2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
46 struct buffer_head
*bh
, *head
;
48 *delalloc
= *unwritten
= 0;
50 bh
= head
= page_buffers(page
);
52 if (buffer_unwritten(bh
))
54 else if (buffer_delay(bh
))
56 } while ((bh
= bh
->b_this_page
) != head
);
59 STATIC
struct block_device
*
60 xfs_find_bdev_for_inode(
63 struct xfs_inode
*ip
= XFS_I(inode
);
64 struct xfs_mount
*mp
= ip
->i_mount
;
66 if (XFS_IS_REALTIME_INODE(ip
))
67 return mp
->m_rtdev_targp
->bt_bdev
;
69 return mp
->m_ddev_targp
->bt_bdev
;
73 * We're now finished for good with this ioend structure.
74 * Update the page state via the associated buffer_heads,
75 * release holds on the inode and bio, and finally free
76 * up memory. Do not use the ioend after this.
82 struct buffer_head
*bh
, *next
;
84 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
86 bh
->b_end_io(bh
, !ioend
->io_error
);
89 mempool_free(ioend
, xfs_ioend_pool
);
93 * Fast and loose check if this write could update the on-disk inode size.
95 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
97 return ioend
->io_offset
+ ioend
->io_size
>
98 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
102 xfs_setfilesize_trans_alloc(
103 struct xfs_ioend
*ioend
)
105 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
106 struct xfs_trans
*tp
;
109 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
111 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
113 xfs_trans_cancel(tp
, 0);
117 ioend
->io_append_trans
= tp
;
120 * We may pass freeze protection with a transaction. So tell lockdep
123 rwsem_release(&ioend
->io_inode
->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
126 * We hand off the transaction to the completion thread now, so
127 * clear the flag here.
129 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
134 * Update on-disk file size now that data has been written to disk.
138 struct xfs_inode
*ip
,
139 struct xfs_trans
*tp
,
145 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
146 isize
= xfs_new_eof(ip
, offset
+ size
);
148 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
149 xfs_trans_cancel(tp
, 0);
153 trace_xfs_setfilesize(ip
, offset
, size
);
155 ip
->i_d
.di_size
= isize
;
156 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
157 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
159 return xfs_trans_commit(tp
, 0);
163 xfs_setfilesize_ioend(
164 struct xfs_ioend
*ioend
)
166 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
167 struct xfs_trans
*tp
= ioend
->io_append_trans
;
170 * The transaction may have been allocated in the I/O submission thread,
171 * thus we need to mark ourselves as being in a transaction manually.
172 * Similarly for freeze protection.
174 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
175 rwsem_acquire_read(&VFS_I(ip
)->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
178 return xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
182 * Schedule IO completion handling on the final put of an ioend.
184 * If there is no work to do we might as well call it a day and free the
189 struct xfs_ioend
*ioend
)
191 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
192 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
194 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
195 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
196 else if (ioend
->io_append_trans
)
197 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
199 xfs_destroy_ioend(ioend
);
204 * IO write completion.
208 struct work_struct
*work
)
210 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
211 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
214 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
215 ioend
->io_error
= -EIO
;
222 * For unwritten extents we need to issue transactions to convert a
223 * range to normal written extens after the data I/O has finished.
225 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
226 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
228 } else if (ioend
->io_append_trans
) {
229 error
= xfs_setfilesize_ioend(ioend
);
231 ASSERT(!xfs_ioend_is_append(ioend
));
236 ioend
->io_error
= error
;
237 xfs_destroy_ioend(ioend
);
241 * Allocate and initialise an IO completion structure.
242 * We need to track unwritten extent write completion here initially.
243 * We'll need to extend this for updating the ondisk inode size later
253 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
256 * Set the count to 1 initially, which will prevent an I/O
257 * completion callback from happening before we have started
258 * all the I/O from calling the completion routine too early.
