flags
);
2014 * strore the expected generation for seed devices in device items.
2016 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2017 struct btrfs_root
*root
)
2019 struct btrfs_path
*path
;
2020 struct extent_buffer
*leaf
;
2021 struct btrfs_dev_item
*dev_item
;
2022 struct btrfs_device
*device
;
2023 struct btrfs_key key
;
2024 u8 fs_uuid
[BTRFS_UUID_SIZE
];
2025 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2029 path
= btrfs_alloc_path();
2033 root
= root
->fs_info
->chunk_root
;
2034 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2036 key
.type
= BTRFS_DEV_ITEM_KEY
;
2039 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2043 leaf
= path
->nodes
[0];
2045 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2046 ret
= btrfs_next_leaf(root
, path
);
2051 leaf
= path
->nodes
[0];
2052 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2053 btrfs_release_path(path
);
2057 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2058 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2059 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2062 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2063 struct btrfs_dev_item
);
2064 devid
= btrfs_device_id(leaf
, dev_item
);
2065 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2067 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2069 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
,
2071 BUG_ON(!device
); /* Logic error */
2073 if (device
->fs_devices
->seeding
) {
2074 btrfs_set_device_generation(leaf
, dev_item
,
2075 device
->generation
);
2076 btrfs_mark_buffer_dirty(leaf
);
2084 btrfs_free_path(path
);
2088 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
2090 struct request_queue
*q
;
2091 struct btrfs_trans_handle
*trans
;
2092 struct btrfs_device
*device
;
2093 struct block_device
*bdev
;
2094 struct list_head
*devices
;
2095 struct super_block
*sb
= root
->fs_info
->sb
;
2096 struct rcu_string
*name
;
2098 int seeding_dev
= 0;
2101 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
2104 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2105 root
->fs_info
->bdev_holder
);
2107 return PTR_ERR(bdev
);
2109 if (root
->fs_info
->fs_devices
->seeding
) {
2111 down_write(&sb
->s_umount
);
2112 mutex_lock(&uuid_mutex
);
2115 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2117 devices
= &root
->fs_info
->fs_devices
->devices
;
2119 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2120 list_for_each_entry(device
, devices
, dev_list
) {
2121 if (device
->bdev
== bdev
) {
2124 &root
->fs_info
->fs_devices
->device_list_mutex
);
2128 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2130 device
= btrfs_alloc_device(root
->fs_info
, NULL
, NULL
);
2131 if (IS_ERR(device
)) {
2132 /* we can safely leave the fs_devices entry around */
2133 ret
= PTR_ERR(device
);
2137 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2143 rcu_assign_pointer(device
->name
, name
);
2145 trans
= btrfs_start_transaction(root
, 0);
2146 if (IS_ERR(trans
)) {
2147 rcu_string_free(device
->name
);
2149 ret
= PTR_ERR(trans
);
2153 q
= bdev_get_queue(bdev
);
2154 if (blk_queue_discard(q
))
2155 device
->can_discard
= 1;
2156 device
->writeable
= 1;
2157 device
->generation
= trans
->transid
;
2158 device
->io_width
= root
->sectorsize
;
2159 device
->io_align
= root
->sectorsize
;
2160 device
->sector_size
= root
->sectorsize
;
2161 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
2162 device
->disk_total_bytes
= device
->total_bytes
;
2163 device
->commit_total_bytes
= device
->total_bytes
;
2164 device
->dev_root
= root
->fs_info
->dev_root
;
2165 device
->bdev
= bdev
;
2166 device
->in_fs_metadata
= 1;
2167 device
->is_tgtdev_for_dev_replace
= 0;
2168 device
->mode
= FMODE_EXCL
;
2169 device
->dev_stats_valid
= 1;
2170 set_blocksize(device
->bdev
, 4096);
2173 sb
->s_flags
&= ~MS_RDONLY
;
2174 ret
= btrfs_prepare_sprout(root
);
2175 BUG_ON(ret
); /* -ENOMEM */
2178 device
->fs_devices
= root
->fs_info
->fs_devices
;
2180 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2182 list_add_rcu(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
2183 list_add(&device
->dev_alloc_list
,
2184 &root
->fs_info
->fs_devices
->alloc_list
);
2185 root
->fs_info
->fs_devices
->num_devices
++;
2186 root
->fs_info
->fs_devices
->open_devices
++;
2187 root
->fs_info
->fs_devices
->rw_devices
++;
2188 root
->fs_info
->fs_devices
->total_devices
++;
2189 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2191 spin_lock(&root
->fs_info
->free_chunk_lock
);
2192 root
->fs_info
->free_chunk_space
+= device
->total_bytes
;
2193 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2195 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
2196 root
->fs_info
->fs_devices
->rotating
= 1;
2198 tmp
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
2199 btrfs_set_super_total_bytes(root
->fs_info
->super_copy
,
2200 tmp
+ device
->total_bytes
);
2202 tmp
= btrfs_super_num_devices(root
->fs_info
->super_copy
);
2203 btrfs_set_super_num_devices(root
->fs_info
->super_copy
,
2206 /* add sysfs device entry */
2207 btrfs_kobj_add_device(root
->fs_info
, device
);
2210 * we've got more storage, clear any full flags on the space
2213 btrfs_clear_space_info_full(root
->fs_info
);
2215 unlock_chunks(root
);
2216 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2220 ret
= init_first_rw_device(trans
, root
, device
);
2221 unlock_chunks(root
);
2223 btrfs_abort_transaction(trans
, root
, ret
);
2228 ret
= btrfs_add_device(trans
, root
, device
);
2230 btrfs_abort_transaction(trans
, root
, ret
);
2235 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2237 ret
= btrfs_finish_sprout(trans
, root
);
2239 btrfs_abort_transaction(trans
, root
, ret
);
2243 /* Sprouting would change fsid of the mounted root,
2244 * so rename the fsid on the sysfs
2246 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2247 root
->fs_info
->fsid
);
2248 if (kobject_rename(&root
->fs_info
->super_kobj
, fsid_buf
))
2252 root
->fs_info
->num_tolerated_disk_barrier_failures
=
2253 btrfs_calc_num_tolerated_disk_barrier_failures(root
->fs_info
);
2254 ret
= btrfs_commit_transaction(trans
, root
);
2257 mutex_unlock(&uuid_mutex
);
2258 up_write(&sb
->s_umount
);
2260 if (ret
) /* transaction commit */
2263 ret
= btrfs_relocate_sys_chunks(root
);
2265 btrfs_error(root
->fs_info
, ret
,
2266 "Failed to relocate sys chunks after "
2267 "device initialization. This can be fixed "
2268 "using the \"btrfs balance\" command.");
2269 trans
= btrfs_attach_transaction(root
);
2270 if (IS_ERR(trans
)) {
2271 if (PTR_ERR(trans
) == -ENOENT
)
2273 return PTR_ERR(trans
);
2275 ret
= btrfs_commit_transaction(trans
, root
);
2278 /* Update ctime/mtime for libblkid */
2279 update_dev_time(device_path
);
2283 btrfs_end_transaction(trans
, root
);
2284 rcu_string_free(device
->name
);
2285 btrfs_kobj_rm_device(root
->fs_info
, device
);
2288 blkdev_put(bdev
, FMODE_EXCL
);
2290 mutex_unlock(&uuid_mutex
);
2291 up_write(&sb
->s_umount
);
2296 int btrfs_init_dev_replace_tgtdev(struct btrfs_root
*root
, char *device_path
,
2297 struct btrfs_device
*srcdev
,
2298 struct btrfs_device
**device_out
)
2300 struct request_queue
*q
;
2301 struct btrfs_device
*device
;
2302 struct block_device
*bdev
;
2303 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2304 struct list_head
*devices
;
2305 struct rcu_string
*name
;
2306 u64 devid
= BTRFS_DEV_REPLACE_DEVID
;
2310 if (fs_info
->fs_devices
->seeding
) {
2311 btrfs_err(fs_info
, "the filesystem is a seed filesystem!");
2315 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2316 fs_info
->bdev_holder
);
2318 btrfs_err(fs_info
, "target device %s is invalid!", device_path
);
2319 return PTR_ERR(bdev
);
2322 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2324 devices
= &fs_info
->fs_devices
->devices
;
2325 list_for_each_entry(device
, devices
, dev_list
) {
2326 if (device
->bdev
== bdev
) {
2327 btrfs_err(fs_info
, "target device is in the filesystem!");
2334 if (i_size_read(bdev
->bd_inode
) <
2335 btrfs_device_get_total_bytes(srcdev
)) {
2336 btrfs_err(fs_info
, "target device is smaller than source device!");
2342 device
= btrfs_alloc_device(NULL
, &devid
, NULL
);
2343 if (IS_ERR(device
)) {
2344 ret
= PTR_ERR(device
);
2348 name
= rcu_string_strdup(device_path
, GFP_NOFS
);
2354 rcu_assign_pointer(device
->name
, name
);
2356 q
= bdev_get_queue(bdev
);
2357 if (blk_queue_discard(q
))
2358 device
->can_discard
= 1;
2359 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2360 device
->writeable
= 1;
2361 device
->generation
= 0;
2362 device
->io_width
= root
->sectorsize
;
2363 device
->io_align
= root
->sectorsize
;
2364 device
->sector_size
= root
->sectorsize
;
2365 device
->total_bytes
= btrfs_device_get_total_bytes(srcdev
);
2366 device
->disk_total_bytes
= btrfs_device_get_disk_total_bytes(srcdev
);
2367 device
->bytes_used
= btrfs_device_get_bytes_used(srcdev
);
2368 ASSERT(list_empty(&srcdev
->resized_list
));
2369 device
->commit_total_bytes
= srcdev
->commit_total_bytes
;
2370 device
->commit_bytes_used
= device
->bytes_used
;
2371 device
->dev_root
= fs_info
->dev_root
;
2372 device
->bdev
= bdev
;
2373 device
->in_fs_metadata
= 1;
2374 device
->is_tgtdev_for_dev_replace
= 1;
2375 device
->mode
= FMODE_EXCL
;
2376 device
->dev_stats_valid
= 1;
2377 set_blocksize(device
->bdev
, 4096);
2378 device
->fs_devices
= fs_info
->fs_devices
;
2379 list_add(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2380 fs_info
->fs_devices
->num_devices
++;
2381 fs_info
->fs_devices
->open_devices
++;
2382 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2384 *device_out
= device
;
2388 blkdev_put(bdev
, FMODE_EXCL
);
2392 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info
*fs_info
,
2393 struct btrfs_device
*tgtdev
)
2395 WARN_ON(fs_info
->fs_devices
->rw_devices
== 0);
2396 tgtdev
->io_width
= fs_info
->dev_root
->sectorsize
;
2397 tgtdev
->io_align
= fs_info
->dev_root
->sectorsize
;
2398 tgtdev
->sector_size
= fs_info
->dev_root
->sectorsize
;
2399 tgtdev
->dev_root
= fs_info
->dev_root
;
2400 tgtdev
->in_fs_metadata
= 1;
2403 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2404 struct btrfs_device
*device
)
2407 struct btrfs_path
*path
;
2408 struct btrfs_root
*root
;
2409 struct btrfs_dev_item
*dev_item
;
2410 struct extent_buffer
*leaf
;
2411 struct btrfs_key key
;
2413 root
= device
->dev_root
->fs_info
->chunk_root
;
2415 path
= btrfs_alloc_path();
2419 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2420 key
.type
= BTRFS_DEV_ITEM_KEY
;
2421 key
.offset
= device
->devid
;
2423 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2432 leaf
= path
->nodes
[0];
2433 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2435 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2436 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2437 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2438 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2439 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2440 btrfs_set_device_total_bytes(leaf
, dev_item
,
2441 btrfs_device_get_disk_total_bytes(device
));
2442 btrfs_set_device_bytes_used(leaf
, dev_item
,
2443 btrfs_device_get_bytes_used(device
));
2444 btrfs_mark_buffer_dirty(leaf
);
2447 btrfs_free_path(path
);
2451 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2452 struct btrfs_device
*device
, u64 new_size
)
2454 struct btrfs_super_block
*super_copy
=
2455 device
->dev_root
->fs_info
->super_copy
;
2456 struct btrfs_fs_devices
*fs_devices
;
2460 if (!device
->writeable
)
2463 lock_chunks(device
->dev_root
);
2464 old_total
= btrfs_super_total_bytes(super_copy
);
2465 diff
= new_size
- device
->total_bytes
;
2467 if (new_size
<= device
->total_bytes
||
2468 device
->is_tgtdev_for_dev_replace
) {
2469 unlock_chunks(device
->dev_root
);
2473 fs_devices
= device
->dev_root
->fs_info
->fs_devices
;
2475 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
2476 device
->fs_devices
->total_rw_bytes
+= diff
;
2478 btrfs_device_set_total_bytes(device
, new_size
);
2479 btrfs_device_set_disk_total_bytes(device
, new_size
);
2480 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
2481 if (list_empty(&device
->resized_list
))
2482 list_add_tail(&device
->resized_list
,
2483 &fs_devices
->resized_devices
);
2484 unlock_chunks(device
->dev_root
);
2486 return btrfs_update_device(trans
, device
);
2489 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2490 struct btrfs_root
*root
,
2491 u64 chunk_tree
, u64 chunk_objectid
,
2495 struct btrfs_path
*path
;
2496 struct btrfs_key key
;
2498 root
= root
->fs_info
->chunk_root
;
2499 path
= btrfs_alloc_path();
2503 key
.objectid
= chunk_objectid
;
2504 key
.offset
= chunk_offset
;
2505 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2507 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2510 else if (ret
> 0) { /* Logic error or corruption */
2511 btrfs_error(root
->fs_info
, -ENOENT
,
2512 "Failed lookup while freeing chunk.");
2517 ret
= btrfs_del_item(trans
, root
, path
);
2519 btrfs_error(root
->fs_info
, ret
,
2520 "Failed to delete chunk item.");
2522 btrfs_free_path(path
);
2526 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
2529 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
2530 struct btrfs_disk_key
*disk_key
;
2531 struct btrfs_chunk
*chunk
;
2538 struct btrfs_key key
;
2541 array_size
= btrfs_super_sys_array_size(super_copy
);
2543 ptr
= super_copy
->sys_chunk_array
;
2546 while (cur
< array_size
) {
2547 disk_key
= (struct btrfs_disk_key
*)ptr
;
2548 btrfs_disk_key_to_cpu(&key
, disk_key
);
2550 len
= sizeof(*disk_key
);
2552 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2553 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2554 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2555 len
+= btrfs_chunk_item_size(num_stripes
);
2560 if (key
.objectid
== chunk_objectid
&&
2561 key
.offset
== chunk_offset
) {
2562 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2564 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2570 unlock_chunks(root
);
2574 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2575 struct btrfs_root
*root
, u64 chunk_offset
)
2577 struct extent_map_tree
*em_tree
;
2578 struct extent_map
*em
;
2579 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2580 struct map_lookup
*map
;
2581 u64 dev_extent_len
= 0;
2582 u64 chunk_objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2583 u64 chunk_tree
= root
->fs_info
->chunk_root
->objectid
;
2587 root
= root
->fs_info
->chunk_root
;
2588 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
2590 read_lock(&em_tree
->lock
);
2591 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
2592 read_unlock(&em_tree
->lock
);
2594 if (!em
|| em
->start
> chunk_offset
||
2595 em
->start
+ em
->len
< chunk_offset
) {
2597 * This is a logic error, but we don't want to just rely on the
2598 * user having built with ASSERT enabled, so if ASSERT doens't
2599 * do anything we still error out.
