ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / fs / f2fs / data.c
blob985ed023a750170b924455ea23e2684c50baeba4
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
28 static void f2fs_read_end_io(struct bio *bio, int err)
30 struct bio_vec *bvec;
31 int i;
33 bio_for_each_segment_all(bvec, bio, i) {
34 struct page *page = bvec->bv_page;
36 if (!err) {
37 SetPageUptodate(page);
38 } else {
39 ClearPageUptodate(page);
40 SetPageError(page);
42 unlock_page(page);
44 bio_put(bio);
47 static void f2fs_write_end_io(struct bio *bio, int err)
49 struct f2fs_sb_info *sbi = bio->bi_private;
50 struct bio_vec *bvec;
51 int i;
53 bio_for_each_segment_all(bvec, bio, i) {
54 struct page *page = bvec->bv_page;
56 if (unlikely(err)) {
57 set_page_dirty(page);
58 set_bit(AS_EIO, &page->mapping->flags);
59 f2fs_stop_checkpoint(sbi);
61 end_page_writeback(page);
62 dec_page_count(sbi, F2FS_WRITEBACK);
65 if (!get_pages(sbi, F2FS_WRITEBACK) &&
66 !list_empty(&sbi->cp_wait.task_list))
67 wake_up(&sbi->cp_wait);
69 bio_put(bio);
73 * Low-level block read/write IO operations.
75 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
76 int npages, bool is_read)
78 struct bio *bio;
80 /* No failure on bio allocation */
81 bio = bio_alloc(GFP_NOIO, npages);
83 bio->bi_bdev = sbi->sb->s_bdev;
84 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
85 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
86 bio->bi_private = sbi;
88 return bio;
91 static void __submit_merged_bio(struct f2fs_bio_info *io)
93 struct f2fs_io_info *fio = &io->fio;
95 if (!io->bio)
96 return;
98 if (is_read_io(fio->rw))
99 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
100 else
101 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
103 submit_bio(fio->rw, io->bio);
104 io->bio = NULL;
107 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
108 enum page_type type, int rw)
110 enum page_type btype = PAGE_TYPE_OF_BIO(type);
111 struct f2fs_bio_info *io;
113 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
115 down_write(&io->io_rwsem);
117 /* change META to META_FLUSH in the checkpoint procedure */
118 if (type >= META_FLUSH) {
119 io->fio.type = META_FLUSH;
120 if (test_opt(sbi, NOBARRIER))
121 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
122 else
123 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
125 __submit_merged_bio(io);
126 up_write(&io->io_rwsem);
130 * Fill the locked page with data located in the block address.
131 * Return unlocked page.
133 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
134 struct f2fs_io_info *fio)
136 struct bio *bio;
138 trace_f2fs_submit_page_bio(page, fio);
139 f2fs_trace_ios(page, fio, 0);
141 /* Allocate a new bio */
142 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
144 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
145 bio_put(bio);
146 f2fs_put_page(page, 1);
147 return -EFAULT;
150 submit_bio(fio->rw, bio);
151 return 0;
154 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
155 struct f2fs_io_info *fio)
157 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
158 struct f2fs_bio_info *io;
159 bool is_read = is_read_io(fio->rw);
161 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
163 verify_block_addr(sbi, fio->blk_addr);
165 down_write(&io->io_rwsem);
167 if (!is_read)
168 inc_page_count(sbi, F2FS_WRITEBACK);
170 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
171 io->fio.rw != fio->rw))
172 __submit_merged_bio(io);
173 alloc_new:
174 if (io->bio == NULL) {
175 int bio_blocks = MAX_BIO_BLOCKS(sbi);
177 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
178 io->fio = *fio;
181 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
182 PAGE_CACHE_SIZE) {
183 __submit_merged_bio(io);
184 goto alloc_new;
187 io->last_block_in_bio = fio->blk_addr;
