ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / fs / f2fs / xattr.c
blob5072bf9ae0ef841dc613202b998cbab864c969cd
1 /*
2 * fs/f2fs/xattr.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * Portions of this code from linux/fs/ext2/xattr.c
9 * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
11 * Fix by Harrison Xing <harrison@mountainviewdata.com>.
12 * Extended attributes for symlinks and special files added per
13 * suggestion of Luka Renko <luka.renko@hermes.si>.
14 * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
15 * Red Hat Inc.
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
21 #include <linux/rwsem.h>
22 #include <linux/f2fs_fs.h>
23 #include <linux/security.h>
24 #include <linux/posix_acl_xattr.h>
25 #include "f2fs.h"
26 #include "xattr.h"
28 static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list,
29 size_t list_size, const char *name, size_t len, int type)
31 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
32 int total_len, prefix_len = 0;
33 const char *prefix = NULL;
35 switch (type) {
36 case F2FS_XATTR_INDEX_USER:
37 if (!test_opt(sbi, XATTR_USER))
38 return -EOPNOTSUPP;
39 prefix = XATTR_USER_PREFIX;
40 prefix_len = XATTR_USER_PREFIX_LEN;
41 break;
42 case F2FS_XATTR_INDEX_TRUSTED:
43 if (!capable(CAP_SYS_ADMIN))
44 return -EPERM;
45 prefix = XATTR_TRUSTED_PREFIX;
46 prefix_len = XATTR_TRUSTED_PREFIX_LEN;
47 break;
48 case F2FS_XATTR_INDEX_SECURITY:
49 prefix = XATTR_SECURITY_PREFIX;
50 prefix_len = XATTR_SECURITY_PREFIX_LEN;
51 break;
52 default:
53 return -EINVAL;
56 total_len = prefix_len + len + 1;
57 if (list && total_len <= list_size) {
58 memcpy(list, prefix, prefix_len);
59 memcpy(list + prefix_len, name, len);
60 list[prefix_len + len] = '\0';
62 return total_len;
65 static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name,
66 void *buffer, size_t size, int type)
68 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
70 switch (type) {
71 case F2FS_XATTR_INDEX_USER:
72 if (!test_opt(sbi, XATTR_USER))
73 return -EOPNOTSUPP;
74 break;
75 case F2FS_XATTR_INDEX_TRUSTED:
76 if (!capable(CAP_SYS_ADMIN))
77 return -EPERM;
78 break;
79 case F2FS_XATTR_INDEX_SECURITY:
80 break;
81 default:
82 return -EINVAL;
84 if (strcmp(name, "") == 0)
85 return -EINVAL;
86 return f2fs_getxattr(dentry->d_inode, type, name, buffer, size, NULL);
89 static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name,
90 const void *value, size_t size, int flags, int type)
92 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
94 switch (type) {
95 case F2FS_XATTR_INDEX_USER:
96 if (!test_opt(sbi, XATTR_USER))
97 return -EOPNOTSUPP;
98 break;
99 case F2FS_XATTR_INDEX_TRUSTED:
100 if (!capable(CAP_SYS_ADMIN))
101 return -EPERM;
102 break;
103 case F2FS_XATTR_INDEX_SECURITY:
104 break;
105 default:
106 return -EINVAL;
108 if (strcmp(name, "") == 0)
109 return -EINVAL;
111 return f2fs_setxattr(dentry->d_inode, type, name,
112 value, size, NULL, flags);
115 static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list,
116 size_t list_size, const char *name, size_t len, int type)
118 const char *xname = F2FS_SYSTEM_ADVISE_PREFIX;
119 size_t size;
121 if (type != F2FS_XATTR_INDEX_ADVISE)
122 return 0;
124 size = strlen(xname) + 1;
125 if (list && size <= list_size)
126 memcpy(list, xname, size);
127 return size;
130 static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name,
131 void *buffer, size_t size, int type)
133 struct inode *inode = dentry->d_inode;
135 if (strcmp(name, "") != 0)
136 return -EINVAL;
138 *((char *)buffer) = F2FS_I(inode)->i_advise;
139 return sizeof(char);
142 static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name,
143 const void *value, size_t size, int flags, int type)
145 struct inode *inode = dentry->d_inode;
147 if (strcmp(name, "") != 0)
148 return -EINVAL;
149 if (!inode_owner_or_capable(inode))
150 return -EPERM;
151 if (value == NULL)