260 atomic_set(&ioend
->io_remaining
, 1);
262 ioend
->io_list
= NULL
;
263 ioend
->io_type
= type
;
264 ioend
->io_inode
= inode
;
265 ioend
->io_buffer_head
= NULL
;
266 ioend
->io_buffer_tail
= NULL
;
267 ioend
->io_offset
= 0;
269 ioend
->io_append_trans
= NULL
;
271 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
279 struct xfs_bmbt_irec
*imap
,
283 struct xfs_inode
*ip
= XFS_I(inode
);
284 struct xfs_mount
*mp
= ip
->i_mount
;
285 ssize_t count
= 1 << inode
->i_blkbits
;
286 xfs_fileoff_t offset_fsb
, end_fsb
;
288 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
291 if (XFS_FORCED_SHUTDOWN(mp
))
294 if (type
== XFS_IO_UNWRITTEN
)
295 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
297 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
300 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
303 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
304 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
305 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
307 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
308 count
= mp
->m_super
->s_maxbytes
- offset
;
309 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
310 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
311 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
312 imap
, &nimaps
, bmapi_flags
);
313 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
318 if (type
== XFS_IO_DELALLOC
&&
319 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
320 error
= xfs_iomap_write_allocate(ip
, offset
, imap
);
322 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
327 if (type
== XFS_IO_UNWRITTEN
) {
329 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
330 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
334 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
341 struct xfs_bmbt_irec
*imap
,
344 offset
>>= inode
->i_blkbits
;
346 return offset
>= imap
->br_startoff
&&
347 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
351 * BIO completion handler for buffered IO.
358 xfs_ioend_t
*ioend
= bio
->bi_private
;
360 ASSERT(atomic_read(&bio
->bi_cnt
) >= 1);
361 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
363 /* Toss bio and pass work off to an xfsdatad thread */
364 bio
->bi_private
= NULL
;
365 bio
->bi_end_io
= NULL
;
368 xfs_finish_ioend(ioend
);
372 xfs_submit_ioend_bio(
373 struct writeback_control
*wbc
,
377 atomic_inc(&ioend
->io_remaining
);
378 bio
->bi_private
= ioend
;
379 bio
->bi_end_io
= xfs_end_bio
;
380 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
385 struct buffer_head
*bh
)
387 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
388 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
390 ASSERT(bio
->bi_private
== NULL
);
391 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
392 bio
->bi_bdev
= bh
->b_bdev
;
397 xfs_start_buffer_writeback(
398 struct buffer_head
*bh
)
400 ASSERT(buffer_mapped(bh
));
401 ASSERT(buffer_locked(bh
));
402 ASSERT(!buffer_delay(bh
));
403 ASSERT(!buffer_unwritten(bh
));
405 mark_buffer_async_write(bh
);
406 set_buffer_uptodate(bh
);
407 clear_buffer_dirty(bh
);
411 xfs_start_page_writeback(
416 ASSERT(PageLocked(page
));
417 ASSERT(!PageWriteback(page
));
420 * if the page was not fully cleaned, we need to ensure that the higher
421 * layers come back to it correctly. That means we need to keep the page
422 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
423 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
424 * write this page in this writeback sweep will be made.
427 clear_page_dirty_for_io(page
);
428 set_page_writeback(page
);
430 set_page_writeback_keepwrite(page
);
434 /* If no buffers on the page are to be written, finish it here */
436 end_page_writeback(page
);
439 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
441 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
445 * Submit all of the bios for all of the ioends we have saved up, covering the
446 * initial writepage page and also any probed pages.
448 * Because we may have multiple ioends spanning a page, we need to start
449 * writeback on all the buffers before we submit them for I/O. If we mark the
450 * buffers as we got, then we can end up with a page that only has buffers
451 * marked async write and I/O complete on can occur before we mark the other
452 * buffers async write.
454 * The end result of this is that we trip a bug in end_page_writeback() because
455 * we call it twice for the one page as the code in end_buffer_async_write()
456 * assumes that all buffers on the page are started at the same time.
458 * The fix is two passes across the ioend list - one to start writeback on the
459 * buffer_heads, and then submit them for I/O on the second pass.
461 * If @fail is non-zero, it means that we have a situation where some part of
462 * the submission process has failed after we have marked paged for writeback
463 * and unlocked them. In this situation, we need to fail the ioend chain rather
464 * than submit it to IO. This typically only happens on a filesystem shutdown.
