4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/blkdev.h>
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi) (sbi->total_sections)
54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
59 sbi->log_blocks_per_seg))
61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64 #define NEXT_FREE_BLKADDR(sbi, curseg) \
65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73 #define GET_SEGNO(sbi, blk_addr) \
74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
76 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno) \
78 ((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82 #define GET_SUM_BLOCK(sbi, segno) \
83 ((sbi->sm_info->ssa_blkaddr) + segno)
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88 #define SIT_ENTRY_OFFSET(sit_i, segno) \
89 (segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno) \
91 (segno / SIT_ENTRY_PER_BLOCK)
92 #define START_SEGNO(segno) \
93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi) \
95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr) \
97 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99 #define SECTOR_FROM_BLOCK(blk_addr) \
100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors) \
102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi) \
104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
107 * indicate a block allocation direction: RIGHT and LEFT.
108 * RIGHT means allocating new sections towards the end of volume.
109 * LEFT means the opposite direction.
117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118 * LFS writes data sequentially with cleaning operations.
119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128 * GC_CB is based on cost-benefit algorithm.
129 * GC_GREEDY is based on greedy algorithm.
137 * BG_GC means the background cleaning job.
138 * FG_GC means the on-demand cleaning job.
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy
{
147 int alloc_mode
; /* LFS or SSR */
148 int gc_mode
; /* GC_CB or GC_GREEDY */
149 unsigned long *dirty_segmap
; /* dirty segment bitmap */
150 unsigned int max_search
; /* maximum # of segments to search */
151 unsigned int offset
; /* last scanned bitmap offset */
152 unsigned int ofs_unit
; /* bitmap search unit */
153 unsigned int min_cost
; /* minimum cost */
154 unsigned int min_segno
; /* segment # having min. cost */
158 unsigned short valid_blocks
; /* # of valid blocks */
159 unsigned char *cur_valid_map
; /* validity bitmap of blocks */
161 * # of valid blocks and the validity bitmap stored in the the last
162 * checkpoint pack. This information is used by the SSR mode.
164 unsigned short ckpt_valid_blocks
;
165 unsigned char *ckpt_valid_map
;
166 unsigned char type
; /* segment type like CURSEG_XXX_TYPE */
167 unsigned long long mtime
; /* modification time of the segment */
171 unsigned int valid_blocks
; /* # of valid blocks in a section */
174 struct segment_allocation
{
175 void (*allocate_segment
)(struct f2fs_sb_info
*, int, bool);
179 struct list_head list
;
184 const struct segment_allocation
*s_ops
;
186 block_t sit_base_addr
; /* start block address of SIT area */
187 block_t sit_blocks
; /* # of blocks used by SIT area */
188 block_t written_valid_blocks
; /* # of valid blocks in main area */
189 char *sit_bitmap
; /* SIT bitmap pointer */
190 unsigned int bitmap_size
; /* SIT bitmap size */
192 unsigned long *tmp_map
; /* bitmap for temporal use */
193 unsigned long *dirty_sentries_bitmap
; /* bitmap for dirty sentries */
194 unsigned int dirty_sentries
; /* # of dirty sentries */
195 unsigned int sents_per_block
; /* # of SIT entries per block */
196 struct mutex sentry_lock
; /* to protect SIT cache */
197 struct seg_entry
*sentries
; /* SIT segment-level cache */
198 struct sec_entry
*sec_entries
; /* SIT section-level cache */
200 /* for cost-benefit algorithm in cleaning procedure */
201 unsigned long long elapsed_time
; /* elapsed time after mount */
202 unsigned long long mounted_time
; /* mount time */
203 unsigned long long min_mtime
; /* min. modification time */
204 unsigned long long max_mtime
; /* max. modification time */
207 struct free_segmap_info
{
208 unsigned int start_segno
; /* start segment number logically */
209 unsigned int free_segments
; /* # of free segments */
210 unsigned int free_sections