152 return -EINVAL;
154 F2FS_I(inode)->i_advise |= *(char *)value;
155 return 0;
158 #ifdef CONFIG_F2FS_FS_SECURITY
159 static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
160 void *page)
162 const struct xattr *xattr;
163 int err = 0;
165 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
166 err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY,
167 xattr->name, xattr->value,
168 xattr->value_len, (struct page *)page, 0);
169 if (err < 0)
170 break;
172 return err;
175 int f2fs_init_security(struct inode *inode, struct inode *dir,
176 const struct qstr *qstr, struct page *ipage)
178 return security_inode_init_security(inode, dir, qstr,
179 &f2fs_initxattrs, ipage);
181 #endif
183 const struct xattr_handler f2fs_xattr_user_handler = {
184 .prefix = XATTR_USER_PREFIX,
185 .flags = F2FS_XATTR_INDEX_USER,
186 .list = f2fs_xattr_generic_list,
187 .get = f2fs_xattr_generic_get,
188 .set = f2fs_xattr_generic_set,
191 const struct xattr_handler f2fs_xattr_trusted_handler = {
192 .prefix = XATTR_TRUSTED_PREFIX,
193 .flags = F2FS_XATTR_INDEX_TRUSTED,
194 .list = f2fs_xattr_generic_list,
195 .get = f2fs_xattr_generic_get,
196 .set = f2fs_xattr_generic_set,
199 const struct xattr_handler f2fs_xattr_advise_handler = {
200 .prefix = F2FS_SYSTEM_ADVISE_PREFIX,
201 .flags = F2FS_XATTR_INDEX_ADVISE,
202 .list = f2fs_xattr_advise_list,
203 .get = f2fs_xattr_advise_get,
204 .set = f2fs_xattr_advise_set,
207 const struct xattr_handler f2fs_xattr_security_handler = {
208 .prefix = XATTR_SECURITY_PREFIX,
209 .flags = F2FS_XATTR_INDEX_SECURITY,
210 .list = f2fs_xattr_generic_list,
211 .get = f2fs_xattr_generic_get,
212 .set = f2fs_xattr_generic_set,
215 static const struct xattr_handler *f2fs_xattr_handler_map[] = {
216 [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
217 #ifdef CONFIG_F2FS_FS_POSIX_ACL
218 [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler,
219 [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler,
220 #endif
221 [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
222 #ifdef CONFIG_F2FS_FS_SECURITY
223 [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler,
224 #endif
225 [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
228 const struct xattr_handler *f2fs_xattr_handlers[] = {
229 &f2fs_xattr_user_handler,
230 #ifdef CONFIG_F2FS_FS_POSIX_ACL
231 &posix_acl_access_xattr_handler,
232 &posix_acl_default_xattr_handler,
233 #endif
234 &f2fs_xattr_trusted_handler,
235 #ifdef CONFIG_F2FS_FS_SECURITY
236 &f2fs_xattr_security_handler,
237 #endif
238 &f2fs_xattr_advise_handler,
239 NULL,
242 static inline const struct xattr_handler *f2fs_xattr_handler(int index)
244 const struct xattr_handler *handler = NULL;
246 if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map))
247 handler = f2fs_xattr_handler_map[index];
248 return handler;
251 static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int index,
252 size_t len, const char *name)
254 struct f2fs_xattr_entry *entry;
256 list_for_each_xattr(entry, base_addr) {
257 if (entry->e_name_index != index)
258 continue;
259 if (entry->e_name_len != len)
260 continue;
261 if (!memcmp(entry->e_name, name, len))
262 break;
264 return entry;
267 static void *read_all_xattrs(struct inode *inode, struct page *ipage)
269 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
270 struct f2fs_xattr_header *header;
271 size_t size = PAGE_SIZE, inline_size = 0;
272 void *txattr_addr;
274 inline_size = inline_xattr_size(inode);
276 txattr_addr = kzalloc(inline_size + size, GFP_F2FS_ZERO);
277 if (!txattr_addr)
278 return NULL;
280 /* read from inline xattr */
281 if (inline_size) {
282 struct page *page = NULL;
283 void *inline_addr;
285 if (ipage) {
286 inline_addr = inline_xattr_addr(ipage);
287 } else {
288 page = get_node_page(sbi, inode->i_ino);
289 if (IS_ERR(page))
290 goto fail;
291 inline_addr = inline_xattr_addr(page);