2603 free_extent_map(em
);
2606 map
= (struct map_lookup
*)em
->bdev
;
2608 for (i
= 0; i
< map
->num_stripes
; i
++) {
2609 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2610 ret
= btrfs_free_dev_extent(trans
, device
,
2611 map
->stripes
[i
].physical
,
2614 btrfs_abort_transaction(trans
, root
, ret
);
2618 if (device
->bytes_used
> 0) {
2620 btrfs_device_set_bytes_used(device
,
2621 device
->bytes_used
- dev_extent_len
);
2622 spin_lock(&root
->fs_info
->free_chunk_lock
);
2623 root
->fs_info
->free_chunk_space
+= dev_extent_len
;
2624 spin_unlock(&root
->fs_info
->free_chunk_lock
);
2625 btrfs_clear_space_info_full(root
->fs_info
);
2626 unlock_chunks(root
);
2629 if (map
->stripes
[i
].dev
) {
2630 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2632 btrfs_abort_transaction(trans
, root
, ret
);
2637 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
2640 btrfs_abort_transaction(trans
, root
, ret
);
2644 trace_btrfs_chunk_free(root
, map
, chunk_offset
, em
->len
);
2646 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2647 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
2649 btrfs_abort_transaction(trans
, root
, ret
);
2654 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
, em
);
2656 btrfs_abort_transaction(trans
, extent_root
, ret
);
2662 free_extent_map(em
);
2666 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
2667 u64 chunk_tree
, u64 chunk_objectid
,
2670 struct btrfs_root
*extent_root
;
2671 struct btrfs_trans_handle
*trans
;
2674 root
= root
->fs_info
->chunk_root
;
2675 extent_root
= root
->fs_info
->extent_root
;
2677 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
2681 /* step one, relocate all the extents inside this chunk */
2682 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
2686 trans
= btrfs_start_transaction(root
, 0);
2687 if (IS_ERR(trans
)) {
2688 ret
= PTR_ERR(trans
);
2689 btrfs_std_error(root
->fs_info
, ret
);
2694 * step two, delete the device extents and the
2695 * chunk tree entries
2697 ret
= btrfs_remove_chunk(trans
, root
, chunk_offset
);
2698 btrfs_end_transaction(trans
, root
);
2702 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
2704 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
2705 struct btrfs_path
*path
;
2706 struct extent_buffer
*leaf
;
2707 struct btrfs_chunk
*chunk
;
2708 struct btrfs_key key
;
2709 struct btrfs_key found_key
;
2710 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
2712 bool retried
= false;
2716 path
= btrfs_alloc_path();
2721 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2722 key
.offset
= (u64
)-1;
2723 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2726 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2729 BUG_ON(ret
== 0); /* Corruption */
2731 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2738 leaf
= path
->nodes
[0];
2739 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2741 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
2742 struct btrfs_chunk
);
2743 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
2744 btrfs_release_path(path
);
2746 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2747 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
2756 if (found_key
.offset
== 0)
2758 key
.offset
= found_key
.offset
- 1;
2761 if (failed
&& !retried
) {
2765 } else if (WARN_ON(failed
&& retried
)) {
2769 btrfs_free_path(path
);
2773 static int insert_balance_item(struct btrfs_root
*root
,
2774 struct btrfs_balance_control
*bctl
)
2776 struct btrfs_trans_handle
*trans
;
2777 struct btrfs_balance_item
*item
;
2778 struct btrfs_disk_balance_args disk_bargs
;
2779 struct btrfs_path
*path
;
2780 struct extent_buffer
*leaf
;
2781 struct btrfs_key key
;
2784 path
= btrfs_alloc_path();
2788 trans
= btrfs_start_transaction(root
, 0);
2789 if (IS_ERR(trans
)) {
2790 btrfs_free_path(path
);
2791 return PTR_ERR(trans
);
2794 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2795 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2798 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2803 leaf
= path
->nodes
[0];
2804 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
2806 memset_extent_buffer(leaf
, 0, (unsigned long)item
, sizeof(*item
));
2808 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
2809 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
2810 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
2811 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
2812 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
2813 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
2815 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
2817 btrfs_mark_buffer_dirty(leaf
);
2819 btrfs_free_path(path
);
2820 err
= btrfs_commit_transaction(trans
, root
);
2826 static int del_balance_item(struct btrfs_root
*root
)
2828 struct btrfs_trans_handle
*trans
;
2829 struct btrfs_path
*path
;
2830 struct btrfs_key key
;
2833 path
= btrfs_alloc_path();
2837 trans
= btrfs_start_transaction(root
, 0);
2838 if (IS_ERR(trans
)) {
2839 btrfs_free_path(path
);
2840 return PTR_ERR(trans
);
2843 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
2844 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
2847 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2855 ret
= btrfs_del_item(trans
, root
, path
);
2857 btrfs_free_path(path
);
2858 err
= btrfs_commit_transaction(trans
, root
);
2865 * This is a heuristic used to reduce the number of chunks balanced on
2866 * resume after balance was interrupted.
2868 static void update_balance_args(struct btrfs_balance_control
*bctl
)
2871 * Turn on soft mode for chunk types that were being converted.
2873 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2874 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2875 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2876 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2877 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
2878 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
2881 * Turn on usage filter if is not already used. The idea is
2882 * that chunks that we have already balanced should be
2883 * reasonably full. Don't do it for chunks that are being
2884 * converted - that will keep us from relocating unconverted
2885 * (albeit full) chunks.
2887 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2888 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2889 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2890 bctl
->data
.usage
= 90;
2892 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2893 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2894 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2895 bctl
->sys
.usage
= 90;
2897 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
2898 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
2899 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
2900 bctl
->meta
.usage
= 90;
2905 * Should be called with both balance and volume mutexes held to
2906 * serialize other volume operations (add_dev/rm_dev/resize) with
2907 * restriper. Same goes for unset_balance_control.
2909 static void set_balance_control(struct btrfs_balance_control
*bctl
)
2911 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
2913 BUG_ON(fs_info
->balance_ctl
);
2915 spin_lock(&fs_info
->balance_lock
);
2916 fs_info
->balance_ctl
= bctl
;
2917 spin_unlock(&fs_info
->balance_lock
);
2920 static void unset_balance_control(struct btrfs_fs_info
*fs_info
)
2922 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
2924 BUG_ON(!fs_info
->balance_ctl
);
2926 spin_lock(&fs_info
->balance_lock
);
2927 fs_info
->balance_ctl
= NULL
;
2928 spin_unlock(&fs_info
->balance_lock
);
2934 * Balance filters. Return 1 if chunk should be filtered out
2935 * (should not be balanced).
2937 static int chunk_profiles_filter(u64 chunk_type
,
2938 struct btrfs_balance_args
*bargs
)
2940 chunk_type
= chunk_to_extended(chunk_type
) &
2941 BTRFS_EXTENDED_PROFILE_MASK
;
2943 if (bargs
->profiles
& chunk_type
)
2949 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
2950 struct btrfs_balance_args
*bargs
)
2952 struct btrfs_block_group_cache
*cache
;
2953 u64 chunk_used
, user_thresh
;
2956 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2957 chunk_used
= btrfs_block_group_used(&cache
->item
);
2959 if (bargs
->usage
== 0)
2961 else if (bargs
->usage
> 100)
2962 user_thresh
= cache
->key
.offset
;
2964 user_thresh
= div_factor_fine(cache
->key
.offset
,
2967 if (chunk_used
< user_thresh
)
2970 btrfs_put_block_group(cache
);
2974 static int chunk_devid_filter(struct extent_buffer
*leaf
,
2975 struct btrfs_chunk
*chunk
,
2976 struct btrfs_balance_args
*bargs
)
2978 struct btrfs_stripe
*stripe
;
2979 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2982 for (i
= 0; i
< num_stripes
; i
++) {
2983 stripe
= btrfs_stripe_nr(chunk
, i
);
2984 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
2991 /* [pstart, pend) */
2992 static int chunk_drange_filter(struct extent_buffer
*leaf
,
2993 struct btrfs_chunk
*chunk
,
2995 struct btrfs_balance_args
*bargs
)
2997 struct btrfs_stripe
*stripe
;
2998 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3004 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3007 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3008 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3009 factor
= num_stripes
/ 2;
3010 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3011 factor
= num_stripes
- 1;
3012 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3013 factor
= num_stripes
- 2;
3015 factor
= num_stripes
;
3018 for (i
= 0; i
< num_stripes
; i
++) {
3019 stripe
= btrfs_stripe_nr(chunk
, i
);
3020 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3023 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3024 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3025 do_div(stripe_length
, factor
);
3027 if (stripe_offset
< bargs
->pend
&&
3028 stripe_offset
+ stripe_length
> bargs
->pstart
)
3035 /* [vstart, vend) */
3036 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3037 struct btrfs_chunk
*chunk
,
3039 struct btrfs_balance_args
*bargs
)
3041 if (chunk_offset
< bargs
->vend
&&
3042 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3043 /* at least part of the chunk is inside this vrange */
3049 static int chunk_soft_convert_filter(u64 chunk_type
,
3050 struct btrfs_balance_args
*bargs
)
3052 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3055 chunk_type
= chunk_to_extended(chunk_type
) &
3056 BTRFS_EXTENDED_PROFILE_MASK
;
3058 if (bargs
->target
== chunk_type
)
3064 static int should_balance_chunk(struct btrfs_root
*root
,
3065 struct extent_buffer
*leaf
,
3066 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3068 struct btrfs_balance_control
*bctl
= root
->fs_info
->balance_ctl
;
3069 struct btrfs_balance_args
*bargs
= NULL
;
3070 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3073 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3074 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3078 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3079 bargs
= &bctl
->data
;
3080 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3082 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3083 bargs
= &bctl
->meta
;
3085 /* profiles filter */
3086 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3087 chunk_profiles_filter(chunk_type
, bargs
)) {
3092 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3093 chunk_usage_filter(bctl
->fs_info
, chunk_offset
, bargs
)) {
3098 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3099 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3103 /* drange filter, makes sense only with devid filter */
3104 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3105 chunk_drange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3110 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3111 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3115 /* soft profile changing mode */
3116 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3117 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3122 * limited by count, must be the last filter
3124 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3125 if (bargs
->limit
== 0)
3134 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3136 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3137 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3138 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3139 struct list_head
*devices
;
3140 struct btrfs_device
*device
;
3143 struct btrfs_chunk
*chunk
;
3144 struct btrfs_path
*path
;
3145 struct btrfs_key key
;
3146 struct btrfs_key found_key
;
3147 struct btrfs_trans_handle
*trans
;
3148 struct extent_buffer
*leaf
;
3151 int enospc_errors
= 0;
3152 bool counting
= true;
3153 u64 limit_data
= bctl
->data
.limit
;
3154 u64 limit_meta
= bctl
->meta
.limit
;
3155 u64 limit_sys
= bctl
->sys
.limit
;
3157 /* step one make some room on all the devices */
3158 devices
= &fs_info
->fs_devices
->devices
;
3159 list_for_each_entry(device
, devices
, dev_list
) {
3160 old_size
= btrfs_device_get_total_bytes(device
);
3161 size_to_free
= div_factor(old_size
, 1);
3162 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
3163 if (!device
->writeable
||
3164 btrfs_device_get_total_bytes(device
) -
3165 btrfs_device_get_bytes_used(device
) > size_to_free
||
3166 device
->is_tgtdev_for_dev_replace
)
3169 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3174 trans
= btrfs_start_transaction(dev_root
, 0);
3175 BUG_ON(IS_ERR(trans
));
3177 ret
= btrfs_grow_device(trans
, device
, old_size
);
3180 btrfs_end_transaction(trans
, dev_root
);
3183 /* step two, relocate all the chunks */
3184 path
= btrfs_alloc_path();
3190 /* zero out stat counters */
3191 spin_lock(&fs_info
->balance_lock
);
3192 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3193 spin_unlock(&fs_info
->balance_lock
);
3196 bctl
->data
.limit
= limit_data
;
3197 bctl
->meta
.limit
= limit_meta
;
3198 bctl
->sys
.limit
= limit_sys
;
3200 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3201 key
.offset
= (u64
)-1;
3202 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3205 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3206 atomic_read(&fs_info
->balance_cancel_req
)) {
3211 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3216 * this shouldn't happen, it means the last relocate
3220 BUG(); /* FIXME break ? */
3222 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3223 BTRFS_CHUNK_ITEM_KEY
);
3229 leaf
= path
->nodes
[0];
3230 slot
= path
->slots
[0];
3231 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3233 if (found_key
.objectid
!= key
.objectid
)
3236 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3239 spin_lock(&fs_info
->balance_lock
);
3240 bctl
->stat
.considered
++;
3241 spin_unlock(&fs_info
->balance_lock
);
3244 ret
= should_balance_chunk(chunk_root
, leaf
, chunk
,
3246 btrfs_release_path(path
);
3251 spin_lock(&fs_info
->balance_lock
);
3252 bctl
->stat
.expected
++;
3253 spin_unlock(&fs_info
->balance_lock
);
3257 ret
= btrfs_relocate_chunk(chunk_root
,
3258 chunk_root
->root_key
.objectid
,
3261 if (ret
&& ret
!= -ENOSPC
)
3263 if (ret
== -ENOSPC
) {
3266 spin_lock(&fs_info
->balance_lock
);
3267 bctl
->stat
.completed
++;
3268 spin_unlock(&fs_info
->balance_lock
);
3271 if (found_key
.offset
== 0)
3273 key
.offset
= found_key
.offset
- 1;
3277 btrfs_release_path(path
);
3282 btrfs_free_path(path
);
3283 if (enospc_errors
) {
3284 btrfs_info(fs_info
, "%d enospc errors during balance",
3294 * alloc_profile_is_valid - see if a given profile is valid and reduced
3295 * @flags: profile to validate
3296 * @extended: if true @flags is treated as an extended profile
3298 static int alloc_profile_is_valid(u64 flags
, int extended
)
3300 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3301 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3303 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3305 /* 1) check that all other bits are zeroed */
3309 /* 2) see if profile is reduced */
3311 return !extended
; /* "0" is valid for usual profiles */
3313 /* true if exactly one bit set */
3314 return (flags
& (flags
- 1)) == 0;
3317 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3319 /* cancel requested || normal exit path */
3320 return atomic_read(&fs_info
->balance_cancel_req
) ||
3321 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3322 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3325 static void __cancel_balance(struct btrfs_fs_info
*fs_info
)
3329 unset_balance_control(fs_info
);
3330 ret
= del_balance_item(fs_info
->tree_root
);
3332 btrfs_std_error(fs_info
, ret
);
3334 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3338 * Should be called with both balance and volume mutexes held
3340 int btrfs_balance(struct btrfs_balance_control
*bctl
,
3341 struct btrfs_ioctl_balance_args
*bargs
)
3343 struct btrfs_fs_info
*fs_info
= bctl
->fs_info
;
3350 if (btrfs_fs_closing(fs_info
) ||
3351 atomic_read(&fs_info
->balance_pause_req
) ||
3352 atomic_read(&fs_info
->balance_cancel_req
)) {
3357 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3358 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3362 * In case of mixed groups both data and meta should be picked,
3363 * and identical options should be given for both of them.