188 f2fs_trace_ios(page, fio, 0);
190 up_write(&io->io_rwsem);
191 trace_f2fs_submit_page_mbio(page, fio);
195 * Lock ordering for the change of data block address:
196 * ->data_page
197 * ->node_page
198 * update block addresses in the node page
200 static void __set_data_blkaddr(struct dnode_of_data *dn)
202 struct f2fs_node *rn;
203 __le32 *addr_array;
204 struct page *node_page = dn->node_page;
205 unsigned int ofs_in_node = dn->ofs_in_node;
207 f2fs_wait_on_page_writeback(node_page, NODE);
209 rn = F2FS_NODE(node_page);
211 /* Get physical address of data block */
212 addr_array = blkaddr_in_node(rn);
213 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
214 set_page_dirty(node_page);
217 int reserve_new_block(struct dnode_of_data *dn)
219 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
221 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
222 return -EPERM;
223 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
224 return -ENOSPC;
226 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
228 dn->data_blkaddr = NEW_ADDR;
229 __set_data_blkaddr(dn);
230 mark_inode_dirty(dn->inode);
231 sync_inode_page(dn);
232 return 0;
235 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
237 bool need_put = dn->inode_page ? false : true;
238 int err;
240 err = get_dnode_of_data(dn, index, ALLOC_NODE);
241 if (err)
242 return err;
244 if (dn->data_blkaddr == NULL_ADDR)
245 err = reserve_new_block(dn);
246 if (err || need_put)
247 f2fs_put_dnode(dn);
248 return err;
251 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
252 struct buffer_head *bh_result)
254 struct f2fs_inode_info *fi = F2FS_I(inode);
255 pgoff_t start_fofs, end_fofs;
256 block_t start_blkaddr;
258 if (is_inode_flag_set(fi, FI_NO_EXTENT))
259 return 0;
261 read_lock(&fi->ext.ext_lock);
262 if (fi->ext.len == 0) {
263 read_unlock(&fi->ext.ext_lock);
264 return 0;
267 stat_inc_total_hit(inode->i_sb);
269 start_fofs = fi->ext.fofs;
270 end_fofs = fi->ext.fofs + fi->ext.len - 1;
271 start_blkaddr = fi->ext.blk_addr;
273 if (pgofs >= start_fofs && pgofs <= end_fofs) {
274 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
275 size_t count;
277 set_buffer_new(bh_result);
278 map_bh(bh_result, inode->i_sb,
279 start_blkaddr + pgofs - start_fofs);
280 count = end_fofs - pgofs + 1;
281 if (count < (UINT_MAX >> blkbits))
282 bh_result->b_size = (count << blkbits);
283 else
284 bh_result->b_size = UINT_MAX;
286 stat_inc_read_hit(inode->i_sb);
287 read_unlock(&fi->ext.ext_lock);
288 return 1;
290 read_unlock(&fi->ext.ext_lock);
291 return 0;
294 void update_extent_cache(struct dnode_of_data *dn)
296 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
297 pgoff_t fofs, start_fofs, end_fofs;
298 block_t start_blkaddr, end_blkaddr;
299 int need_update = true;
301 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
303 /* Update the page address in the parent node */
304 __set_data_blkaddr(dn);
306 if (is_inode_flag_set(fi, FI_NO_EXTENT))
307 return;
309 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
310 dn->ofs_in_node;
312 write_lock(&fi->ext.ext_lock);
314 start_fofs = fi->ext.fofs;
315 end_fofs = fi->ext.fofs + fi->ext.len - 1;
316 start_blkaddr = fi->ext.blk_addr;
317 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
319 /* Drop and initialize the matched extent */
320 if (fi->ext.len == 1 && fofs == start_fofs)
321 fi->ext.len = 0;
323 /* Initial extent */
324 if (fi->ext.len == 0) {
325 if (dn->data_blkaddr != NULL_ADDR) {
326 fi->ext.fofs = fofs;
327 fi->ext.blk_addr = dn->data_blkaddr;
328 fi->ext.len = 1;
330 goto end_update;
333 /* Front merge */
334 if (fofs == start_fofs - 1 && dn->data_blkaddr == start_blkaddr - 1) {
335 fi->ext.fofs--;
336 fi->ext.blk_addr--;
337 fi->ext.len++;