; /* # of free sections */
211 spinlock_t segmap_lock
; /* free segmap lock */
212 unsigned long *free_segmap
; /* free segment bitmap */
213 unsigned long *free_secmap
; /* free section bitmap */
216 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
218 DIRTY_HOT_DATA
, /* dirty segments assigned as hot data logs */
219 DIRTY_WARM_DATA
, /* dirty segments assigned as warm data logs */
220 DIRTY_COLD_DATA
, /* dirty segments assigned as cold data logs */
221 DIRTY_HOT_NODE
, /* dirty segments assigned as hot node logs */
222 DIRTY_WARM_NODE
, /* dirty segments assigned as warm node logs */
223 DIRTY_COLD_NODE
, /* dirty segments assigned as cold node logs */
224 DIRTY
, /* to count # of dirty segments */
225 PRE
, /* to count # of entirely obsolete segments */
229 struct dirty_seglist_info
{
230 const struct victim_selection
*v_ops
; /* victim selction operation */
231 unsigned long *dirty_segmap
[NR_DIRTY_TYPE
];
232 struct mutex seglist_lock
; /* lock for segment bitmaps */
233 int nr_dirty
[NR_DIRTY_TYPE
]; /* # of dirty segments */
234 unsigned long *victim_secmap
; /* background GC victims */
237 /* victim selection function for cleaning and SSR */
238 struct victim_selection
{
239 int (*get_victim
)(struct f2fs_sb_info
*, unsigned int *,
243 /* for active log information */
245 struct mutex curseg_mutex
; /* lock for consistency */
246 struct f2fs_summary_block
*sum_blk
; /* cached summary block */
247 unsigned char alloc_type
; /* current allocation type */
248 unsigned int segno
; /* current segment number */
249 unsigned short next_blkoff
; /* next block offset to write */
250 unsigned int zone
; /* current zone number */
251 unsigned int next_segno
; /* preallocated segment */
254 struct sit_entry_set
{
255 struct list_head set_list
; /* link with all sit sets */
256 unsigned int start_segno
; /* start segno of sits in set */
257 unsigned int entry_cnt
; /* the # of sit entries in set */
263 static inline struct curseg_info
*CURSEG_I(struct f2fs_sb_info
*sbi
, int type
)
265 return (struct curseg_info
*)(SM_I(sbi
)->curseg_array
+ type
);
268 static inline struct seg_entry
*get_seg_entry(struct f2fs_sb_info
*sbi
,
271 struct sit_info
*sit_i
= SIT_I(sbi
);
272 return &sit_i
->sentries
[segno
];
275 static inline struct sec_entry
*get_sec_entry(struct f2fs_sb_info
*sbi
,
278 struct sit_info
*sit_i
= SIT_I(sbi
);
279 return &sit_i
->sec_entries
[GET_SECNO(sbi
, segno
)];
282 static inline unsigned int get_valid_blocks(struct f2fs_sb_info
*sbi
,
283 unsigned int segno
, int section
)
286 * In order to get # of valid blocks in a section instantly from many
287 * segments, f2fs manages two counting structures separately.
290 return get_sec_entry(sbi
, segno
)->valid_blocks
;
292 return get_seg_entry(sbi
, segno
)->valid_blocks
;
295 static inline void seg_info_from_raw_sit(struct seg_entry
*se
,
296 struct f2fs_sit_entry
*rs
)
298 se
->valid_blocks
= GET_SIT_VBLOCKS(rs
);
299 se
->ckpt_valid_blocks
= GET_SIT_VBLOCKS(rs
);
300 memcpy(se
->cur_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
301 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
302 se
->type
= GET_SIT_TYPE(rs
);
303 se
->mtime
= le64_to_cpu(rs
->mtime
);
306 static inline void seg_info_to_raw_sit(struct seg_entry
*se
,
307 struct f2fs_sit_entry
*rs
)
309 unsigned short raw_vblocks
= (se
->type
<< SIT_VBLOCKS_SHIFT
) |
311 rs
->vblocks
= cpu_to_le16(raw_vblocks
);
312 memcpy(rs
->valid_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
313 memcpy(se
->ckpt_valid_map
, rs
->valid_map
, SIT_VBLOCK_MAP_SIZE
);
314 se
->ckpt_valid_blocks
= se
->valid_blocks
;
315 rs
->mtime
= cpu_to_le64(se
->mtime
);
318 static inline unsigned int find_next_inuse(struct free_segmap_info
*free_i
,
319 unsigned int max
, unsigned int segno
)
322 spin_lock(&free_i
->segmap_lock
);
323 ret
= find_next_bit(free_i
->free_segmap
, max
, segno
);
324 spin_unlock(&free_i
->segmap_lock
);
328 static inline void __set_free(struct f2fs_sb_info
*sbi
, unsigned int segno
)
330 struct free_segmap_info
*free_i
= FREE_I(sbi
);
331 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
332 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
335 spin_lock(&free_i
->segmap_lock
);
336 clear_bit(segno
, free_i
->free_segmap
);
337 free_i