3365 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3366 if (mixed
&& (bctl
->flags
& allowed
)) {
3367 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3368 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3369 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3370 btrfs_err(fs_info
, "with mixed groups data and "
3371 "metadata balance options must be the same");
3377 num_devices
= fs_info
->fs_devices
->num_devices
;
3378 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
3379 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3380 BUG_ON(num_devices
< 1);
3383 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
3384 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3385 if (num_devices
== 1)
3386 allowed
|= BTRFS_BLOCK_GROUP_DUP
;
3387 else if (num_devices
> 1)
3388 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3389 if (num_devices
> 2)
3390 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3391 if (num_devices
> 3)
3392 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3393 BTRFS_BLOCK_GROUP_RAID6
);
3394 if ((bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3395 (!alloc_profile_is_valid(bctl
->data
.target
, 1) ||
3396 (bctl
->data
.target
& ~allowed
))) {
3397 btrfs_err(fs_info
, "unable to start balance with target "
3398 "data profile %llu",
3403 if ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3404 (!alloc_profile_is_valid(bctl
->meta
.target
, 1) ||
3405 (bctl
->meta
.target
& ~allowed
))) {
3407 "unable to start balance with target metadata profile %llu",
3412 if ((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3413 (!alloc_profile_is_valid(bctl
->sys
.target
, 1) ||
3414 (bctl
->sys
.target
& ~allowed
))) {
3416 "unable to start balance with target system profile %llu",
3422 /* allow dup'ed data chunks only in mixed mode */
3423 if (!mixed
&& (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3424 (bctl
->data
.target
& BTRFS_BLOCK_GROUP_DUP
)) {
3425 btrfs_err(fs_info
, "dup for data is not allowed");
3430 /* allow to reduce meta or sys integrity only if force set */
3431 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3432 BTRFS_BLOCK_GROUP_RAID10
|
3433 BTRFS_BLOCK_GROUP_RAID5
|
3434 BTRFS_BLOCK_GROUP_RAID6
;
3436 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3438 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3439 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3440 !(bctl
->sys
.target
& allowed
)) ||
3441 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3442 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3443 !(bctl
->meta
.target
& allowed
))) {
3444 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3445 btrfs_info(fs_info
, "force reducing metadata integrity");
3447 btrfs_err(fs_info
, "balance will reduce metadata "
3448 "integrity, use force if you want this");
3453 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3455 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3456 int num_tolerated_disk_barrier_failures
;
3457 u64 target
= bctl
->sys
.target
;
3459 num_tolerated_disk_barrier_failures
=
3460 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3461 if (num_tolerated_disk_barrier_failures
> 0 &&
3463 (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3464 BTRFS_AVAIL_ALLOC_BIT_SINGLE
)))
3465 num_tolerated_disk_barrier_failures
= 0;
3466 else if (num_tolerated_disk_barrier_failures
> 1 &&
3468 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)))
3469 num_tolerated_disk_barrier_failures
= 1;
3471 fs_info
->num_tolerated_disk_barrier_failures
=
3472 num_tolerated_disk_barrier_failures
;
3475 ret
= insert_balance_item(fs_info
->tree_root
, bctl
);
3476 if (ret
&& ret
!= -EEXIST
)
3479 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3480 BUG_ON(ret
== -EEXIST
);
3481 set_balance_control(bctl
);
3483 BUG_ON(ret
!= -EEXIST
);
3484 spin_lock(&fs_info
->balance_lock
);
3485 update_balance_args(bctl
);
3486 spin_unlock(&fs_info
->balance_lock
);
3489 atomic_inc(&fs_info
->balance_running
);
3490 mutex_unlock(&fs_info
->balance_mutex
);
3492 ret
= __btrfs_balance(fs_info
);
3494 mutex_lock(&fs_info
->balance_mutex
);
3495 atomic_dec(&fs_info
->balance_running
);
3497 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3498 fs_info
->num_tolerated_disk_barrier_failures
=
3499 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
3503 memset(bargs
, 0, sizeof(*bargs
));
3504 update_ioctl_balance_args(fs_info
, 0, bargs
);
3507 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3508 balance_need_close(fs_info
)) {
3509 __cancel_balance(fs_info
);
3512 wake_up(&fs_info
->balance_wait_q
);
3516 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3517 __cancel_balance(fs_info
);
3520 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
3525 static int balance_kthread(void *data
)
3527 struct btrfs_fs_info
*fs_info
= data
;
3530 mutex_lock(&fs_info
->volume_mutex
);
3531 mutex_lock(&fs_info
->balance_mutex
);
3533 if (fs_info
->balance_ctl
) {
3534 btrfs_info(fs_info
, "continuing balance");
3535 ret
= btrfs_balance(fs_info
->balance_ctl
, NULL
);
3538 mutex_unlock(&fs_info
->balance_mutex
);
3539 mutex_unlock(&fs_info
->volume_mutex
);
3544 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3546 struct task_struct
*tsk
;
3548 spin_lock(&fs_info
->balance_lock
);
3549 if (!fs_info
->balance_ctl
) {
3550 spin_unlock(&fs_info
->balance_lock
);
3553 spin_unlock(&fs_info
->balance_lock
);
3555 if (btrfs_test_opt(fs_info
->tree_root
, SKIP_BALANCE
)) {
3556 btrfs_info(fs_info
, "force skipping balance");
3560 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3561 return PTR_ERR_OR_ZERO(tsk
);
3564 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3566 struct btrfs_balance_control
*bctl
;
3567 struct btrfs_balance_item
*item
;
3568 struct btrfs_disk_balance_args disk_bargs
;
3569 struct btrfs_path
*path
;
3570 struct extent_buffer
*leaf
;
3571 struct btrfs_key key
;
3574 path
= btrfs_alloc_path();
3578 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3579 key
.type
= BTRFS_BALANCE_ITEM_KEY
;
3582 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
3585 if (ret
> 0) { /* ret = -ENOENT; */
3590 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3596 leaf
= path
->nodes
[0];
3597 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3599 bctl
->fs_info
= fs_info
;
3600 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
3601 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3603 btrfs_balance_data(leaf
, item
, &disk_bargs
);
3604 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
3605 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
3606 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
3607 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
3608 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
3610 WARN_ON(atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1));
3612 mutex_lock(&fs_info
->volume_mutex
);
3613 mutex_lock(&fs_info
->balance_mutex
);
3615 set_balance_control(bctl
);
3617 mutex_unlock(&fs_info
->balance_mutex
);
3618 mutex_unlock(&fs_info
->volume_mutex
);
3620 btrfs_free_path(path
);
3624 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
3628 mutex_lock(&fs_info
->balance_mutex
);
3629 if (!fs_info
->balance_ctl
) {
3630 mutex_unlock(&fs_info
->balance_mutex
);
3634 if (atomic_read(&fs_info
->balance_running
)) {
3635 atomic_inc(&fs_info
->balance_pause_req
);
3636 mutex_unlock(&fs_info
->balance_mutex
);
3638 wait_event(fs_info
->balance_wait_q
,
3639 atomic_read(&fs_info
->balance_running
) == 0);
3641 mutex_lock(&fs_info
->balance_mutex
);
3642 /* we are good with balance_ctl ripped off from under us */
3643 BUG_ON(atomic_read(&fs_info
->balance_running
));
3644 atomic_dec(&fs_info
->balance_pause_req
);
3649 mutex_unlock(&fs_info
->balance_mutex
);
3653 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
3655 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3658 mutex_lock(&fs_info
->balance_mutex
);
3659 if (!fs_info
->balance_ctl
) {
3660 mutex_unlock(&fs_info
->balance_mutex
);
3664 atomic_inc(&fs_info
->balance_cancel_req
);
3666 * if we are running just wait and return, balance item is
3667 * deleted in btrfs_balance in this case
3669 if (atomic_read(&fs_info
->balance_running
)) {
3670 mutex_unlock(&fs_info
->balance_mutex
);
3671 wait_event(fs_info
->balance_wait_q
,
3672 atomic_read(&fs_info
->balance_running
) == 0);
3673 mutex_lock(&fs_info
->balance_mutex
);
3675 /* __cancel_balance needs volume_mutex */
3676 mutex_unlock(&fs_info
->balance_mutex
);
3677 mutex_lock(&fs_info
->volume_mutex
);
3678 mutex_lock(&fs_info
->balance_mutex
);
3680 if (fs_info
->balance_ctl
)
3681 __cancel_balance(fs_info
);
3683 mutex_unlock(&fs_info
->volume_mutex
);
3686 BUG_ON(fs_info
->balance_ctl
|| atomic_read(&fs_info
->balance_running
));
3687 atomic_dec(&fs_info
->balance_cancel_req
);
3688 mutex_unlock(&fs_info
->balance_mutex
);
3692 static int btrfs_uuid_scan_kthread(void *data
)
3694 struct btrfs_fs_info
*fs_info
= data
;
3695 struct btrfs_root
*root
= fs_info
->tree_root
;
3696 struct btrfs_key key
;
3697 struct btrfs_key max_key
;
3698 struct btrfs_path
*path
= NULL
;
3700 struct extent_buffer
*eb
;
3702 struct btrfs_root_item root_item
;
3704 struct btrfs_trans_handle
*trans
= NULL
;
3706 path
= btrfs_alloc_path();
3713 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3716 max_key
.objectid
= (u64
)-1;
3717 max_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3718 max_key
.offset
= (u64
)-1;
3721 ret
= btrfs_search_forward(root
, &key
, path
, 0);
3728 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
3729 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3730 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
3731 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
3734 eb
= path
->nodes
[0];
3735 slot
= path
->slots
[0];
3736 item_size
= btrfs_item_size_nr(eb
, slot
);
3737 if (item_size
< sizeof(root_item
))
3740 read_extent_buffer(eb
, &root_item
,
3741 btrfs_item_ptr_offset(eb
, slot
),
3742 (int)sizeof(root_item
));
3743 if (btrfs_root_refs(&root_item
) == 0)
3746 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
3747 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3751 btrfs_release_path(path
);
3753 * 1 - subvol uuid item
3754 * 1 - received_subvol uuid item
3756 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
3757 if (IS_ERR(trans
)) {
3758 ret
= PTR_ERR(trans
);
3766 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
3767 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3769 BTRFS_UUID_KEY_SUBVOL
,
3772 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3778 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
3779 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
3780 root_item
.received_uuid
,
3781 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
3784 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
3792 ret
= btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3798 btrfs_release_path(path
);
3799 if (key
.offset
< (u64
)-1) {
3801 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
3803 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3804 } else if (key
.objectid
< (u64
)-1) {
3806 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3815 btrfs_free_path(path
);
3816 if (trans
&& !IS_ERR(trans
))
3817 btrfs_end_transaction(trans
, fs_info
->uuid_root
);
3819 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
3821 fs_info
->update_uuid_tree_gen
= 1;
3822 up(&fs_info
->uuid_tree_rescan_sem
);
3827 * Callback for btrfs_uuid_tree_iterate().
3829 * 0 check succeeded, the entry is not outdated.
3830 * < 0 if an error occured.
3831 * > 0 if the check failed, which means the caller shall remove the entry.
3833 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
3834 u8
*uuid
, u8 type
, u64 subid
)
3836 struct btrfs_key key
;
3838 struct btrfs_root
*subvol_root
;
3840 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
3841 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
3844 key
.objectid
= subid
;
3845 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3846 key
.offset
= (u64
)-1;
3847 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3848 if (IS_ERR(subvol_root
)) {
3849 ret
= PTR_ERR(subvol_root
);
3856 case BTRFS_UUID_KEY_SUBVOL
:
3857 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
3860 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
3861 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
3871 static int btrfs_uuid_rescan_kthread(void *data
)
3873 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
3877 * 1st step is to iterate through the existing UUID tree and
3878 * to delete all entries that contain outdated data.