338 goto end_update;
341 /* Back merge */
342 if (fofs == end_fofs + 1 && dn->data_blkaddr == end_blkaddr + 1) {
343 fi->ext.len++;
344 goto end_update;
347 /* Split the existing extent */
348 if (fi->ext.len > 1 &&
349 fofs >= start_fofs && fofs <= end_fofs) {
350 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
351 fi->ext.len = fofs - start_fofs;
352 } else {
353 fi->ext.fofs = fofs + 1;
354 fi->ext.blk_addr = start_blkaddr +
355 fofs - start_fofs + 1;
356 fi->ext.len -= fofs - start_fofs + 1;
358 } else {
359 need_update = false;
362 /* Finally, if the extent is very fragmented, let's drop the cache. */
363 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
364 fi->ext.len = 0;
365 set_inode_flag(fi, FI_NO_EXTENT);
366 need_update = true;
368 end_update:
369 write_unlock(&fi->ext.ext_lock);
370 if (need_update)
371 sync_inode_page(dn);
372 return;
375 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
377 struct address_space *mapping = inode->i_mapping;
378 struct dnode_of_data dn;
379 struct page *page;
380 int err;
381 struct f2fs_io_info fio = {
382 .type = DATA,
383 .rw = sync ? READ_SYNC : READA,
386 page = find_get_page(mapping, index);
387 if (page && PageUptodate(page))
388 return page;
389 f2fs_put_page(page, 0);
391 set_new_dnode(&dn, inode, NULL, NULL, 0);
392 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
393 if (err)
394 return ERR_PTR(err);
395 f2fs_put_dnode(&dn);
397 if (dn.data_blkaddr == NULL_ADDR)
398 return ERR_PTR(-ENOENT);
400 /* By fallocate(), there is no cached page, but with NEW_ADDR */
401 if (unlikely(dn.data_blkaddr == NEW_ADDR))
402 return ERR_PTR(-EINVAL);
404 page = grab_cache_page(mapping, index);
405 if (!page)
406 return ERR_PTR(-ENOMEM);
408 if (PageUptodate(page)) {
409 unlock_page(page);
410 return page;
413 fio.blk_addr = dn.data_blkaddr;
414 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
415 if (err)
416 return ERR_PTR(err);
418 if (sync) {
419 wait_on_page_locked(page);
420 if (unlikely(!PageUptodate(page))) {
421 f2fs_put_page(page, 0);
422 return ERR_PTR(-EIO);
425 return page;
429 * If it tries to access a hole, return an error.
430 * Because, the callers, functions in dir.c and GC, should be able to know
431 * whether this page exists or not.
433 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
435 struct address_space *mapping = inode->i_mapping;
436 struct dnode_of_data dn;
437 struct page *page;
438 int err;
439 struct f2fs_io_info fio = {
440 .type = DATA,
441 .rw = READ_SYNC,
443 repeat:
444 page = grab_cache_page(mapping, index);
445 if (!page)
446 return ERR_PTR(-ENOMEM);
448 set_new_dnode(&dn, inode, NULL, NULL, 0);
449 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
450 if (err) {
451 f2fs_put_page(page, 1);
452 return ERR_PTR(err);
454 f2fs_put_dnode(&dn);
456 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
457 f2fs_put_page(page, 1);
458 return ERR_PTR(-ENOENT);
461 if (PageUptodate(page))
462 return page;
465 * A new dentry page is allocated but not able to be written, since its
466 * new inode page couldn't be allocated due to -ENOSPC.
467 * In such the case, its blkaddr can be remained as NEW_ADDR.
468 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
470 if (dn.data_blkaddr == NEW_ADDR) {
471 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
472 SetPageUptodate(page);
473 return page;
476 fio.blk_addr = dn.data_blkaddr;
477 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
478 if (err)
479 return ERR_PTR(err);
481 lock_page(page);
482 if (unlikely(!PageUptodate(page))) {
483 f2fs_put_page(page, 1);
484 return ERR_PTR(-EIO);
486 if (unlikely(page->mapping != mapping)) {
487 f2fs_put_page(page, 1);
488 goto repeat;
490 return page;
494 * Caller ensures that this data page is never allocated.