468 struct writeback_control
*wbc
,
472 xfs_ioend_t
*head
= ioend
;
474 struct buffer_head
*bh
;
476 sector_t lastblock
= 0;
478 /* Pass 1 - start writeback */
480 next
= ioend
->io_list
;
481 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
482 xfs_start_buffer_writeback(bh
);
483 } while ((ioend
= next
) != NULL
);
485 /* Pass 2 - submit I/O */
488 next
= ioend
->io_list
;
492 * If we are failing the IO now, just mark the ioend with an
493 * error and finish it. This will run IO completion immediately
494 * as there is only one reference to the ioend at this point in
498 ioend
->io_error
= fail
;
499 xfs_finish_ioend(ioend
);
503 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
507 bio
= xfs_alloc_ioend_bio(bh
);
508 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
509 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
513 if (xfs_bio_add_buffer(bio
, bh
) != bh
->b_size
) {
514 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
518 lastblock
= bh
->b_blocknr
;
521 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
522 xfs_finish_ioend(ioend
);
523 } while ((ioend
= next
) != NULL
);
527 * Cancel submission of all buffer_heads so far in this endio.
528 * Toss the endio too. Only ever called for the initial page
529 * in a writepage request, so only ever one page.
536 struct buffer_head
*bh
, *next_bh
;
539 next
= ioend
->io_list
;
540 bh
= ioend
->io_buffer_head
;
542 next_bh
= bh
->b_private
;
543 clear_buffer_async_write(bh
);
545 * The unwritten flag is cleared when added to the
546 * ioend. We're not submitting for I/O so mark the
547 * buffer unwritten again for next time around.
549 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
550 set_buffer_unwritten(bh
);
552 } while ((bh
= next_bh
) != NULL
);
554 mempool_free(ioend
, xfs_ioend_pool
);
555 } while ((ioend
= next
) != NULL
);
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
567 struct buffer_head
*bh
,
570 xfs_ioend_t
**result
,
573 xfs_ioend_t
*ioend
= *result
;
575 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
576 xfs_ioend_t
*previous
= *result
;
578 ioend
= xfs_alloc_ioend(inode
, type
);
579 ioend
->io_offset
= offset
;
580 ioend
->io_buffer_head
= bh
;
581 ioend
->io_buffer_tail
= bh
;
583 previous
->io_list
= ioend
;
586 ioend
->io_buffer_tail
->b_private
= bh
;
587 ioend
->io_buffer_tail
= bh
;
590 bh
->b_private
= NULL
;
591 ioend
->io_size
+= bh
->b_size
;
597 struct buffer_head
*bh
,
598 struct xfs_bmbt_irec
*imap
,
602 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
603 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
604 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
606 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
607 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
609 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
610 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
612 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
615 set_buffer_mapped(bh
);
621 struct buffer_head
*bh
,
622 struct xfs_bmbt_irec
*imap
,
625 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
626 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
628 xfs_map_buffer(inode
, bh
, imap
, offset
);
629 set_buffer_mapped(bh
);
630 clear_buffer_delay(bh
);
631 clear_buffer_unwritten(bh
);
635 * Test if a given page contains at least one buffer of a given @type.
636 * If @check_all_buffers is true, then we walk all the buffers in the page to
637 * try to find one of the type passed in. If it is not set, then the caller only
638 * needs to check the first buffer on the page for a match.
644 bool check_all_buffers
)
646 struct buffer_head
*bh
;
647 struct buffer_head
*head
;
649 if (PageWriteback(page
))
653 if (!page_has_buffers(page
))
656 bh
= head
= page_buffers(page
);
658 if (buffer_unwritten(bh
)) {
659 if (type
== XFS_IO_UNWRITTEN
)
661 } else if (buffer_delay(bh
)) {
662 if (type
== XFS_IO_DELALLOC
)
664 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
665 if (type
== XFS_IO_OVERWRITE
)
669 /* If we are only checking the first buffer, we are done now. */
670 if (!check_all_buffers
)
672 } while ((bh
= bh
->b_this_page
) != head
);
678 * Allocate & map buffers for page given the extent map. Write it out.
679 * except for the original page of a writepage, this is called on
680 * delalloc/unwritten pages only, for the original page it is possible
681 * that the page has no mapping at all.