3879 * 2nd step is to add all missing entries to the UUID tree.
3881 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
3883 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
3884 up(&fs_info
->uuid_tree_rescan_sem
);
3887 return btrfs_uuid_scan_kthread(data
);
3890 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
3892 struct btrfs_trans_handle
*trans
;
3893 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
3894 struct btrfs_root
*uuid_root
;
3895 struct task_struct
*task
;
3902 trans
= btrfs_start_transaction(tree_root
, 2);
3904 return PTR_ERR(trans
);
3906 uuid_root
= btrfs_create_tree(trans
, fs_info
,
3907 BTRFS_UUID_TREE_OBJECTID
);
3908 if (IS_ERR(uuid_root
)) {
3909 btrfs_abort_transaction(trans
, tree_root
,
3910 PTR_ERR(uuid_root
));
3911 return PTR_ERR(uuid_root
);
3914 fs_info
->uuid_root
= uuid_root
;
3916 ret
= btrfs_commit_transaction(trans
, tree_root
);
3920 down(&fs_info
->uuid_tree_rescan_sem
);
3921 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
3923 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3924 btrfs_warn(fs_info
, "failed to start uuid_scan task");
3925 up(&fs_info
->uuid_tree_rescan_sem
);
3926 return PTR_ERR(task
);
3932 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
3934 struct task_struct
*task
;
3936 down(&fs_info
->uuid_tree_rescan_sem
);
3937 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
3939 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3940 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
3941 up(&fs_info
->uuid_tree_rescan_sem
);
3942 return PTR_ERR(task
);
3949 * shrinking a device means finding all of the device extents past
3950 * the new size, and then following the back refs to the chunks.
3951 * The chunk relocation code actually frees the device extent
3953 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
3955 struct btrfs_trans_handle
*trans
;
3956 struct btrfs_root
*root
= device
->dev_root
;
3957 struct btrfs_dev_extent
*dev_extent
= NULL
;
3958 struct btrfs_path
*path
;
3966 bool retried
= false;
3967 struct extent_buffer
*l
;
3968 struct btrfs_key key
;
3969 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
3970 u64 old_total
= btrfs_super_total_bytes(super_copy
);
3971 u64 old_size
= btrfs_device_get_total_bytes(device
);
3972 u64 diff
= old_size
- new_size
;
3974 if (device
->is_tgtdev_for_dev_replace
)
3977 path
= btrfs_alloc_path();
3985 btrfs_device_set_total_bytes(device
, new_size
);
3986 if (device
->writeable
) {
3987 device
->fs_devices
->total_rw_bytes
-= diff
;
3988 spin_lock(&root
->fs_info
->free_chunk_lock
);
3989 root
->fs_info
->free_chunk_space
-= diff
;
3990 spin_unlock(&root
->fs_info
->free_chunk_lock
);
3992 unlock_chunks(root
);
3995 key
.objectid
= device
->devid
;
3996 key
.offset
= (u64
)-1;
3997 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4000 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4004 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4009 btrfs_release_path(path
);
4014 slot
= path
->slots
[0];
4015 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4017 if (key
.objectid
!= device
->devid
) {
4018 btrfs_release_path(path
);
4022 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4023 length
= btrfs_dev_extent_length(l
, dev_extent
);
4025 if (key
.offset
+ length
<= new_size
) {
4026 btrfs_release_path(path
);
4030 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
4031 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
4032 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4033 btrfs_release_path(path
);
4035 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
4037 if (ret
&& ret
!= -ENOSPC
)
4041 } while (key
.offset
-- > 0);
4043 if (failed
&& !retried
) {
4047 } else if (failed
&& retried
) {
4051 btrfs_device_set_total_bytes(device
, old_size
);
4052 if (device
->writeable
)
4053 device
->fs_devices
->total_rw_bytes
+= diff
;
4054 spin_lock(&root
->fs_info
->free_chunk_lock
);
4055 root
->fs_info
->free_chunk_space
+= diff
;
4056 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4057 unlock_chunks(root
);
4061 /* Shrinking succeeded, else we would be at "done". */
4062 trans
= btrfs_start_transaction(root
, 0);
4063 if (IS_ERR(trans
)) {
4064 ret
= PTR_ERR(trans
);
4069 btrfs_device_set_disk_total_bytes(device
, new_size
);
4070 if (list_empty(&device
->resized_list
))
4071 list_add_tail(&device
->resized_list
,
4072 &root
->fs_info
->fs_devices
->resized_devices
);
4074 WARN_ON(diff
> old_total
);
4075 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
4076 unlock_chunks(root
);
4078 /* Now btrfs_update_device() will change the on-disk size. */
4079 ret
= btrfs_update_device(trans
, device
);
4080 btrfs_end_transaction(trans
, root
);
4082 btrfs_free_path(path
);
4086 static int btrfs_add_system_chunk(struct btrfs_root
*root
,
4087 struct btrfs_key
*key
,
4088 struct btrfs_chunk
*chunk
, int item_size
)
4090 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
4091 struct btrfs_disk_key disk_key
;
4096 array_size
= btrfs_super_sys_array_size(super_copy
);
4097 if (array_size
+ item_size
+ sizeof(disk_key
)
4098 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4099 unlock_chunks(root
);
4103 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4104 btrfs_cpu_key_to_disk(&disk_key
, key
);
4105 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4106 ptr
+= sizeof(disk_key
);
4107 memcpy(ptr
, chunk
, item_size
);
4108 item_size
+= sizeof(disk_key
);
4109 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4110 unlock_chunks(root
);
4116 * sort the devices in descending order by max_avail, total_avail
4118 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4120 const struct btrfs_device_info
*di_a
= a
;
4121 const struct btrfs_device_info
*di_b
= b
;
4123 if (di_a
->max_avail
> di_b
->max_avail
)
4125 if (di_a
->max_avail
< di_b
->max_avail
)
4127 if (di_a
->total_avail
> di_b
->total_avail
)
4129 if (di_a
->total_avail
< di_b
->total_avail
)
4134 static struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
4135 [BTRFS_RAID_RAID10
] = {
4138 .devs_max
= 0, /* 0 == as many as possible */
4140 .devs_increment
= 2,
4143 [BTRFS_RAID_RAID1
] = {
4148 .devs_increment
= 2,
4151 [BTRFS_RAID_DUP
] = {
4156 .devs_increment
= 1,
4159 [BTRFS_RAID_RAID0
] = {
4164 .devs_increment
= 1,
4167 [BTRFS_RAID_SINGLE
] = {
4172 .devs_increment
= 1,
4175 [BTRFS_RAID_RAID5
] = {
4180 .devs_increment
= 1,
4183 [BTRFS_RAID_RAID6
] = {
4188 .devs_increment
= 1,
4193 static u32
find_raid56_stripe_len(u32 data_devices
, u32 dev_stripe_target
)
4195 /* TODO allow them to set a preferred stripe size */
4199 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4201 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4204 btrfs_set_fs_incompat(info
, RAID56
);
4207 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4208 - sizeof(struct btrfs_item) \
4209 - sizeof(struct btrfs_chunk)) \
4210 / sizeof(struct btrfs_stripe) + 1)
4212 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4213 - 2 * sizeof(struct btrfs_disk_key) \
4214 - 2 * sizeof(struct btrfs_chunk)) \
4215 / sizeof(struct btrfs_stripe) + 1)
4217 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4218 struct btrfs_root
*extent_root
, u64 start
,
4221 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
4222 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4223 struct list_head
*cur
;
4224 struct map_lookup
*map
= NULL
;
4225 struct extent_map_tree
*em_tree
;
4226 struct extent_map
*em
;
4227 struct btrfs_device_info
*devices_info
= NULL
;
4229 int num_stripes
; /* total number of stripes to allocate */
4230 int data_stripes
; /* number of stripes that count for
4232 int sub_stripes
; /* sub_stripes info for map */
4233 int dev_stripes
; /* stripes per dev */
4234 int devs_max
; /* max devs to use */
4235 int devs_min
; /* min devs needed */
4236 int devs_increment
; /* ndevs has to be a multiple of this */
4237 int ncopies
; /* how many copies to data has */
4239 u64 max_stripe_size
;
4243 u64 raid_stripe_len
= BTRFS_STRIPE_LEN
;
4249 BUG_ON(!alloc_profile_is_valid(type
, 0));
4251 if (list_empty(&fs_devices
->alloc_list
))
4254 index
= __get_raid_index(type
);
4256 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4257 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4258 devs_max
= btrfs_raid_array
[index
].devs_max
;
4259 devs_min
= btrfs_raid_array
[index
].devs_min
;
4260 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4261 ncopies
= btrfs_raid_array
[index
].ncopies
;
4263 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4264 max_stripe_size
= 1024 * 1024 * 1024;
4265 max_chunk_size
= 10 * max_stripe_size
;
4267 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4268 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4269 /* for larger filesystems, use larger metadata chunks */
4270 if (fs_devices
->total_rw_bytes
> 50ULL * 1024 * 1024 * 1024)
4271 max_stripe_size
= 1024 * 1024 * 1024;
4273 max_stripe_size
= 256 * 1024 * 1024;
4274 max_chunk_size
= max_stripe_size
;
4276 devs_max
= BTRFS_MAX_DEVS(info
->chunk_root
);
4277 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4278 max_stripe_size
= 32 * 1024 * 1024;
4279 max_chunk_size
= 2 * max_stripe_size
;
4281 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4283 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4288 /* we don't want a chunk larger than 10% of writeable space */
4289 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4292 devices_info
= kzalloc(sizeof(*devices_info
) * fs_devices
->rw_devices
,
4297 cur
= fs_devices
->alloc_list
.next
;
4300 * in the first pass through the devices list, we gather information
4301 * about the available holes on each device.
4304 while (cur
!= &fs_devices
->alloc_list
) {
4305 struct btrfs_device
*device
;
4309 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
4313 if (!device
->writeable
) {
4315 "BTRFS: read-only device in alloc_list\n");
4319 if (!device
->in_fs_metadata
||
4320 device
->is_tgtdev_for_dev_replace
)
4323 if (device
->total_bytes
> device
->bytes_used
)
4324 total_avail
= device
->total_bytes
- device
->bytes_used
;
4328 /* If there is no space on this device, skip it. */
4329 if (total_avail
== 0)
4332 ret
= find_free_dev_extent(trans
, device
,
4333 max_stripe_size
* dev_stripes
,
4334 &dev_offset
, &max_avail
);
4335 if (ret
&& ret
!= -ENOSPC
)
4339 max_avail
= max_stripe_size
* dev_stripes
;
4341 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
)
4344 if (ndevs
== fs_devices
->rw_devices
) {
4345 WARN(1, "%s: found more than %llu devices\n",
4346 __func__
, fs_devices
->rw_devices
);
4349 devices_info
[ndevs
].dev_offset
= dev_offset
;
4350 devices_info
[ndevs
].max_avail
= max_avail
;
4351 devices_info
[ndevs
].total_avail
= total_avail
;
4352 devices_info
[ndevs
].dev
= device
;
4357 * now sort the devices by hole size / available space
4359 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4360 btrfs_cmp_device_info
, NULL
);
4362 /* round down to number of usable stripes */
4363 ndevs
-= ndevs
% devs_increment
;
4365 if (ndevs
< devs_increment
* sub_stripes
|| ndevs
< devs_min
) {
4370 if (devs_max
&& ndevs
> devs_max
)
4373 * the primary goal is to maximize the number of stripes, so use as many
4374 * devices as possible, even if the stripes are not maximum sized.