495 * A new zero-filled data page is allocated in the page cache.
497 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
498 * f2fs_unlock_op().
499 * Note that, ipage is set only by make_empty_dir.
501 struct page *get_new_data_page(struct inode *inode,
502 struct page *ipage, pgoff_t index, bool new_i_size)
504 struct address_space *mapping = inode->i_mapping;
505 struct page *page;
506 struct dnode_of_data dn;
507 int err;
509 set_new_dnode(&dn, inode, ipage, NULL, 0);
510 err = f2fs_reserve_block(&dn, index);
511 if (err)
512 return ERR_PTR(err);
513 repeat:
514 page = grab_cache_page(mapping, index);
515 if (!page) {
516 err = -ENOMEM;
517 goto put_err;
520 if (PageUptodate(page))
521 return page;
523 if (dn.data_blkaddr == NEW_ADDR) {
524 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
525 SetPageUptodate(page);
526 } else {
527 struct f2fs_io_info fio = {
528 .type = DATA,
529 .rw = READ_SYNC,
530 .blk_addr = dn.data_blkaddr,
532 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
533 if (err)
534 goto put_err;
536 lock_page(page);
537 if (unlikely(!PageUptodate(page))) {
538 f2fs_put_page(page, 1);
539 err = -EIO;
540 goto put_err;
542 if (unlikely(page->mapping != mapping)) {
543 f2fs_put_page(page, 1);
544 goto repeat;
548 if (new_i_size &&
549 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
550 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
551 /* Only the directory inode sets new_i_size */
552 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
554 return page;
556 put_err:
557 f2fs_put_dnode(&dn);
558 return ERR_PTR(err);
561 static int __allocate_data_block(struct dnode_of_data *dn)
563 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
564 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
565 struct f2fs_summary sum;
566 struct node_info ni;
567 int seg = CURSEG_WARM_DATA;
568 pgoff_t fofs;
570 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
571 return -EPERM;
572 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
573 return -ENOSPC;
575 get_node_info(sbi, dn->nid, &ni);
576 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
578 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
579 seg = CURSEG_DIRECT_IO;
581 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
583 /* direct IO doesn't use extent cache to maximize the performance */
584 __set_data_blkaddr(dn);
586 /* update i_size */
587 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
588 dn->ofs_in_node;
589 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
590 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
592 return 0;
595 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
596 size_t count)
598 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
599 struct dnode_of_data dn;
600 u64 start = F2FS_BYTES_TO_BLK(offset);
601 u64 len = F2FS_BYTES_TO_BLK(count);
602 bool allocated;
603 u64 end_offset;
605 while (len) {
606 f2fs_balance_fs(sbi);
607 f2fs_lock_op(sbi);
609 /* When reading holes, we need its node page */
610 set_new_dnode(&dn, inode, NULL, NULL, 0);
611 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
612 goto out;
614 allocated = false;
615 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
617 while (dn.ofs_in_node < end_offset && len) {
618 if (dn.data_blkaddr == NULL_ADDR) {
619 if (__allocate_data_block(&dn))
620 goto sync_out;
621 allocated = true;
623 len--;
624 start++;
625 dn.ofs_in_node++;
628 if (allocated)
629 sync_inode_page(&dn);
631 f2fs_put_dnode(&dn);
632 f2fs_unlock_op(sbi);
634 return;
636 sync_out:
637 if (allocated)
638 sync_inode_page(&dn);
639 f2fs_put_dnode(&dn);
640 out:
641 f2fs_unlock_op(sbi);
642 return;
646 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
647 * If original data blocks are allocated, then give them to blockdev.