293 memcpy(txattr_addr, inline_addr, inline_size);
294 f2fs_put_page(page, 1);
297 /* read from xattr node block */
298 if (F2FS_I(inode)->i_xattr_nid) {
299 struct page *xpage;
300 void *xattr_addr;
302 /* The inode already has an extended attribute block. */
303 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
304 if (IS_ERR(xpage))
305 goto fail;
307 xattr_addr = page_address(xpage);
308 memcpy(txattr_addr + inline_size, xattr_addr, PAGE_SIZE);
309 f2fs_put_page(xpage, 1);
312 header = XATTR_HDR(txattr_addr);
314 /* never been allocated xattrs */
315 if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
316 header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
317 header->h_refcount = cpu_to_le32(1);
319 return txattr_addr;
320 fail:
321 kzfree(txattr_addr);
322 return NULL;
325 static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
326 void *txattr_addr, struct page *ipage)
328 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
329 size_t inline_size = 0;
330 void *xattr_addr;
331 struct page *xpage;
332 nid_t new_nid = 0;
333 int err;
335 inline_size = inline_xattr_size(inode);
337 if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
338 if (!alloc_nid(sbi, &new_nid))
339 return -ENOSPC;
341 /* write to inline xattr */
342 if (inline_size) {
343 struct page *page = NULL;
344 void *inline_addr;
346 if (ipage) {
347 inline_addr = inline_xattr_addr(ipage);
348 f2fs_wait_on_page_writeback(ipage, NODE);
349 } else {
350 page = get_node_page(sbi, inode->i_ino);
351 if (IS_ERR(page)) {
352 alloc_nid_failed(sbi, new_nid);
353 return PTR_ERR(page);
355 inline_addr = inline_xattr_addr(page);
356 f2fs_wait_on_page_writeback(page, NODE);
358 memcpy(inline_addr, txattr_addr, inline_size);
359 f2fs_put_page(page, 1);
361 /* no need to use xattr node block */
362 if (hsize <= inline_size) {
363 err = truncate_xattr_node(inode, ipage);
364 alloc_nid_failed(sbi, new_nid);
365 return err;
369 /* write to xattr node block */
370 if (F2FS_I(inode)->i_xattr_nid) {
371 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
372 if (IS_ERR(xpage)) {
373 alloc_nid_failed(sbi, new_nid);
374 return PTR_ERR(xpage);
376 f2fs_bug_on(sbi, new_nid);
377 f2fs_wait_on_page_writeback(xpage, NODE);
378 } else {
379 struct dnode_of_data dn;
380 set_new_dnode(&dn, inode, NULL, NULL, new_nid);
381 xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage);
382 if (IS_ERR(xpage)) {
383 alloc_nid_failed(sbi, new_nid);
384 return PTR_ERR(xpage);
386 alloc_nid_done(sbi, new_nid);
389 xattr_addr = page_address(xpage);
390 memcpy(xattr_addr, txattr_addr + inline_size, PAGE_SIZE -
391 sizeof(struct node_footer));
392 set_page_dirty(xpage);
393 f2fs_put_page(xpage, 1);
395 /* need to checkpoint during fsync */
396 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
397 return 0;
400 int f2fs_getxattr(struct inode *inode, int index, const char *name,
401 void *buffer, size_t buffer_size, struct page *ipage)
403 struct f2fs_xattr_entry *entry;
404 void *base_addr;
405 int error = 0;
406 size_t size, len;
408 if (name == NULL)
409 return -EINVAL;
411 len = strlen(name);
412 if (len > F2FS_NAME_LEN)
413 return -ERANGE;
415 base_addr = read_all_xattrs(inode, ipage);
416 if (!base_addr)
417 return -ENOMEM;
419 entry = __find_xattr(base_addr, index, len, name);
420 if (IS_XATTR_LAST_ENTRY(entry)) {
421 error = -ENODATA;
422 goto cleanup;
425 size = le16_to_cpu(entry->e_value_size);
427 if (buffer && size > buffer_size) {
428 error = -ERANGE;
429 goto cleanup;
432 if (buffer) {
433 char *pval = entry->e_name + entry->e_name_len;
434 memcpy(buffer, pval, size);
436 error = size;
438 cleanup:
439 kzfree(base_addr);
440 return error;
443 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
445 struct inode *inode = dentry->d_inode;
446 struct f2fs_xattr_entry *entry;
447 void *base_addr;
448 int error = 0;
449 size_t rest = buffer_size;