4376 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4377 num_stripes
= ndevs
* dev_stripes
;
4380 * this will have to be fixed for RAID1 and RAID10 over
4383 data_stripes
= num_stripes
/ ncopies
;
4385 if (type
& BTRFS_BLOCK_GROUP_RAID5
) {
4386 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 1,
4387 btrfs_super_stripesize(info
->super_copy
));
4388 data_stripes
= num_stripes
- 1;
4390 if (type
& BTRFS_BLOCK_GROUP_RAID6
) {
4391 raid_stripe_len
= find_raid56_stripe_len(ndevs
- 2,
4392 btrfs_super_stripesize(info
->super_copy
));
4393 data_stripes
= num_stripes
- 2;
4397 * Use the number of data stripes to figure out how big this chunk
4398 * is really going to be in terms of logical address space,
4399 * and compare that answer with the max chunk size
4401 if (stripe_size
* data_stripes
> max_chunk_size
) {
4402 u64 mask
= (1ULL << 24) - 1;
4403 stripe_size
= max_chunk_size
;
4404 do_div(stripe_size
, data_stripes
);
4406 /* bump the answer up to a 16MB boundary */
4407 stripe_size
= (stripe_size
+ mask
) & ~mask
;
4409 /* but don't go higher than the limits we found
4410 * while searching for free extents
4412 if (stripe_size
> devices_info
[ndevs
-1].max_avail
)
4413 stripe_size
= devices_info
[ndevs
-1].max_avail
;
4416 do_div(stripe_size
, dev_stripes
);
4418 /* align to BTRFS_STRIPE_LEN */
4419 do_div(stripe_size
, raid_stripe_len
);
4420 stripe_size
*= raid_stripe_len
;
4422 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4427 map
->num_stripes
= num_stripes
;
4429 for (i
= 0; i
< ndevs
; ++i
) {
4430 for (j
= 0; j
< dev_stripes
; ++j
) {
4431 int s
= i
* dev_stripes
+ j
;
4432 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4433 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4437 map
->sector_size
= extent_root
->sectorsize
;
4438 map
->stripe_len
= raid_stripe_len
;
4439 map
->io_align
= raid_stripe_len
;
4440 map
->io_width
= raid_stripe_len
;
4442 map
->sub_stripes
= sub_stripes
;
4444 num_bytes
= stripe_size
* data_stripes
;
4446 trace_btrfs_chunk_alloc(info
->chunk_root
, map
, start
, num_bytes
);
4448 em
= alloc_extent_map();
4454 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4455 em
->bdev
= (struct block_device
*)map
;
4457 em
->len
= num_bytes
;
4458 em
->block_start
= 0;
4459 em
->block_len
= em
->len
;
4460 em
->orig_block_len
= stripe_size
;
4462 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4463 write_lock(&em_tree
->lock
);
4464 ret
= add_extent_mapping(em_tree
, em
, 0);
4466 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4467 atomic_inc(&em
->refs
);
4469 write_unlock(&em_tree
->lock
);
4471 free_extent_map(em
);
4475 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
4476 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4479 goto error_del_extent
;
4481 for (i
= 0; i
< map
->num_stripes
; i
++) {
4482 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4483 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4486 spin_lock(&extent_root
->fs_info
->free_chunk_lock
);
4487 extent_root
->fs_info
->free_chunk_space
-= (stripe_size
*
4489 spin_unlock(&extent_root
->fs_info
->free_chunk_lock
);
4491 free_extent_map(em
);
4492 check_raid56_incompat_flag(extent_root
->fs_info
, type
);
4494 kfree(devices_info
);
4498 write_lock(&em_tree
->lock
);
4499 remove_extent_mapping(em_tree
, em
);
4500 write_unlock(&em_tree
->lock
);
4502 /* One for our allocation */
4503 free_extent_map(em
);
4504 /* One for the tree reference */
4505 free_extent_map(em
);
4506 /* One for the pending_chunks list reference */
4507 free_extent_map(em
);
4509 kfree(devices_info
);
4513 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4514 struct btrfs_root
*extent_root
,
4515 u64 chunk_offset
, u64 chunk_size
)
4517 struct btrfs_key key
;
4518 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
4519 struct btrfs_device
*device
;
4520 struct btrfs_chunk
*chunk
;
4521 struct btrfs_stripe
*stripe
;
4522 struct extent_map_tree
*em_tree
;
4523 struct extent_map
*em
;
4524 struct map_lookup
*map
;
4531 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
4532 read_lock(&em_tree
->lock
);
4533 em
= lookup_extent_mapping(em_tree
, chunk_offset
, chunk_size
);
4534 read_unlock(&em_tree
->lock
);
4537 btrfs_crit(extent_root
->fs_info
, "unable to find logical "
4538 "%Lu len %Lu", chunk_offset
, chunk_size
);
4542 if (em
->start
!= chunk_offset
|| em
->len
!= chunk_size
) {
4543 btrfs_crit(extent_root
->fs_info
, "found a bad mapping, wanted"
4544 " %Lu-%Lu, found %Lu-%Lu", chunk_offset
,
4545 chunk_size
, em
->start
, em
->len
);
4546 free_extent_map(em
);
4550 map
= (struct map_lookup
*)em
->bdev
;
4551 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4552 stripe_size
= em
->orig_block_len
;
4554 chunk
= kzalloc(item_size
, GFP_NOFS
);
4560 for (i
= 0; i
< map
->num_stripes
; i
++) {
4561 device
= map
->stripes
[i
].dev
;
4562 dev_offset
= map
->stripes
[i
].physical
;
4564 ret
= btrfs_update_device(trans
, device
);
4567 ret
= btrfs_alloc_dev_extent(trans
, device
,
4568 chunk_root
->root_key
.objectid
,
4569 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
4570 chunk_offset
, dev_offset
,
4576 stripe
= &chunk
->stripe
;
4577 for (i
= 0; i
< map
->num_stripes
; i
++) {
4578 device
= map
->stripes
[i
].dev
;
4579 dev_offset
= map
->stripes
[i
].physical
;
4581 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4582 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4583 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
4587 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
4588 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
4589 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
4590 btrfs_set_stack_chunk_type(chunk
, map
->type
);
4591 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
4592 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
4593 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
4594 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
4595 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
4597 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
4598 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
4599 key
.offset
= chunk_offset
;
4601 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
4602 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4604 * TODO: Cleanup of inserted chunk root in case of
4607 ret
= btrfs_add_system_chunk(chunk_root
, &key
, chunk
,
4613 free_extent_map(em
);
4618 * Chunk allocation falls into two parts. The first part does works
4619 * that make the new allocated chunk useable, but not do any operation
4620 * that modifies the chunk tree. The second part does the works that
4621 * require modifying the chunk tree. This division is important for the
4622 * bootstrap process of adding storage to a seed btrfs.
4624 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4625 struct btrfs_root
*extent_root
, u64 type
)
4629 chunk_offset
= find_next_chunk(extent_root
->fs_info
);
4630 return __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
, type
);
4633 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
4634 struct btrfs_root
*root
,
4635 struct btrfs_device
*device
)
4638 u64 sys_chunk_offset
;
4640 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4641 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4644 chunk_offset
= find_next_chunk(fs_info
);
4645 alloc_profile
= btrfs_get_alloc_profile(extent_root
, 0);
4646 ret
= __btrfs_alloc_chunk(trans
, extent_root
, chunk_offset
,
4651 sys_chunk_offset
= find_next_chunk(root
->fs_info
);
4652 alloc_profile
= btrfs_get_alloc_profile(fs_info
->chunk_root
, 0);
4653 ret
= __btrfs_alloc_chunk(trans
, extent_root
, sys_chunk_offset
,
4658 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
4662 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
4663 BTRFS_BLOCK_GROUP_RAID10
|
4664 BTRFS_BLOCK_GROUP_RAID5
|
4665 BTRFS_BLOCK_GROUP_DUP
)) {
4667 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
4676 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
4678 struct extent_map
*em
;
4679 struct map_lookup
*map
;
4680 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
4685 read_lock(&map_tree
->map_tree
.lock
);
4686 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
4687 read_unlock(&map_tree
->map_tree
.lock
);
4691 map
= (struct map_lookup
*)em
->bdev
;
4692 for (i
= 0; i
< map
->num_stripes
; i
++) {
4693 if (map
->stripes
[i
].dev
->missing
) {
4698 if (!map
->stripes
[i
].dev
->writeable
) {
4705 * If the number of missing devices is larger than max errors,
4706 * we can not write the data into that chunk successfully, so
4709 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
4712 free_extent_map(em
);
4716 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
4718 extent_map_tree_init(&tree
->map_tree
);
4721 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
4723 struct extent_map
*em
;
4726 write_lock(&tree
->map_tree
.lock
);
4727 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
4729 remove_extent_mapping(&tree
->map_tree
, em
);
4730 write_unlock(&tree
->map_tree
.lock
);
4734 free_extent_map(em
);
4735 /* once for the tree */
4736 free_extent_map(em
);
4740 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
4742 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4743 struct extent_map
*em
;
4744 struct map_lookup
*map
;
4745 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4748 read_lock(&em_tree
->lock
);
4749 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4750 read_unlock(&em_tree
->lock
);
4753 * We could return errors for these cases, but that could get ugly and
4754 * we'd probably do the same thing which is just not do anything else
4755 * and exit, so return 1 so the callers don't try to use other copies.
4758 btrfs_crit(fs_info
, "No mapping for %Lu-%Lu", logical
,
4763 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4764 btrfs_crit(fs_info
, "Invalid mapping for %Lu-%Lu, got "
4765 "%Lu-%Lu", logical
, logical
+len
, em
->start
,
4766 em
->start
+ em
->len
);
4767 free_extent_map(em
);
4771 map
= (struct map_lookup
*)em
->bdev
;
4772 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
4773 ret
= map
->num_stripes
;
4774 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
4775 ret
= map
->sub_stripes
;
4776 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
4778 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
4782 free_extent_map(em
);
4784 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
4785 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))
4787 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
4792 unsigned long btrfs_full_stripe_len(struct btrfs_root
*root
,
4793 struct btrfs_mapping_tree
*map_tree
,
4796 struct extent_map
*em
;
4797 struct map_lookup
*map
;
4798 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4799 unsigned long len
= root
->sectorsize
;
4801 read_lock(&em_tree
->lock
);
4802 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4803 read_unlock(&em_tree
->lock
);
4806 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4807 map
= (struct map_lookup
*)em
->bdev
;
4808 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
4809 len
= map
->stripe_len
* nr_data_stripes(map
);
4810 free_extent_map(em
);
4814 int btrfs_is_parity_mirror(struct btrfs_mapping_tree
*map_tree
,
4815 u64 logical
, u64 len
, int mirror_num
)
4817 struct extent_map
*em
;
4818 struct map_lookup
*map
;
4819 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4822 read_lock(&em_tree
->lock
);
4823 em
= lookup_extent_mapping(em_tree
, logical
, len
);
4824 read_unlock(&em_tree
->lock
);
4827 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
4828 map
= (struct map_lookup
*)em
->bdev
;
4829 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
4831 free_extent_map(em
);
4835 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
4836 struct map_lookup
*map
, int first
, int num
,
4837 int optimal
, int dev_replace_is_ongoing
)
4841 struct btrfs_device
*srcdev
;
4843 if (dev_replace_is_ongoing
&&
4844 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
4845 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
4846 srcdev
= fs_info
->dev_replace
.srcdev
;
4851 * try to avoid the drive that is the source drive for a
4852 * dev-replace procedure, only choose it if no other non-missing
4853 * mirror is available
4855 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
4856 if (map
->stripes
[optimal
].dev
->bdev
&&
4857 (tolerance
|| map
->stripes
[optimal
].dev
!= srcdev
))
4859 for (i
= first
; i
< first
+ num
; i
++) {
4860 if (map
->stripes
[i
].dev
->bdev
&&
4861 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
4866 /* we couldn't find one that doesn't fail. Just return something
4867 * and the io error handling code will clean up eventually
4872 static inline int parity_smaller(u64 a
, u64 b
)
4877 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4878 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
4880 struct btrfs_bio_stripe s
;
4887 for (i
= 0; i
< num_stripes
- 1; i
++) {
4888 if (parity_smaller(bbio
->raid_map
[i
],
4889 bbio
->raid_map
[i
+1])) {
4890 s
= bbio
->stripes
[i
];
4891 l
= bbio
->raid_map
[i
];
4892 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
4893 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
4894 bbio
->stripes
[i
+1] = s
;
4895 bbio
->raid_map
[i
+1] = l
;
4903 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
4905 struct btrfs_bio
*bbio
= kzalloc(
4906 /* the size of the btrfs_bio */
4907 sizeof(struct btrfs_bio
) +
4908 /* plus the variable array for the stripes */
4909 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
4910 /* plus the variable array for the tgt dev */
4911 sizeof(int) * (real_stripes
) +
4913 * plus the raid_map, which includes both the tgt dev
4916 sizeof(u64
) * (total_stripes
),
4921 atomic_set(&bbio
->error
, 0);
4922 atomic_set(&bbio
->refs
, 1);
4927 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
4929 WARN_ON(!atomic_read(&bbio
->refs
));
4930 atomic_inc(&bbio
->refs
);
4933 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
4937 if (atomic_dec_and_test(&bbio
->refs
))
4941 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
4942 u64 logical
, u64
*length
,
4943 struct btrfs_bio
**bbio_ret
,
4944 int mirror_num
, int need_raid_map
)
4946 struct extent_map
*em
;
4947 struct map_lookup
*map
;
4948 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
4949 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
4952 u64 stripe_end_offset
;
4962 int tgtdev_indexes
= 0;
4963 struct btrfs_bio
*bbio
= NULL
;
4964 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
4965 int dev_replace_is_ongoing
= 0;
4966 int num_alloc_stripes
;
4967 int patch_the_first_stripe_for_dev_replace
= 0;
4968 u64 physical_to_patch_in_first_stripe
= 0;
4969 u64 raid56_full_stripe_start
= (u64
)-1;
4971 read_lock(&em_tree
->lock
);
4972 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
4973 read_unlock(&em_tree
->lock
);
4976 btrfs_crit(fs_info
, "unable to find logical %llu len %llu",
4981 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
4982 btrfs_crit(fs_info
, "found a bad mapping, wanted %Lu, "
4983 "found %Lu-%Lu", logical
, em
->start
,
4984 em
->start
+ em
->len
);
4985 free_extent_map(em
);
4989 map
= (struct map_lookup
*)em
->bdev
;
4990 offset
= logical
- em
->start
;
4992 stripe_len
= map
->stripe_len
;
4995 * stripe_nr counts the total number of stripes we have to stride
4996 * to get to this block
4998 do_div(stripe_nr
, stripe_len
);
5000 stripe_offset
= stripe_nr
* stripe_len
;
5001 BUG_ON(offset
< stripe_offset
);
5003 /* stripe_offset is the offset of this block in its stripe*/
5004 stripe_offset
= offset
- stripe_offset
;
5006 /* if we're here for raid56, we need to know the stripe aligned start */
5007 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5008 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5009 raid56_full_stripe_start
= offset
;
5011 /* allow a write of a full stripe, but make sure we don't
5012 * allow straddling of stripes
5014 do_div(raid56_full_stripe_start
, full_stripe_len
);
5015 raid56_full_stripe_start
*= full_stripe_len
;
5018 if (rw
& REQ_DISCARD
) {
5019 /* we don't discard raid56 yet */
5020 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5024 *length
= min_t(u64
, em
->len
- offset
, *length
);
5025 } else if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5027 /* For writes to RAID[56], allow a full stripeset across all disks.
5028 For other RAID types and for RAID[56] reads, just allow a single
5029 stripe (on a single disk). */
5030 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5032 max_len
= stripe_len
* nr_data_stripes(map
) -
5033 (offset
- raid56_full_stripe_start
);
5035 /* we limit the length of each bio to what fits in a stripe */
5036 max_len
= stripe_len
- stripe_offset
;
5038 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5040 *length
= em
->len
- offset
;
5043 /* This is for when we're called from btrfs_merge_bio_hook() and all
5044 it cares about is the length */
5048 btrfs_dev_replace_lock(dev_replace
);
5049 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5050 if (!dev_replace_is_ongoing
)
5051 btrfs_dev_replace_unlock(dev_replace
);
5053 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5054 !(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) &&
5055 dev_replace
->tgtdev
!= NULL
) {
5057 * in dev-replace case, for repair case (that's the only
5058 * case where the mirror is selected explicitly when
5059 * calling btrfs_map_block), blocks left of the left cursor
5060 * can also be read from the target drive.
5061 * For REQ_GET_READ_MIRRORS, the target drive is added as
5062 * the last one to the array of stripes. For READ, it also
5063 * needs to be supported using the same mirror number.