648 * Otherwise,
649 * a. preallocate requested block addresses
650 * b. do not use extent cache for better performance
651 * c. give the block addresses to blockdev
653 static int __get_data_block(struct inode *inode, sector_t iblock,
654 struct buffer_head *bh_result, int create, bool fiemap)
656 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
657 unsigned maxblocks = bh_result->b_size >> blkbits;
658 struct dnode_of_data dn;
659 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
660 pgoff_t pgofs, end_offset;
661 int err = 0, ofs = 1;
662 bool allocated = false;
664 /* Get the page offset from the block offset(iblock) */
665 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
667 if (check_extent_cache(inode, pgofs, bh_result))
668 goto out;
670 if (create)
671 f2fs_lock_op(F2FS_I_SB(inode));
673 /* When reading holes, we need its node page */
674 set_new_dnode(&dn, inode, NULL, NULL, 0);
675 err = get_dnode_of_data(&dn, pgofs, mode);
676 if (err) {
677 if (err == -ENOENT)
678 err = 0;
679 goto unlock_out;
681 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
682 goto put_out;
684 if (dn.data_blkaddr != NULL_ADDR) {
685 set_buffer_new(bh_result);
686 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
687 } else if (create) {
688 err = __allocate_data_block(&dn);
689 if (err)
690 goto put_out;
691 allocated = true;
692 set_buffer_new(bh_result);
693 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
694 } else {
695 goto put_out;
698 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
699 bh_result->b_size = (((size_t)1) << blkbits);
700 dn.ofs_in_node++;
701 pgofs++;
703 get_next:
704 if (dn.ofs_in_node >= end_offset) {
705 if (allocated)
706 sync_inode_page(&dn);
707 allocated = false;
708 f2fs_put_dnode(&dn);
710 set_new_dnode(&dn, inode, NULL, NULL, 0);
711 err = get_dnode_of_data(&dn, pgofs, mode);
712 if (err) {
713 if (err == -ENOENT)
714 err = 0;
715 goto unlock_out;
717 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
718 goto put_out;
720 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
723 if (maxblocks > (bh_result->b_size >> blkbits)) {
724 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
725 if (blkaddr == NULL_ADDR && create) {
726 err = __allocate_data_block(&dn);
727 if (err)
728 goto sync_out;
729 allocated = true;
730 blkaddr = dn.data_blkaddr;
732 /* Give more consecutive addresses for the readahead */
733 if (blkaddr == (bh_result->b_blocknr + ofs)) {
734 ofs++;
735 dn.ofs_in_node++;
736 pgofs++;
737 bh_result->b_size += (((size_t)1) << blkbits);
738 goto get_next;
741 sync_out:
742 if (allocated)
743 sync_inode_page(&dn);
744 put_out:
745 f2fs_put_dnode(&dn);
746 unlock_out:
747 if (create)
748 f2fs_unlock_op(F2FS_I_SB(inode));
749 out:
750 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
751 return err;
754 static int get_data_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh_result, int create)
757 return __get_data_block(inode, iblock, bh_result, create, false);
760 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh_result, int create)
763 return __get_data_block(inode, iblock, bh_result, create, true);
766 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
767 u64 start, u64 len)
769 return generic_block_fiemap(inode, fieinfo,
770 start, len, get_data_block_fiemap);
773 static int f2fs_read_data_page(struct file *file, struct page *page)
775 struct inode *inode = page->mapping->host;
776 int ret = -EAGAIN;
778 trace_f2fs_readpage(page, DATA);
780 /* If the file has inline data, try to read it directly */
781 if (f2fs_has_inline_data(inode))
782 ret = f2fs_read_inline_data(inode, page);
783 if (ret == -EAGAIN)
784 ret = mpage_readpage(page, get_data_block);
786 return ret;
789 static int f2fs_read_data_pages(struct file *file,
790 struct address_space *mapping,
791 struct list_head *pages, unsigned nr_pages)
793 struct inode *inode = file->f_mapping->host;
795 /* If the file has inline data, skip readpages */
796 if (f2fs_has_inline_data(inode))
797 return 0;
799 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
802 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
804 struct inode *inode = page->mapping->host;
805 struct dnode_of_data dn;
806 int err = 0;
808 set_new_dnode(&dn, inode, NULL, NULL, 0);
809 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
810 if (err)
811 return err;
813 fio->blk_addr = dn.data_blkaddr;
815 /* This page is already truncated */
816 if (fio->blk_addr == NULL_ADDR)
817 goto out_writepage;
819 set_page_writeback(page);
822 * If current allocation needs SSR,
823 * it had better in-place writes for updated data.