->free_segments
++;
339 next
= find_next_bit(free_i
->free_segmap
, MAIN_SEGS(sbi
), start_segno
);
340 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
341 clear_bit(secno
, free_i
->free_secmap
);
342 free_i
->free_sections
++;
344 spin_unlock(&free_i
->segmap_lock
);
347 static inline void __set_inuse(struct f2fs_sb_info
*sbi
,
350 struct free_segmap_info
*free_i
= FREE_I(sbi
);
351 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
352 set_bit(segno
, free_i
->free_segmap
);
353 free_i
->free_segments
--;
354 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
355 free_i
->free_sections
--;
358 static inline void __set_test_and_free(struct f2fs_sb_info
*sbi
,
361 struct free_segmap_info
*free_i
= FREE_I(sbi
);
362 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
363 unsigned int start_segno
= secno
* sbi
->segs_per_sec
;
366 spin_lock(&free_i
->segmap_lock
);
367 if (test_and_clear_bit(segno
, free_i
->free_segmap
)) {
368 free_i
->free_segments
++;
370 next
= find_next_bit(free_i
->free_segmap
,
371 start_segno
+ sbi
->segs_per_sec
, start_segno
);
372 if (next
>= start_segno
+ sbi
->segs_per_sec
) {
373 if (test_and_clear_bit(secno
, free_i
->free_secmap
))
374 free_i
->free_sections
++;
377 spin_unlock(&free_i
->segmap_lock
);
380 static inline void __set_test_and_inuse(struct f2fs_sb_info
*sbi
,
383 struct free_segmap_info
*free_i
= FREE_I(sbi
);
384 unsigned int secno
= segno
/ sbi
->segs_per_sec
;
385 spin_lock(&free_i
->segmap_lock
);
386 if (!test_and_set_bit(segno
, free_i
->free_segmap
)) {
387 free_i
->free_segments
--;
388 if (!test_and_set_bit(secno
, free_i
->free_secmap
))
389 free_i
->free_sections
--;
391 spin_unlock(&free_i
->segmap_lock
);
394 static inline void get_sit_bitmap(struct f2fs_sb_info
*sbi
,
397 struct sit_info
*sit_i
= SIT_I(sbi
);
398 memcpy(dst_addr
, sit_i
->sit_bitmap
, sit_i
->bitmap_size
);
401 static inline block_t
written_block_count(struct f2fs_sb_info
*sbi
)
403 return SIT_I(sbi
)->written_valid_blocks
;
406 static inline unsigned int free_segments(struct f2fs_sb_info
*sbi
)
408 return FREE_I(sbi
)->free_segments
;
411 static inline int reserved_segments(struct f2fs_sb_info
*sbi
)
413 return SM_I(sbi
)->reserved_segments
;
416 static inline unsigned int free_sections(struct f2fs_sb_info
*sbi
)
418 return FREE_I(sbi
)->free_sections
;
421 static inline unsigned int prefree_segments(struct f2fs_sb_info
*sbi
)
423 return DIRTY_I(sbi
)->nr_dirty
[PRE
];
426 static inline unsigned int dirty_segments(struct f2fs_sb_info
*sbi
)
428 return DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_DATA
] +
429 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_DATA
] +
430 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_DATA
] +
431 DIRTY_I(sbi
)->nr_dirty
[DIRTY_HOT_NODE
] +
432 DIRTY_I(sbi
)->nr_dirty
[DIRTY_WARM_NODE
] +
433 DIRTY_I(sbi
)->nr_dirty
[DIRTY_COLD_NODE
];
436 static inline int overprovision_segments(struct f2fs_sb_info
*sbi
)
438 return SM_I(sbi
)->ovp_segments
;
441 static inline int overprovision_sections(struct f2fs_sb_info
*sbi
)
443 return ((unsigned int) overprovision_segments(sbi
)) / sbi
->segs_per_sec
;
446 static inline int reserved_sections(struct f2fs_sb_info
*sbi
)
448 return ((unsigned int) reserved_segments(sbi
)) / sbi
->segs_per_sec
;
451 static inline bool need_SSR(struct f2fs_sb_info
*sbi
)
453 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
454 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
455 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+
456 reserved_sections(sbi
) + 1);
459 static inline bool has_not_enough_free_secs(struct f2fs_sb_info
*sbi
, int freed
)
461 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
462 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
464 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
467 return (free_sections(sbi
) + freed
) <= (node_secs
+ 2 * dent_secs
+
468 reserved_sections(sbi
));
471 static inline bool excess_prefree_segs(struct f2fs_sb_info
*sbi
)
473 return prefree_segments(sbi
) > SM_I(sbi
)->rec_prefree_segments
;
476 static inline int utilization(struct f2fs_sb_info
*sbi
)
478 return div_u64((u64
)valid_user_blocks(sbi
) * 100,
479 sbi
->user_block_count
);
483 * Sometimes f2fs may be better to drop out-of-place update policy.