5064 * If the requested block is not left of the left cursor,
5065 * EIO is returned. This can happen because btrfs_num_copies()
5066 * returns one more in the dev-replace case.
5068 u64 tmp_length
= *length
;
5069 struct btrfs_bio
*tmp_bbio
= NULL
;
5070 int tmp_num_stripes
;
5071 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5072 int index_srcdev
= 0;
5074 u64 physical_of_found
= 0;
5076 ret
= __btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
,
5077 logical
, &tmp_length
, &tmp_bbio
, 0, 0);
5079 WARN_ON(tmp_bbio
!= NULL
);
5083 tmp_num_stripes
= tmp_bbio
->num_stripes
;
5084 if (mirror_num
> tmp_num_stripes
) {
5086 * REQ_GET_READ_MIRRORS does not contain this
5087 * mirror, that means that the requested area
5088 * is not left of the left cursor
5091 btrfs_put_bbio(tmp_bbio
);
5096 * process the rest of the function using the mirror_num
5097 * of the source drive. Therefore look it up first.
5098 * At the end, patch the device pointer to the one of the
5101 for (i
= 0; i
< tmp_num_stripes
; i
++) {
5102 if (tmp_bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5104 * In case of DUP, in order to keep it
5105 * simple, only add the mirror with the
5106 * lowest physical address
5109 physical_of_found
<=
5110 tmp_bbio
->stripes
[i
].physical
)
5115 tmp_bbio
->stripes
[i
].physical
;
5120 mirror_num
= index_srcdev
+ 1;
5121 patch_the_first_stripe_for_dev_replace
= 1;
5122 physical_to_patch_in_first_stripe
= physical_of_found
;
5126 btrfs_put_bbio(tmp_bbio
);
5130 btrfs_put_bbio(tmp_bbio
);
5131 } else if (mirror_num
> map
->num_stripes
) {
5137 stripe_nr_orig
= stripe_nr
;
5138 stripe_nr_end
= ALIGN(offset
+ *length
, map
->stripe_len
);
5139 do_div(stripe_nr_end
, map
->stripe_len
);
5140 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5143 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5144 if (rw
& REQ_DISCARD
)
5145 num_stripes
= min_t(u64
, map
->num_stripes
,
5146 stripe_nr_end
- stripe_nr_orig
);
5147 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
5148 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)))
5150 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5151 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
))
5152 num_stripes
= map
->num_stripes
;
5153 else if (mirror_num
)
5154 stripe_index
= mirror_num
- 1;
5156 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5158 current
->pid
% map
->num_stripes
,
5159 dev_replace_is_ongoing
);
5160 mirror_num
= stripe_index
+ 1;
5163 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5164 if (rw
& (REQ_WRITE
| REQ_DISCARD
| REQ_GET_READ_MIRRORS
)) {
5165 num_stripes
= map
->num_stripes
;
5166 } else if (mirror_num
) {
5167 stripe_index
= mirror_num
- 1;
5172 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5173 int factor
= map
->num_stripes
/ map
->sub_stripes
;
5175 stripe_index
= do_div(stripe_nr
, factor
);
5176 stripe_index
*= map
->sub_stripes
;
5178 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5179 num_stripes
= map
->sub_stripes
;
5180 else if (rw
& REQ_DISCARD
)
5181 num_stripes
= min_t(u64
, map
->sub_stripes
*
5182 (stripe_nr_end
- stripe_nr_orig
),
5184 else if (mirror_num
)
5185 stripe_index
+= mirror_num
- 1;
5187 int old_stripe_index
= stripe_index
;
5188 stripe_index
= find_live_mirror(fs_info
, map
,
5190 map
->sub_stripes
, stripe_index
+
5191 current
->pid
% map
->sub_stripes
,
5192 dev_replace_is_ongoing
);
5193 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5196 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5197 if (need_raid_map
&&
5198 ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5200 /* push stripe_nr back to the start of the full stripe */
5201 stripe_nr
= raid56_full_stripe_start
;
5202 do_div(stripe_nr
, stripe_len
* nr_data_stripes(map
));
5204 /* RAID[56] write or recovery. Return all stripes */
5205 num_stripes
= map
->num_stripes
;
5206 max_errors
= nr_parity_stripes(map
);
5208 *length
= map
->stripe_len
;
5215 * Mirror #0 or #1 means the original data block.
5216 * Mirror #2 is RAID5 parity block.
5217 * Mirror #3 is RAID6 Q block.
5219 stripe_index
= do_div(stripe_nr
, nr_data_stripes(map
));
5221 stripe_index
= nr_data_stripes(map
) +
5224 /* We distribute the parity blocks across stripes */
5225 tmp
= stripe_nr
+ stripe_index
;
5226 stripe_index
= do_div(tmp
, map
->num_stripes
);
5227 if (!(rw
& (REQ_WRITE
| REQ_DISCARD
|
5228 REQ_GET_READ_MIRRORS
)) && mirror_num
<= 1)
5233 * after this do_div call, stripe_nr is the number of stripes
5234 * on this device we have to walk to find the data, and
5235 * stripe_index is the number of our device in the stripe array
5237 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
5238 mirror_num
= stripe_index
+ 1;
5240 BUG_ON(stripe_index
>= map
->num_stripes
);
5242 num_alloc_stripes
= num_stripes
;
5243 if (dev_replace_is_ongoing
) {
5244 if (rw
& (REQ_WRITE
| REQ_DISCARD
))
5245 num_alloc_stripes
<<= 1;
5246 if (rw
& REQ_GET_READ_MIRRORS
)
5247 num_alloc_stripes
++;
5248 tgtdev_indexes
= num_stripes
;
5251 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5256 if (dev_replace_is_ongoing
)
5257 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5259 /* build raid_map */
5260 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&&
5261 need_raid_map
&& ((rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
)) ||
5266 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5267 sizeof(struct btrfs_bio_stripe
) *
5269 sizeof(int) * tgtdev_indexes
);
5271 /* Work out the disk rotation on this stripe-set */
5273 rot
= do_div(tmp
, num_stripes
);
5275 /* Fill in the logical address of each stripe */
5276 tmp
= stripe_nr
* nr_data_stripes(map
);
5277 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5278 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5279 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5281 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5282 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5283 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5287 if (rw
& REQ_DISCARD
) {
5289 int sub_stripes
= 0;
5290 u64 stripes_per_dev
= 0;
5291 u32 remaining_stripes
= 0;
5292 u32 last_stripe
= 0;
5295 (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID10
)) {
5296 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5299 sub_stripes
= map
->sub_stripes
;
5301 factor
= map
->num_stripes
/ sub_stripes
;
5302 stripes_per_dev
= div_u64_rem(stripe_nr_end
-
5305 &remaining_stripes
);
5306 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5307 last_stripe
*= sub_stripes
;
5310 for (i
= 0; i
< num_stripes
; i
++) {
5311 bbio
->stripes
[i
].physical
=
5312 map
->stripes
[stripe_index
].physical
+
5313 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5314 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5316 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5317 BTRFS_BLOCK_GROUP_RAID10
)) {
5318 bbio
->stripes
[i
].length
= stripes_per_dev
*
5321 if (i
/ sub_stripes
< remaining_stripes
)
5322 bbio
->stripes
[i
].length
+=
5326 * Special for the first stripe and
5329 * |-------|...|-------|
5333 if (i
< sub_stripes
)
5334 bbio
->stripes
[i
].length
-=
5337 if (stripe_index
>= last_stripe
&&
5338 stripe_index
<= (last_stripe
+
5340 bbio
->stripes
[i
].length
-=
5343 if (i
== sub_stripes
- 1)
5346 bbio
->stripes
[i
].length
= *length
;
5349 if (stripe_index
== map
->num_stripes
) {
5350 /* This could only happen for RAID0/10 */
5356 for (i
= 0; i
< num_stripes
; i
++) {
5357 bbio
->stripes
[i
].physical
=
5358 map
->stripes
[stripe_index
].physical
+
5360 stripe_nr
* map
->stripe_len
;
5361 bbio
->stripes
[i
].dev
=
5362 map
->stripes
[stripe_index
].dev
;
5367 if (rw
& (REQ_WRITE
| REQ_GET_READ_MIRRORS
))
5368 max_errors
= btrfs_chunk_max_errors(map
);
5371 sort_parity_stripes(bbio
, num_stripes
);
5374 if (dev_replace_is_ongoing
&& (rw
& (REQ_WRITE
| REQ_DISCARD
)) &&
5375 dev_replace
->tgtdev
!= NULL
) {
5376 int index_where_to_add
;
5377 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5380 * duplicate the write operations while the dev replace
5381 * procedure is running. Since the copying of the old disk
5382 * to the new disk takes place at run time while the
5383 * filesystem is mounted writable, the regular write
5384 * operations to the old disk have to be duplicated to go
5385 * to the new disk as well.
5386 * Note that device->missing is handled by the caller, and
5387 * that the write to the old disk is already set up in the
5390 index_where_to_add
= num_stripes
;
5391 for (i
= 0; i
< num_stripes
; i
++) {
5392 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5393 /* write to new disk, too */
5394 struct btrfs_bio_stripe
*new =
5395 bbio
->stripes
+ index_where_to_add
;
5396 struct btrfs_bio_stripe
*old
=
5399 new->physical
= old
->physical
;
5400 new->length
= old
->length
;
5401 new->dev
= dev_replace
->tgtdev
;
5402 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5403 index_where_to_add
++;
5408 num_stripes
= index_where_to_add
;
5409 } else if (dev_replace_is_ongoing
&& (rw
& REQ_GET_READ_MIRRORS
) &&
5410 dev_replace
->tgtdev
!= NULL
) {
5411 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5412 int index_srcdev
= 0;
5414 u64 physical_of_found
= 0;
5417 * During the dev-replace procedure, the target drive can
5418 * also be used to read data in case it is needed to repair
5419 * a corrupt block elsewhere. This is possible if the
5420 * requested area is left of the left cursor. In this area,
5421 * the target drive is a full copy of the source drive.
5423 for (i
= 0; i
< num_stripes
; i
++) {
5424 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5426 * In case of DUP, in order to keep it
5427 * simple, only add the mirror with the
5428 * lowest physical address
5431 physical_of_found
<=
5432 bbio
->stripes
[i
].physical
)
5436 physical_of_found
= bbio
->stripes
[i
].physical
;
5440 u64 length
= map
->stripe_len
;
5442 if (physical_of_found
+ length
<=
5443 dev_replace
->cursor_left
) {
5444 struct btrfs_bio_stripe
*tgtdev_stripe
=
5445 bbio
->stripes
+ num_stripes
;
5447 tgtdev_stripe
->physical
= physical_of_found
;
5448 tgtdev_stripe
->length
=
5449 bbio
->stripes
[index_srcdev
].length
;
5450 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5451 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5460 bbio
->map_type
= map
->type
;
5461 bbio
->num_stripes
= num_stripes
;
5462 bbio
->max_errors
= max_errors
;
5463 bbio
->mirror_num
= mirror_num
;
5464 bbio
->num_tgtdevs
= tgtdev_indexes
;
5467 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5468 * mirror_num == num_stripes + 1 && dev_replace target drive is
5469 * available as a mirror
5471 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5472 WARN_ON(num_stripes
> 1);
5473 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5474 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5475 bbio
->mirror_num
= map
->num_stripes
+ 1;
5478 if (dev_replace_is_ongoing
)
5479 btrfs_dev_replace_unlock(dev_replace
);
5480 free_extent_map(em
);
5484 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, int rw
,
5485 u64 logical
, u64
*length
,
5486 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5488 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5492 /* For Scrub/replace */
5493 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, int rw
,
5494 u64 logical
, u64
*length
,
5495 struct btrfs_bio
**bbio_ret
, int mirror_num
,
5498 return __btrfs_map_block(fs_info
, rw
, logical
, length
, bbio_ret
,
5499 mirror_num
, need_raid_map
);
5502 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
5503 u64 chunk_start
, u64 physical
, u64 devid
,
5504 u64
**logical
, int *naddrs
, int *stripe_len
)
5506 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
5507 struct extent_map
*em
;
5508 struct map_lookup
*map
;
5516 read_lock(&em_tree
->lock
);
5517 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
5518 read_unlock(&em_tree
->lock
);
5521 printk(KERN_ERR
"BTRFS: couldn't find em for chunk %Lu\n",
5526 if (em
->start
!= chunk_start
) {
5527 printk(KERN_ERR
"BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5528 em
->start
, chunk_start
);
5529 free_extent_map(em
);
5532 map
= (struct map_lookup
*)em
->bdev
;
5535 rmap_len
= map
->stripe_len
;
5537 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5538 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
5539 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5540 do_div(length
, map
->num_stripes
);
5541 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5542 do_div(length
, nr_data_stripes(map
));
5543 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
5546 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
5547 BUG_ON(!buf
); /* -ENOMEM */
5549 for (i
= 0; i
< map
->num_stripes
; i
++) {
5550 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
5552 if (map
->stripes
[i
].physical
> physical
||
5553 map
->stripes
[i
].physical
+ length
<= physical
)
5556 stripe_nr
= physical
- map
->stripes
[i
].physical
;
5557 do_div(stripe_nr
, map
->stripe_len
);
5559 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5560 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5561 do_div(stripe_nr
, map
->sub_stripes
);
5562 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5563 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
5564 } /* else if RAID[56], multiply by nr_data_stripes().