825 if (unlikely(fio->blk_addr != NEW_ADDR &&
826 !is_cold_data(page) &&
827 need_inplace_update(inode))) {
828 rewrite_data_page(page, fio);
829 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
830 } else {
831 write_data_page(page, &dn, fio);
832 update_extent_cache(&dn);
833 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
835 out_writepage:
836 f2fs_put_dnode(&dn);
837 return err;
840 static int f2fs_write_data_page(struct page *page,
841 struct writeback_control *wbc)
843 struct inode *inode = page->mapping->host;
844 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
845 loff_t i_size = i_size_read(inode);
846 const pgoff_t end_index = ((unsigned long long) i_size)
847 >> PAGE_CACHE_SHIFT;
848 unsigned offset = 0;
849 bool need_balance_fs = false;
850 int err = 0;
851 struct f2fs_io_info fio = {
852 .type = DATA,
853 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
856 trace_f2fs_writepage(page, DATA);
858 if (page->index < end_index)
859 goto write;
862 * If the offset is out-of-range of file size,
863 * this page does not have to be written to disk.
865 offset = i_size & (PAGE_CACHE_SIZE - 1);
866 if ((page->index >= end_index + 1) || !offset)
867 goto out;
869 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
870 write:
871 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
872 goto redirty_out;
873 if (f2fs_is_drop_cache(inode))
874 goto out;
875 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
876 available_free_memory(sbi, BASE_CHECK))
877 goto redirty_out;
879 /* Dentry blocks are controlled by checkpoint */
880 if (S_ISDIR(inode->i_mode)) {
881 if (unlikely(f2fs_cp_error(sbi)))
882 goto redirty_out;
883 err = do_write_data_page(page, &fio);
884 goto done;
887 /* we should bypass data pages to proceed the kworkder jobs */
888 if (unlikely(f2fs_cp_error(sbi))) {
889 SetPageError(page);
890 goto out;
893 if (!wbc->for_reclaim)
894 need_balance_fs = true;
895 else if (has_not_enough_free_secs(sbi, 0))
896 goto redirty_out;
898 err = -EAGAIN;
899 f2fs_lock_op(sbi);
900 if (f2fs_has_inline_data(inode))
901 err = f2fs_write_inline_data(inode, page);
902 if (err == -EAGAIN)
903 err = do_write_data_page(page, &fio);
904 f2fs_unlock_op(sbi);
905 done:
906 if (err && err != -ENOENT)
907 goto redirty_out;
909 clear_cold_data(page);
910 out:
911 inode_dec_dirty_pages(inode);
912 unlock_page(page);
913 if (need_balance_fs)
914 f2fs_balance_fs(sbi);
915 if (wbc->for_reclaim)
916 f2fs_submit_merged_bio(sbi, DATA, WRITE);
917 return 0;
919 redirty_out:
920 redirty_page_for_writepage(wbc, page);
921 return AOP_WRITEPAGE_ACTIVATE;
924 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
925 void *data)
927 struct address_space *mapping = data;
928 int ret = mapping->a_ops->writepage(page, wbc);
929 mapping_set_error(mapping, ret);
930 return ret;
933 static int f2fs_write_data_pages(struct address_space *mapping,
934 struct writeback_control *wbc)
936 struct inode *inode = mapping->host;
937 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
938 bool locked = false;
939 int ret;
940 long diff;
942 trace_f2fs_writepages(mapping->host, wbc, DATA);
944 /* deal with chardevs and other special file */
945 if (!mapping->a_ops->writepage)
946 return 0;
948 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
949 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
950 available_free_memory(sbi, DIRTY_DENTS))
951 goto skip_write;
953 diff = nr_pages_to_write(sbi, DATA, wbc);
955 if (!S_ISDIR(inode->i_mode)) {
956 mutex_lock(&sbi->writepages);
957 locked = true;