451 base_addr = read_all_xattrs(inode, NULL);
452 if (!base_addr)
453 return -ENOMEM;
455 list_for_each_xattr(entry, base_addr) {
456 const struct xattr_handler *handler =
457 f2fs_xattr_handler(entry->e_name_index);
458 size_t size;
460 if (!handler)
461 continue;
463 size = handler->list(dentry, buffer, rest, entry->e_name,
464 entry->e_name_len, handler->flags);
465 if (buffer && size > rest) {
466 error = -ERANGE;
467 goto cleanup;
470 if (buffer)
471 buffer += size;
472 rest -= size;
474 error = buffer_size - rest;
475 cleanup:
476 kzfree(base_addr);
477 return error;
480 static int __f2fs_setxattr(struct inode *inode, int index,
481 const char *name, const void *value, size_t size,
482 struct page *ipage, int flags)
484 struct f2fs_inode_info *fi = F2FS_I(inode);
485 struct f2fs_xattr_entry *here, *last;
486 void *base_addr;
487 int found, newsize;
488 size_t len;
489 __u32 new_hsize;
490 int error = -ENOMEM;
492 if (name == NULL)
493 return -EINVAL;
495 if (value == NULL)
496 size = 0;
498 len = strlen(name);
500 if (len > F2FS_NAME_LEN || size > MAX_VALUE_LEN(inode))
501 return -ERANGE;
503 base_addr = read_all_xattrs(inode, ipage);
504 if (!base_addr)
505 goto exit;
507 /* find entry with wanted name. */
508 here = __find_xattr(base_addr, index, len, name);
510 found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1;
512 if ((flags & XATTR_REPLACE) && !found) {
513 error = -ENODATA;
514 goto exit;
515 } else if ((flags & XATTR_CREATE) && found) {
516 error = -EEXIST;
517 goto exit;
520 last = here;
521 while (!IS_XATTR_LAST_ENTRY(last))
522 last = XATTR_NEXT_ENTRY(last);
524 newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size);
526 /* 1. Check space */
527 if (value) {
528 int free;
530 * If value is NULL, it is remove operation.
531 * In case of update operation, we calculate free.
533 free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr);
534 if (found)
535 free = free + ENTRY_SIZE(here);
537 if (unlikely(free < newsize)) {
538 error = -ENOSPC;
539 goto exit;
543 /* 2. Remove old entry */
544 if (found) {
546 * If entry is found, remove old entry.
547 * If not found, remove operation is not needed.
549 struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
550 int oldsize = ENTRY_SIZE(here);
552 memmove(here, next, (char *)last - (char *)next);
553 last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
554 memset(last, 0, oldsize);
557 new_hsize = (char *)last - (char *)base_addr;
559 /* 3. Write new entry */
560 if (value) {
561 char *pval;
563 * Before we come here, old entry is removed.
564 * We just write new entry.
566 memset(last, 0, newsize);
567 last->e_name_index = index;
568 last->e_name_len = len;
569 memcpy(last->e_name, name, len);
570 pval = last->e_name + len;
571 memcpy(pval, value, size);
572 last->e_value_size = cpu_to_le16(size);
573 new_hsize += newsize;
576 error = write_all_xattrs(inode, new_hsize, base_addr, ipage);
577 if (error)
578 goto exit;
580 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
581 inode->i_mode = fi->i_acl_mode;
582 inode->i_ctime = CURRENT_TIME;
583 clear_inode_flag(fi, FI_ACL_MODE);
586 if (ipage)
587 update_inode(inode, ipage);
588 else
589 update_inode_page(inode);
590 exit:
591 kzfree(base_addr);
592 return error;
595 int f2fs_setxattr(struct inode *inode, int index, const char *name,
596 const void *value, size_t size,
597 struct page *ipage, int flags)
599 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
600 int err;
602 /* this case is only from init_inode_metadata */
603 if (ipage)
604 return __f2fs_setxattr(inode, index, name, value,
605 size, ipage, flags);
606 f2fs_balance_fs(sbi);
608 f2fs_lock_op(sbi);
609 /* protect xattr_ver */
610 down_write(&F2FS_I(inode)->i_sem);
611 err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags);
612 up_write(&F2FS_I(inode)->i_sem);
613 f2fs_unlock_op(sbi);
615 return err;