5565 * Alternatively, just use rmap_len below instead of
5566 * map->stripe_len */
5568 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
5569 WARN_ON(nr
>= map
->num_stripes
);
5570 for (j
= 0; j
< nr
; j
++) {
5571 if (buf
[j
] == bytenr
)
5575 WARN_ON(nr
>= map
->num_stripes
);
5582 *stripe_len
= rmap_len
;
5584 free_extent_map(em
);
5588 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
, int err
)
5590 if (likely(bbio
->flags
& BTRFS_BIO_ORIG_BIO_SUBMITTED
))
5591 bio_endio_nodec(bio
, err
);
5593 bio_endio(bio
, err
);
5594 btrfs_put_bbio(bbio
);
5597 static void btrfs_end_bio(struct bio
*bio
, int err
)
5599 struct btrfs_bio
*bbio
= bio
->bi_private
;
5600 struct btrfs_device
*dev
= bbio
->stripes
[0].dev
;
5601 int is_orig_bio
= 0;
5604 atomic_inc(&bbio
->error
);
5605 if (err
== -EIO
|| err
== -EREMOTEIO
) {
5606 unsigned int stripe_index
=
5607 btrfs_io_bio(bio
)->stripe_index
;
5609 BUG_ON(stripe_index
>= bbio
->num_stripes
);
5610 dev
= bbio
->stripes
[stripe_index
].dev
;
5612 if (bio
->bi_rw
& WRITE
)
5613 btrfs_dev_stat_inc(dev
,
5614 BTRFS_DEV_STAT_WRITE_ERRS
);
5616 btrfs_dev_stat_inc(dev
,
5617 BTRFS_DEV_STAT_READ_ERRS
);
5618 if ((bio
->bi_rw
& WRITE_FLUSH
) == WRITE_FLUSH
)
5619 btrfs_dev_stat_inc(dev
,
5620 BTRFS_DEV_STAT_FLUSH_ERRS
);
5621 btrfs_dev_stat_print_on_error(dev
);
5626 if (bio
== bbio
->orig_bio
)
5629 btrfs_bio_counter_dec(bbio
->fs_info
);
5631 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5634 bio
= bbio
->orig_bio
;
5637 bio
->bi_private
= bbio
->private;
5638 bio
->bi_end_io
= bbio
->end_io
;
5639 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5640 /* only send an error to the higher layers if it is
5641 * beyond the tolerance of the btrfs bio
5643 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
5647 * this bio is actually up to date, we didn't
5648 * go over the max number of errors
5650 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5654 btrfs_end_bbio(bbio
, bio
, err
);
5655 } else if (!is_orig_bio
) {
5661 * see run_scheduled_bios for a description of why bios are collected for
5664 * This will add one bio to the pending list for a device and make sure
5665 * the work struct is scheduled.
5667 static noinline
void btrfs_schedule_bio(struct btrfs_root
*root
,
5668 struct btrfs_device
*device
,
5669 int rw
, struct bio
*bio
)
5671 int should_queue
= 1;
5672 struct btrfs_pending_bios
*pending_bios
;
5674 if (device
->missing
|| !device
->bdev
) {
5675 bio_endio(bio
, -EIO
);
5679 /* don't bother with additional async steps for reads, right now */
5680 if (!(rw
& REQ_WRITE
)) {
5682 btrfsic_submit_bio(rw
, bio
);
5688 * nr_async_bios allows us to reliably return congestion to the
5689 * higher layers. Otherwise, the async bio makes it appear we have
5690 * made progress against dirty pages when we've really just put it
5691 * on a queue for later
5693 atomic_inc(&root
->fs_info
->nr_async_bios
);
5694 WARN_ON(bio
->bi_next
);
5695 bio
->bi_next
= NULL
;
5698 spin_lock(&device
->io_lock
);
5699 if (bio
->bi_rw
& REQ_SYNC
)
5700 pending_bios
= &device
->pending_sync_bios
;
5702 pending_bios
= &device
->pending_bios
;
5704 if (pending_bios
->tail
)
5705 pending_bios
->tail
->bi_next
= bio
;
5707 pending_bios
->tail
= bio
;
5708 if (!pending_bios
->head
)
5709 pending_bios
->head
= bio
;
5710 if (device
->running_pending
)
5713 spin_unlock(&device
->io_lock
);
5716 btrfs_queue_work(root
->fs_info
->submit_workers
,
5720 static int bio_size_ok(struct block_device
*bdev
, struct bio
*bio
,
5723 struct bio_vec
*prev
;
5724 struct request_queue
*q
= bdev_get_queue(bdev
);
5725 unsigned int max_sectors
= queue_max_sectors(q
);
5726 struct bvec_merge_data bvm
= {
5728 .bi_sector
= sector
,
5729 .bi_rw
= bio
->bi_rw
,
5732 if (WARN_ON(bio
->bi_vcnt
== 0))
5735 prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
5736 if (bio_sectors(bio
) > max_sectors
)
5739 if (!q
->merge_bvec_fn
)
5742 bvm
.bi_size
= bio
->bi_iter
.bi_size
- prev
->bv_len
;
5743 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < prev
->bv_len
)
5748 static void submit_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5749 struct bio
*bio
, u64 physical
, int dev_nr
,
5752 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
5754 bio
->bi_private
= bbio
;
5755 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
5756 bio
->bi_end_io
= btrfs_end_bio
;
5757 bio
->bi_iter
.bi_sector
= physical
>> 9;
5760 struct rcu_string
*name
;
5763 name
= rcu_dereference(dev
->name
);
5764 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5765 "(%s id %llu), size=%u\n", rw
,
5766 (u64
)bio
->bi_iter
.bi_sector
, (u_long
)dev
->bdev
->bd_dev
,
5767 name
->str
, dev
->devid
, bio
->bi_iter
.bi_size
);
5771 bio
->bi_bdev
= dev
->bdev
;
5773 btrfs_bio_counter_inc_noblocked(root
->fs_info
);
5776 btrfs_schedule_bio(root
, dev
, rw
, bio
);
5778 btrfsic_submit_bio(rw
, bio
);
5781 static int breakup_stripe_bio(struct btrfs_root
*root
, struct btrfs_bio
*bbio
,
5782 struct bio
*first_bio
, struct btrfs_device
*dev
,
5783 int dev_nr
, int rw
, int async
)
5785 struct bio_vec
*bvec
= first_bio
->bi_io_vec
;
5787 int nr_vecs
= bio_get_nr_vecs(dev
->bdev
);
5788 u64 physical
= bbio
->stripes
[dev_nr
].physical
;
5791 bio
= btrfs_bio_alloc(dev
->bdev
, physical
>> 9, nr_vecs
, GFP_NOFS
);
5795 while (bvec
<= (first_bio
->bi_io_vec
+ first_bio
->bi_vcnt
- 1)) {
5796 if (bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5797 bvec
->bv_offset
) < bvec
->bv_len
) {
5798 u64 len
= bio
->bi_iter
.bi_size
;
5800 atomic_inc(&bbio
->stripes_pending
);
5801 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
,
5809 submit_stripe_bio(root
, bbio
, bio
, physical
, dev_nr
, rw
, async
);
5813 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
5815 atomic_inc(&bbio
->error
);
5816 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
5817 /* Shoud be the original bio. */
5818 WARN_ON(bio
!= bbio
->orig_bio
);
5820 bio
->bi_private
= bbio
->private;
5821 bio
->bi_end_io
= bbio
->end_io
;
5822 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
5823 bio
->bi_iter
.bi_sector
= logical
>> 9;
5825 btrfs_end_bbio(bbio
, bio
, -EIO
);
5829 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
5830 int mirror_num
, int async_submit
)
5832 struct btrfs_device
*dev
;
5833 struct bio
*first_bio
= bio
;
5834 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
5840 struct btrfs_bio
*bbio
= NULL
;
5842 length
= bio
->bi_iter
.bi_size
;
5843 map_length
= length
;
5845 btrfs_bio_counter_inc_blocked(root
->fs_info
);
5846 ret
= __btrfs_map_block(root
->fs_info
, rw
, logical
, &map_length
, &bbio
,
5849 btrfs_bio_counter_dec(root
->fs_info
);
5853 total_devs
= bbio
->num_stripes
;
5854 bbio
->orig_bio
= first_bio
;
5855 bbio
->private = first_bio
->bi_private
;
5856 bbio
->end_io
= first_bio
->bi_end_io
;
5857 bbio
->fs_info
= root
->fs_info
;
5858 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
5860 if (bbio
->raid_map
) {
5861 /* In this case, map_length has been set to the length of
5862 a single stripe; not the whole write */
5864 ret
= raid56_parity_write(root
, bio
, bbio
, map_length
);
5866 ret
= raid56_parity_recover(root
, bio
, bbio
, map_length
,
5870 btrfs_bio_counter_dec(root
->fs_info
);
5874 if (map_length
< length
) {
5875 btrfs_crit(root
->fs_info
, "mapping failed logical %llu bio len %llu len %llu",
5876 logical
, length
, map_length
);
5880 while (dev_nr
< total_devs
) {
5881 dev
= bbio
->stripes
[dev_nr
].dev
;
5882 if (!dev
|| !dev
->bdev
|| (rw
& WRITE
&& !dev
->writeable
)) {
5883 bbio_error(bbio
, first_bio
, logical
);
5889 * Check and see if we're ok with this bio based on it's size
5890 * and offset with the given device.
5892 if (!bio_size_ok(dev
->bdev
, first_bio
,
5893 bbio
->stripes
[dev_nr
].physical
>> 9)) {
5894 ret
= breakup_stripe_bio(root
, bbio
, first_bio
, dev
,
5895 dev_nr
, rw
, async_submit
);
5901 if (dev_nr
< total_devs
- 1) {
5902 bio
= btrfs_bio_clone(first_bio
, GFP_NOFS
);
5903 BUG_ON(!bio
); /* -ENOMEM */
5906 bbio
->flags
|= BTRFS_BIO_ORIG_BIO_SUBMITTED
;
5909 submit_stripe_bio(root
, bbio
, bio
,
5910 bbio
->stripes
[dev_nr
].physical
, dev_nr
, rw
,
5914 btrfs_bio_counter_dec(root
->fs_info
);
5918 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
5921 struct btrfs_device
*device
;
5922 struct btrfs_fs_devices
*cur_devices
;
5924 cur_devices
= fs_info
->fs_devices
;
5925 while (cur_devices
) {
5927 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
5928 device
= __find_device(&cur_devices
->devices
,
5933 cur_devices
= cur_devices
->seed
;
5938 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
5939 struct btrfs_fs_devices
*fs_devices
,
5940 u64 devid
, u8
*dev_uuid
)
5942 struct btrfs_device
*device
;
5944 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
5948 list_add(&device
->dev_list
, &fs_devices
->devices
);
5949 device
->fs_devices
= fs_devices
;
5950 fs_devices
->num_devices
++;
5952 device
->missing
= 1;
5953 fs_devices
->missing_devices
++;
5959 * btrfs_alloc_device - allocate struct btrfs_device
5960 * @fs_info: used only for generating a new devid, can be NULL if
5961 * devid is provided (i.e. @devid != NULL).
5962 * @devid: a pointer to devid for this device. If NULL a new devid
5964 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5967 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5968 * on error. Returned struct is not linked onto any lists and can be
5969 * destroyed with kfree() right away.
5971 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
5975 struct btrfs_device
*dev
;
5978 if (WARN_ON(!devid
&& !fs_info
))
5979 return ERR_PTR(-EINVAL
);
5981 dev
= __alloc_device();
5990 ret
= find_next_devid(fs_info
, &tmp
);
5993 return ERR_PTR(ret
);
5999 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6001 generate_random_uuid(dev
->uuid
);
6003 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6004 pending_bios_fn
, NULL
, NULL
);
6009 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
6010 struct extent_buffer
*leaf
,
6011 struct btrfs_chunk
*chunk
)
6013 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
6014 struct map_lookup
*map
;
6015 struct extent_map
*em
;
6019 u8 uuid
[BTRFS_UUID_SIZE
];
6024 logical
= key
->offset
;
6025 length
= btrfs_chunk_length(leaf
, chunk
);
6027 read_lock(&map_tree
->map_tree
.lock
);
6028 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6029 read_unlock(&map_tree
->map_tree
.lock
);
6031 /* already mapped? */
6032 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6033 free_extent_map(em
);
6036 free_extent_map(em
);
6039 em
= alloc_extent_map();
6042 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6043 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6045 free_extent_map(em
);
6049 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6050 em
->bdev
= (struct block_device
*)map
;
6051 em
->start
= logical
;
6054 em
->block_start
= 0;
6055 em
->block_len
= em
->len
;
6057 map
->num_stripes
= num_stripes
;
6058 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6059 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6060 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
6061 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6062 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6063 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6064 for (i
= 0; i
< num_stripes
; i
++) {
6065 map
->stripes
[i
].physical
=
6066 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6067 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6068 read_extent_buffer(leaf
, uuid
, (unsigned long)
6069 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6071 map
->stripes
[i
].dev
= btrfs_find_device(root
->fs_info
, devid
,
6073 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
6074 free_extent_map(em
);
6077 if (!map
->stripes
[i
].dev
) {
6078 map
->stripes
[i
].dev
=
6079 add_missing_dev(root
, root
->fs_info
->fs_devices
,
6081 if (!map
->stripes
[i
].dev
) {
6082 free_extent_map(em
);
6086 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
6089 write_lock(&map_tree
->map_tree
.lock
);
6090 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6091 write_unlock(&map_tree
->map_tree
.lock
);
6092 BUG_ON(ret
); /* Tree corruption */
6093 free_extent_map(em
);
6098 static void fill_device_from_item(struct extent_buffer
*leaf
,
6099 struct btrfs_dev_item
*dev_item
,
6100 struct btrfs_device
*device
)
6104 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6105 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6106 device
->total_bytes
= device
->disk_total_bytes
;
6107 device
->commit_total_bytes
= device
->disk_total_bytes
;
6108 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6109 device
->commit_bytes_used
= device
->bytes_used
;
6110 device
->type
= btrfs_device_type(leaf
, dev_item
);
6111 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6112 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6113 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6114 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6115 device
->is_tgtdev_for_dev_replace
= 0;
6117 ptr
= btrfs_device_uuid(dev_item
);
6118 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6121 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_root
*root
,
6124 struct btrfs_fs_devices
*fs_devices
;
6127 BUG_ON(!mutex_is_locked(&uuid_mutex
));
6129 fs_devices
= root
->fs_info
->fs_devices
->seed
;
6130 while (fs_devices
) {
6131 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
))
6134 fs_devices
= fs_devices
->seed
;
6137 fs_devices
= find_fsid(fsid
);
6139 if (!btrfs_test_opt(root
, DEGRADED
))
6140 return ERR_PTR(-ENOENT
);
6142 fs_devices
= alloc_fs_devices(fsid
);
6143 if (IS_ERR(fs_devices
))
6146 fs_devices
->seeding
= 1;
6147 fs_devices
->opened
= 1;
6151 fs_devices
= clone_fs_devices(fs_devices
);
6152 if (IS_ERR(fs_devices
))
6155 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
6156 root
->fs_info
->bdev_holder
);
6158 free_fs_devices(fs_devices
);
6159 fs_devices
= ERR_PTR(ret
);
6163 if (!fs_devices
->seeding
) {
6164 __btrfs_close_devices(fs_devices
);
6165 free_fs_devices(fs_devices
);
6166 fs_devices
= ERR_PTR(-EINVAL
);
6170 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
6171 root
->fs_info
->fs_devices
->seed
= fs_devices
;
6176 static int read_one_dev(struct btrfs_root
*root
,
6177 struct extent_buffer
*leaf
,
6178 struct btrfs_dev_item
*dev_item
)
6180 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6181 struct btrfs_device
*device
;
6184 u8 fs_uuid
[BTRFS_UUID_SIZE
];
6185 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6187 devid
= btrfs_device_id(leaf
, dev_item
);
6188 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6190 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6193 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
6194 fs_devices
= open_seed_devices(root
, fs_uuid
);
6195 if (IS_ERR(fs_devices
))
6196 return PTR_ERR(fs_devices
);
6199 device
= btrfs_find_device(root
->fs_info
, devid
, dev_uuid
, fs_uuid
);
6201 if (!btrfs_test_opt(root
, DEGRADED
))
6204 btrfs_warn(root
->fs_info
, "devid %llu missing", devid
);
6205 device
= add_missing_dev(root
, fs_devices
, devid
, dev_uuid
);
6209 if (!device
->bdev
&& !btrfs_test_opt(root
, DEGRADED
))
6212 if(!device
->bdev
&& !device
->missing
) {
6214 * this happens when a device that was properly setup
6215 * in the device info lists suddenly goes bad.