959 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
960 if (locked)
961 mutex_unlock(&sbi->writepages);
963 f2fs_submit_merged_bio(sbi, DATA, WRITE);
965 remove_dirty_dir_inode(inode);
967 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
968 return ret;
970 skip_write:
971 wbc->pages_skipped += get_dirty_pages(inode);
972 return 0;
975 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
977 struct inode *inode = mapping->host;
979 if (to > inode->i_size) {
980 truncate_pagecache(inode, inode->i_size);
981 truncate_blocks(inode, inode->i_size, true);
985 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
986 loff_t pos, unsigned len, unsigned flags,
987 struct page **pagep, void **fsdata)
989 struct inode *inode = mapping->host;
990 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
991 struct page *page, *ipage;
992 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
993 struct dnode_of_data dn;
994 int err = 0;
996 trace_f2fs_write_begin(inode, pos, len, flags);
998 f2fs_balance_fs(sbi);
1001 * We should check this at this moment to avoid deadlock on inode page
1002 * and #0 page. The locking rule for inline_data conversion should be:
1003 * lock_page(page #0) -> lock_page(inode_page)
1005 if (index != 0) {
1006 err = f2fs_convert_inline_inode(inode);
1007 if (err)
1008 goto fail;
1010 repeat:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page) {
1013 err = -ENOMEM;
1014 goto fail;
1017 *pagep = page;
1019 f2fs_lock_op(sbi);
1021 /* check inline_data */
1022 ipage = get_node_page(sbi, inode->i_ino);
1023 if (IS_ERR(ipage)) {
1024 err = PTR_ERR(ipage);
1025 goto unlock_fail;
1028 set_new_dnode(&dn, inode, ipage, ipage, 0);
1030 if (f2fs_has_inline_data(inode)) {
1031 if (pos + len <= MAX_INLINE_DATA) {
1032 read_inline_data(page, ipage);
1033 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1034 sync_inode_page(&dn);
1035 goto put_next;
1037 err = f2fs_convert_inline_page(&dn, page);
1038 if (err)
1039 goto put_fail;
1041 err = f2fs_reserve_block(&dn, index);
1042 if (err)
1043 goto put_fail;
1044 put_next:
1045 f2fs_put_dnode(&dn);
1046 f2fs_unlock_op(sbi);
1048 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1049 return 0;
1051 f2fs_wait_on_page_writeback(page, DATA);
1053 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1054 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1055 unsigned end = start + len;
1057 /* Reading beyond i_size is simple: memset to zero */
1058 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1059 goto out;
1062 if (dn.data_blkaddr == NEW_ADDR) {
1063 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1064 } else {
1065 struct f2fs_io_info fio = {
1066 .type = DATA,
1067 .rw = READ_SYNC,
1068 .blk_addr = dn.data_blkaddr,
1070 err = f2fs_submit_page_bio(sbi, page, &fio);
1071 if (err)
1072 goto fail;
1074 lock_page(page);
1075 if (unlikely(!PageUptodate(page))) {
1076 f2fs_put_page(page, 1);
1077 err = -EIO;
1078 goto fail;
1080 if (unlikely(page->mapping != mapping)) {
1081 f2fs_put_page(page, 1);
1082 goto repeat;
1085 out:
1086 SetPageUptodate(page);
1087 clear_cold_data(page);
1088 return 0;
1090 put_fail:
1091 f2fs_put_dnode(&dn);
1092 unlock_fail:
1093 f2fs_unlock_op(sbi);
1094 f2fs_put_page(page, 1);
1095 fail:
1096 f2fs_write_failed(mapping, pos + len);
1097 return err;
1100 static int f2fs_write_end(struct file *file,
1101 struct address_space *mapping,
1102 loff_t pos, unsigned len, unsigned copied,
1103 struct page *page, void *fsdata)
1105 struct inode *inode = page->mapping->host;
1107 trace_f2fs_write_end(inode, pos, len, copied);