484 * And, users can control the policy through sysfs entries.
485 * There are five policies with triggering conditions as follows.
486 * F2FS_IPU_FORCE - all the time,
487 * F2FS_IPU_SSR - if SSR mode is activated,
488 * F2FS_IPU_UTIL - if FS utilization is over threashold,
489 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
491 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
492 * storages. IPU will be triggered only if the # of dirty
493 * pages over min_fsync_blocks.
494 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
496 #define DEF_MIN_IPU_UTIL 70
497 #define DEF_MIN_FSYNC_BLOCKS 8
507 static inline bool need_inplace_update(struct inode
*inode
)
509 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
510 unsigned int policy
= SM_I(sbi
)->ipu_policy
;
512 /* IPU can be done only for the user data */
513 if (S_ISDIR(inode
->i_mode
) || f2fs_is_atomic_file(inode
))
516 if (policy
& (0x1 << F2FS_IPU_FORCE
))
518 if (policy
& (0x1 << F2FS_IPU_SSR
) && need_SSR(sbi
))
520 if (policy
& (0x1 << F2FS_IPU_UTIL
) &&
521 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
523 if (policy
& (0x1 << F2FS_IPU_SSR_UTIL
) && need_SSR(sbi
) &&
524 utilization(sbi
) > SM_I(sbi
)->min_ipu_util
)
527 /* this is only set during fdatasync */
528 if (policy
& (0x1 << F2FS_IPU_FSYNC
) &&
529 is_inode_flag_set(F2FS_I(inode
), FI_NEED_IPU
))
535 static inline unsigned int curseg_segno(struct f2fs_sb_info
*sbi
,
538 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
539 return curseg
->segno
;
542 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info
*sbi
,
545 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
546 return curseg
->alloc_type
;
549 static inline unsigned short curseg_blkoff(struct f2fs_sb_info
*sbi
, int type
)
551 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
552 return curseg
->next_blkoff
;
555 #ifdef CONFIG_F2FS_CHECK_FS
556 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
558 BUG_ON(segno
> TOTAL_SEGS(sbi
) - 1);
561 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
563 BUG_ON(blk_addr
< SEG0_BLKADDR(sbi
));
564 BUG_ON(blk_addr
>= MAX_BLKADDR(sbi
));
568 * Summary block is always treated as an invalid block
570 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
571 int segno
, struct f2fs_sit_entry
*raw_sit
)
573 bool is_valid
= test_bit_le(0, raw_sit
->valid_map
) ? true : false;
574 int valid_blocks
= 0;
575 int cur_pos
= 0, next_pos
;
577 /* check segment usage */
578 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
);
580 /* check boundary of a given segment number */
581 BUG_ON(segno
> TOTAL_SEGS(sbi
) - 1);
583 /* check bitmap with valid block count */
586 next_pos
= find_next_zero_bit_le(&raw_sit
->valid_map
,
589 valid_blocks
+= next_pos
- cur_pos
;
591 next_pos
= find_next_bit_le(&raw_sit
->valid_map
,
595 is_valid
= !is_valid
;
596 } while (cur_pos
< sbi
->blocks_per_seg
);
597 BUG_ON(GET_SIT_VBLOCKS(raw_sit
) != valid_blocks
);
600 static inline void check_seg_range(struct f2fs_sb_info
*sbi
, unsigned int segno
)
602 if (segno
> TOTAL_SEGS(sbi
) - 1)
603 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
606 static inline void verify_block_addr(struct f2fs_sb_info
*sbi
, block_t blk_addr
)
608 if (blk_addr
< SEG0_BLKADDR(sbi
) || blk_addr
>= MAX_BLKADDR(sbi
))
609 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
613 * Summary block is always treated as an invalid block
615 static inline void check_block_count(struct f2fs_sb_info
*sbi
,