6216 * device->bdev is NULL, and so we have to set
6217 * device->missing to one here
6219 device
->fs_devices
->missing_devices
++;
6220 device
->missing
= 1;
6223 /* Move the device to its own fs_devices */
6224 if (device
->fs_devices
!= fs_devices
) {
6225 ASSERT(device
->missing
);
6227 list_move(&device
->dev_list
, &fs_devices
->devices
);
6228 device
->fs_devices
->num_devices
--;
6229 fs_devices
->num_devices
++;
6231 device
->fs_devices
->missing_devices
--;
6232 fs_devices
->missing_devices
++;
6234 device
->fs_devices
= fs_devices
;
6238 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
6239 BUG_ON(device
->writeable
);
6240 if (device
->generation
!=
6241 btrfs_device_generation(leaf
, dev_item
))
6245 fill_device_from_item(leaf
, dev_item
, device
);
6246 device
->in_fs_metadata
= 1;
6247 if (device
->writeable
&& !device
->is_tgtdev_for_dev_replace
) {
6248 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6249 spin_lock(&root
->fs_info
->free_chunk_lock
);
6250 root
->fs_info
->free_chunk_space
+= device
->total_bytes
-
6252 spin_unlock(&root
->fs_info
->free_chunk_lock
);
6258 int btrfs_read_sys_array(struct btrfs_root
*root
)
6260 struct btrfs_super_block
*super_copy
= root
->fs_info
->super_copy
;
6261 struct extent_buffer
*sb
;
6262 struct btrfs_disk_key
*disk_key
;
6263 struct btrfs_chunk
*chunk
;
6265 unsigned long sb_array_offset
;
6271 struct btrfs_key key
;
6273 ASSERT(BTRFS_SUPER_INFO_SIZE
<= root
->nodesize
);
6275 * This will create extent buffer of nodesize, superblock size is
6276 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6277 * overallocate but we can keep it as-is, only the first page is used.
6279 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
);
6282 btrfs_set_buffer_uptodate(sb
);
6283 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6285 * The sb extent buffer is artifical and just used to read the system array.
6286 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6287 * pages up-to-date when the page is larger: extent does not cover the
6288 * whole page and consequently check_page_uptodate does not find all
6289 * the page's extents up-to-date (the hole beyond sb),
6290 * write_extent_buffer then triggers a WARN_ON.
6292 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6293 * but sb spans only this function. Add an explicit SetPageUptodate call
6294 * to silence the warning eg. on PowerPC 64.
6296 if (PAGE_CACHE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6297 SetPageUptodate(sb
->pages
[0]);
6299 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6300 array_size
= btrfs_super_sys_array_size(super_copy
);
6302 array_ptr
= super_copy
->sys_chunk_array
;
6303 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6306 while (cur_offset
< array_size
) {
6307 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6308 len
= sizeof(*disk_key
);
6309 if (cur_offset
+ len
> array_size
)
6310 goto out_short_read
;
6312 btrfs_disk_key_to_cpu(&key
, disk_key
);
6315 sb_array_offset
+= len
;
6318 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6319 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6321 * At least one btrfs_chunk with one stripe must be
6322 * present, exact stripe count check comes afterwards
6324 len
= btrfs_chunk_item_size(1);
6325 if (cur_offset
+ len
> array_size
)
6326 goto out_short_read
;
6328 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6329 len
= btrfs_chunk_item_size(num_stripes
);
6330 if (cur_offset
+ len
> array_size
)
6331 goto out_short_read
;
6333 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
6341 sb_array_offset
+= len
;
6344 free_extent_buffer(sb
);
6348 printk(KERN_ERR
"BTRFS: sys_array too short to read %u bytes at offset %u\n",
6350 free_extent_buffer(sb
);
6354 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
6356 struct btrfs_path
*path
;
6357 struct extent_buffer
*leaf
;
6358 struct btrfs_key key
;
6359 struct btrfs_key found_key
;
6363 root
= root
->fs_info
->chunk_root
;
6365 path
= btrfs_alloc_path();
6369 mutex_lock(&uuid_mutex
);
6373 * Read all device items, and then all the chunk items. All
6374 * device items are found before any chunk item (their object id
6375 * is smaller than the lowest possible object id for a chunk
6376 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6378 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6381 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6385 leaf
= path
->nodes
[0];
6386 slot
= path
->slots
[0];
6387 if (slot
>= btrfs_header_nritems(leaf
)) {
6388 ret
= btrfs_next_leaf(root
, path
);
6395 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6396 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6397 struct btrfs_dev_item
*dev_item
;
6398 dev_item
= btrfs_item_ptr(leaf
, slot
,
6399 struct btrfs_dev_item
);
6400 ret
= read_one_dev(root
, leaf
, dev_item
);
6403 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6404 struct btrfs_chunk
*chunk
;
6405 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6406 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
6414 unlock_chunks(root
);
6415 mutex_unlock(&uuid_mutex
);
6417 btrfs_free_path(path
);
6421 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
6423 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6424 struct btrfs_device
*device
;
6426 while (fs_devices
) {
6427 mutex_lock(&fs_devices
->device_list_mutex
);
6428 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
6429 device
->dev_root
= fs_info
->dev_root
;
6430 mutex_unlock(&fs_devices
->device_list_mutex
);
6432 fs_devices
= fs_devices
->seed
;
6436 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
6440 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6441 btrfs_dev_stat_reset(dev
, i
);
6444 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
6446 struct btrfs_key key
;
6447 struct btrfs_key found_key
;
6448 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6449 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6450 struct extent_buffer
*eb
;
6453 struct btrfs_device
*device
;
6454 struct btrfs_path
*path
= NULL
;
6457 path
= btrfs_alloc_path();
6463 mutex_lock(&fs_devices
->device_list_mutex
);
6464 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6466 struct btrfs_dev_stats_item
*ptr
;
6469 key
.type
= BTRFS_DEV_STATS_KEY
;
6470 key
.offset
= device
->devid
;
6471 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
6473 __btrfs_reset_dev_stats(device
);
6474 device
->dev_stats_valid
= 1;
6475 btrfs_release_path(path
);
6478 slot
= path
->slots
[0];
6479 eb
= path
->nodes
[0];
6480 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6481 item_size
= btrfs_item_size_nr(eb
, slot
);
6483 ptr
= btrfs_item_ptr(eb
, slot
,
6484 struct btrfs_dev_stats_item
);
6486 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6487 if (item_size
>= (1 + i
) * sizeof(__le64
))
6488 btrfs_dev_stat_set(device
, i
,
6489 btrfs_dev_stats_value(eb
, ptr
, i
));
6491 btrfs_dev_stat_reset(device
, i
);
6494 device
->dev_stats_valid
= 1;
6495 btrfs_dev_stat_print_on_load(device
);
6496 btrfs_release_path(path
);
6498 mutex_unlock(&fs_devices
->device_list_mutex
);
6501 btrfs_free_path(path
);
6502 return ret
< 0 ? ret
: 0;
6505 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
6506 struct btrfs_root
*dev_root
,
6507 struct btrfs_device
*device
)
6509 struct btrfs_path
*path
;
6510 struct btrfs_key key
;
6511 struct extent_buffer
*eb
;
6512 struct btrfs_dev_stats_item
*ptr
;
6517 key
.type
= BTRFS_DEV_STATS_KEY
;
6518 key
.offset
= device
->devid
;
6520 path
= btrfs_alloc_path();
6522 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
6524 printk_in_rcu(KERN_WARNING
"BTRFS: "
6525 "error %d while searching for dev_stats item for device %s!\n",
6526 ret
, rcu_str_deref(device
->name
));
6531 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
6532 /* need to delete old one and insert a new one */
6533 ret
= btrfs_del_item(trans
, dev_root
, path
);
6535 printk_in_rcu(KERN_WARNING
"BTRFS: "
6536 "delete too small dev_stats item for device %s failed %d!\n",
6537 rcu_str_deref(device
->name
), ret
);
6544 /* need to insert a new item */
6545 btrfs_release_path(path
);
6546 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
6547 &key
, sizeof(*ptr
));
6549 printk_in_rcu(KERN_WARNING
"BTRFS: "
6550 "insert dev_stats item for device %s failed %d!\n",
6551 rcu_str_deref(device
->name
), ret
);
6556 eb
= path
->nodes
[0];
6557 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
6558 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6559 btrfs_set_dev_stats_value(eb
, ptr
, i
,
6560 btrfs_dev_stat_read(device
, i
));
6561 btrfs_mark_buffer_dirty(eb
);
6564 btrfs_free_path(path
);
6569 * called from commit_transaction. Writes all changed device stats to disk.
6571 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
6572 struct btrfs_fs_info
*fs_info
)
6574 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
6575 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6576 struct btrfs_device
*device
;
6580 mutex_lock(&fs_devices
->device_list_mutex
);
6581 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
6582 if (!device
->dev_stats_valid
|| !btrfs_dev_stats_dirty(device
))
6585 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
6586 ret
= update_dev_stat_item(trans
, dev_root
, device
);
6588 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
6590 mutex_unlock(&fs_devices
->device_list_mutex
);
6595 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
6597 btrfs_dev_stat_inc(dev
, index
);
6598 btrfs_dev_stat_print_on_error(dev
);
6601 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
6603 if (!dev
->dev_stats_valid
)
6605 printk_ratelimited_in_rcu(KERN_ERR
"BTRFS: "
6606 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6607 rcu_str_deref(dev
->name
),
6608 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6609 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6610 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6611 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6612 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6615 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
6619 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6620 if (btrfs_dev_stat_read(dev
, i
) != 0)
6622 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
6623 return; /* all values == 0, suppress message */
6625 printk_in_rcu(KERN_INFO
"BTRFS: "
6626 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6627 rcu_str_deref(dev
->name
),
6628 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
6629 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
6630 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
6631 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
6632 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
6635 int btrfs_get_dev_stats(struct btrfs_root
*root
,
6636 struct btrfs_ioctl_get_dev_stats
*stats
)
6638 struct btrfs_device
*dev
;
6639 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6642 mutex_lock(&fs_devices
->device_list_mutex
);
6643 dev
= btrfs_find_device(root
->fs_info
, stats
->devid
, NULL
, NULL
);
6644 mutex_unlock(&fs_devices
->device_list_mutex
);
6647 btrfs_warn(root
->fs_info
, "get dev_stats failed, device not found");
6649 } else if (!dev
->dev_stats_valid
) {
6650 btrfs_warn(root
->fs_info
, "get dev_stats failed, not yet valid");
6652 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
6653 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
6654 if (stats
->nr_items
> i
)
6656 btrfs_dev_stat_read_and_reset(dev
, i
);
6658 btrfs_dev_stat_reset(dev
, i
);
6661 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
6662 if (stats
->nr_items
> i
)
6663 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
6665 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
6666 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
6670 int btrfs_scratch_superblock(struct btrfs_device
*device
)
6672 struct buffer_head
*bh
;
6673 struct btrfs_super_block
*disk_super
;
6675 bh
= btrfs_read_dev_super(device
->bdev
);
6678 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
6680 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
6681 set_buffer_dirty(bh
);
6682 sync_dirty_buffer(bh
);
6689 * Update the size of all devices, which is used for writing out the
6692 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
6694 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6695 struct btrfs_device
*curr
, *next
;
6697 if (list_empty(&fs_devices
->resized_devices
))
6700 mutex_lock(&fs_devices
->device_list_mutex
);
6701 lock_chunks(fs_info
->dev_root
);
6702 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
6704 list_del_init(&curr
->resized_list
);
6705 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
6707 unlock_chunks(fs_info
->dev_root
);
6708 mutex_unlock(&fs_devices
->device_list_mutex
);
6711 /* Must be invoked during the transaction commit */
6712 void btrfs_update_commit_device_bytes_used(struct btrfs_root
*root
,
6713 struct btrfs_transaction
*transaction
)
6715 struct extent_map
*em
;
6716 struct map_lookup
*map
;
6717 struct btrfs_device
*dev
;
6720 if (list_empty(&transaction
->pending_chunks
))
6723 /* In order to kick the device replace finish process */
6725 list_for_each_entry(em
, &transaction
->pending_chunks
, list
) {
6726 map
= (struct map_lookup
*)em
->bdev
;
6728 for (i
= 0; i
< map
->num_stripes
; i
++) {
6729 dev
= map
->stripes
[i
].dev
;
6730 dev
->commit_bytes_used
= dev
->bytes_used
;
6733 unlock_chunks(root
);