1109 set_page_dirty(page);
1111 if (pos + copied > i_size_read(inode)) {
1112 i_size_write(inode, pos + copied);
1113 mark_inode_dirty(inode);
1114 update_inode_page(inode);
1117 f2fs_put_page(page, 1);
1118 return copied;
1121 static int check_direct_IO(struct inode *inode, int rw,
1122 struct iov_iter *iter, loff_t offset)
1124 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1126 if (rw == READ)
1127 return 0;
1129 if (offset & blocksize_mask)
1130 return -EINVAL;
1132 if (iov_iter_alignment(iter) & blocksize_mask)
1133 return -EINVAL;
1135 return 0;
1138 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1139 struct iov_iter *iter, loff_t offset)
1141 struct file *file = iocb->ki_filp;
1142 struct address_space *mapping = file->f_mapping;
1143 struct inode *inode = mapping->host;
1144 size_t count = iov_iter_count(iter);
1145 int err;
1147 /* we don't need to use inline_data strictly */
1148 if (f2fs_has_inline_data(inode)) {
1149 err = f2fs_convert_inline_inode(inode);
1150 if (err)
1151 return err;
1154 if (check_direct_IO(inode, rw, iter, offset))
1155 return 0;
1157 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1159 if (rw & WRITE)
1160 __allocate_data_blocks(inode, offset, count);
1162 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1163 if (err < 0 && (rw & WRITE))
1164 f2fs_write_failed(mapping, offset + count);
1166 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1168 return err;
1171 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1172 unsigned int length)
1174 struct inode *inode = page->mapping->host;
1175 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1177 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1178 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1179 return;
1181 if (PageDirty(page)) {
1182 if (inode->i_ino == F2FS_META_INO(sbi))
1183 dec_page_count(sbi, F2FS_DIRTY_META);
1184 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1185 dec_page_count(sbi, F2FS_DIRTY_NODES);
1186 else
1187 inode_dec_dirty_pages(inode);
1189 ClearPagePrivate(page);
1192 int f2fs_release_page(struct page *page, gfp_t wait)
1194 /* If this is dirty page, keep PagePrivate */
1195 if (PageDirty(page))
1196 return 0;
1198 ClearPagePrivate(page);
1199 return 1;
1202 static int f2fs_set_data_page_dirty(struct page *page)
1204 struct address_space *mapping = page->mapping;
1205 struct inode *inode = mapping->host;
1207 trace_f2fs_set_page_dirty(page, DATA);
1209 SetPageUptodate(page);
1211 if (f2fs_is_atomic_file(inode)) {
1212 register_inmem_page(inode, page);
1213 return 1;
1216 mark_inode_dirty(inode);
1218 if (!PageDirty(page)) {
1219 __set_page_dirty_nobuffers(page);
1220 update_dirty_page(inode, page);
1221 return 1;
1223 return 0;
1226 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1228 struct inode *inode = mapping->host;
1230 /* we don't need to use inline_data strictly */
1231 if (f2fs_has_inline_data(inode)) {
1232 int err = f2fs_convert_inline_inode(inode);
1233 if (err)
1234 return err;
1236 return generic_block_bmap(mapping, block, get_data_block);
1239 const struct address_space_operations f2fs_dblock_aops = {
1240 .readpage = f2fs_read_data_page,
1241 .readpages = f2fs_read_data_pages,
1242 .writepage = f2fs_write_data_page,
1243 .writepages = f2fs_write_data_pages,
1244 .write_begin = f2fs_write_begin,
1245 .write_end = f2fs_write_end,
1246 .set_page_dirty = f2fs_set_data_page_dirty,
1247 .invalidatepage = f2fs_invalidate_page,
1248 .releasepage = f2fs_release_page,
1249 .direct_IO = f2fs_direct_IO,
1250 .bmap = f2fs_bmap,