616 int segno
, struct f2fs_sit_entry
*raw_sit
)
618 /* check segment usage */
619 if (GET_SIT_VBLOCKS(raw_sit
) > sbi
->blocks_per_seg
)
620 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
622 /* check boundary of a given segment number */
623 if (segno
> TOTAL_SEGS(sbi
) - 1)
624 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
628 static inline pgoff_t
current_sit_addr(struct f2fs_sb_info
*sbi
,
631 struct sit_info
*sit_i
= SIT_I(sbi
);
632 unsigned int offset
= SIT_BLOCK_OFFSET(start
);
633 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
635 check_seg_range(sbi
, start
);
637 /* calculate sit block address */
638 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
639 blk_addr
+= sit_i
->sit_blocks
;
644 static inline pgoff_t
next_sit_addr(struct f2fs_sb_info
*sbi
,
647 struct sit_info
*sit_i
= SIT_I(sbi
);
648 block_addr
-= sit_i
->sit_base_addr
;
649 if (block_addr
< sit_i
->sit_blocks
)
650 block_addr
+= sit_i
->sit_blocks
;
652 block_addr
-= sit_i
->sit_blocks
;
654 return block_addr
+ sit_i
->sit_base_addr
;
657 static inline void set_to_next_sit(struct sit_info
*sit_i
, unsigned int start
)
659 unsigned int block_off
= SIT_BLOCK_OFFSET(start
);
661 f2fs_change_bit(block_off
, sit_i
->sit_bitmap
);
664 static inline unsigned long long get_mtime(struct f2fs_sb_info
*sbi
)
666 struct sit_info
*sit_i
= SIT_I(sbi
);
667 return sit_i
->elapsed_time
+ CURRENT_TIME_SEC
.tv_sec
-
671 static inline void set_summary(struct f2fs_summary
*sum
, nid_t nid
,
672 unsigned int ofs_in_node
, unsigned char version
)
674 sum
->nid
= cpu_to_le32(nid
);
675 sum
->ofs_in_node
= cpu_to_le16(ofs_in_node
);
676 sum
->version
= version
;
679 static inline block_t
start_sum_block(struct f2fs_sb_info
*sbi
)
681 return __start_cp_addr(sbi
) +
682 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_start_sum
);
685 static inline block_t
sum_blk_addr(struct f2fs_sb_info
*sbi
, int base
, int type
)
687 return __start_cp_addr(sbi
) +
688 le32_to_cpu(F2FS_CKPT(sbi
)->cp_pack_total_block_count
)
692 static inline bool sec_usage_check(struct f2fs_sb_info
*sbi
, unsigned int secno
)
694 if (IS_CURSEC(sbi
, secno
) || (sbi
->cur_victim_sec
== secno
))
699 static inline unsigned int max_hw_blocks(struct f2fs_sb_info
*sbi
)
701 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
702 struct request_queue
*q
= bdev_get_queue(bdev
);
703 return SECTOR_TO_BLOCK(queue_max_sectors(q
));
707 * It is very important to gather dirty pages and write at once, so that we can
708 * submit a big bio without interfering other data writes.
709 * By default, 512 pages for directory data,
710 * 512 pages (2MB) * 3 for three types of nodes, and
711 * max_bio_blocks for meta are set.
713 static inline int nr_pages_to_skip(struct f2fs_sb_info
*sbi
, int type
)
715 if (sbi
->sb
->s_bdi
->dirty_exceeded
)
719 return sbi
->blocks_per_seg
;
720 else if (type
== NODE
)
721 return 3 * sbi
->blocks_per_seg
;
722 else if (type
== META
)
723 return MAX_BIO_BLOCKS(sbi
);
729 * When writing pages, it'd better align nr_to_write for segment size.
731 static inline long nr_pages_to_write(struct f2fs_sb_info
*sbi
, int type
,
732 struct writeback_control
*wbc
)
734 long nr_to_write
, desired
;
736 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
739 nr_to_write
= wbc
->nr_to_write
;
743 else if (type
== NODE
)
744 desired
= 3 * max_hw_blocks(sbi
);
746 desired
= MAX_BIO_BLOCKS(sbi
);
748 wbc
->nr_to_write
= desired
;
749 return desired
- nr_to_write
;