688 struct xfs_bmbt_irec
*imap
,
689 xfs_ioend_t
**ioendp
,
690 struct writeback_control
*wbc
)
692 struct buffer_head
*bh
, *head
;
693 xfs_off_t end_offset
;
694 unsigned long p_offset
;
697 int count
= 0, done
= 0, uptodate
= 1;
698 xfs_off_t offset
= page_offset(page
);
700 if (page
->index
!= tindex
)
702 if (!trylock_page(page
))
704 if (PageWriteback(page
))
705 goto fail_unlock_page
;
706 if (page
->mapping
!= inode
->i_mapping
)
707 goto fail_unlock_page
;
708 if (!xfs_check_page_type(page
, (*ioendp
)->io_type
, false))
709 goto fail_unlock_page
;
712 * page_dirty is initially a count of buffers on the page before
713 * EOF and is decremented as we move each into a cleanable state.
717 * End offset is the highest offset that this page should represent.
718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
720 * hence give us the correct page_dirty count. On any other page,
721 * it will be zero and in that case we need page_dirty to be the
722 * count of buffers on the page.
724 end_offset
= min_t(unsigned long long,
725 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
729 * If the current map does not span the entire page we are about to try
730 * to write, then give up. The only way we can write a page that spans
731 * multiple mappings in a single writeback iteration is via the
732 * xfs_vm_writepage() function. Data integrity writeback requires the
733 * entire page to be written in a single attempt, otherwise the part of
734 * the page we don't write here doesn't get written as part of the data
737 * For normal writeback, we also don't attempt to write partial pages
738 * here as it simply means that write_cache_pages() will see it under
739 * writeback and ignore the page until some point in the future, at
740 * which time this will be the only page in the file that needs
741 * writeback. Hence for more optimal IO patterns, we should always
742 * avoid partial page writeback due to multiple mappings on a page here.
744 if (!xfs_imap_valid(inode
, imap
, end_offset
))
745 goto fail_unlock_page
;
747 len
= 1 << inode
->i_blkbits
;
748 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
750 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
751 page_dirty
= p_offset
/ len
;
754 * The moment we find a buffer that doesn't match our current type
755 * specification or can't be written, abort the loop and start
756 * writeback. As per the above xfs_imap_valid() check, only
757 * xfs_vm_writepage() can handle partial page writeback fully - we are
758 * limited here to the buffers that are contiguous with the current
759 * ioend, and hence a buffer we can't write breaks that contiguity and
760 * we have to defer the rest of the IO to xfs_vm_writepage().
762 bh
= head
= page_buffers(page
);
764 if (offset
>= end_offset
)
766 if (!buffer_uptodate(bh
))
768 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
773 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
775 if (buffer_unwritten(bh
))
776 type
= XFS_IO_UNWRITTEN
;
777 else if (buffer_delay(bh
))
778 type
= XFS_IO_DELALLOC
;
780 type
= XFS_IO_OVERWRITE
;
783 * imap should always be valid because of the above
784 * partial page end_offset check on the imap.
786 ASSERT(xfs_imap_valid(inode
, imap
, offset
));
789 if (type
!= XFS_IO_OVERWRITE
)
790 xfs_map_at_offset(inode
, bh
, imap
, offset
);
791 xfs_add_to_ioend(inode
, bh
, offset
, type
,
800 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
802 if (uptodate
&& bh
== head
)
803 SetPageUptodate(page
);
806 if (--wbc
->nr_to_write
<= 0 &&
807 wbc
->sync_mode
== WB_SYNC_NONE
)
810 xfs_start_page_writeback(page
, !page_dirty
, count
);
820 * Convert & write out a cluster of pages in the same extent as defined
821 * by mp and following the start page.
827 struct xfs_bmbt_irec
*imap
,
828 xfs_ioend_t
**ioendp
,
829 struct writeback_control
*wbc
,
835 pagevec_init(&pvec
, 0);
836 while (!done
&& tindex
<= tlast
) {
837 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
839 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
842 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
843 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
849 pagevec_release(&pvec
);
855 xfs_vm_invalidatepage(
860 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
862 block_invalidatepage(page
, offset
, length
);
866 * If the page has delalloc buffers on it, we need to punch them out before we
867 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
868 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
869 * is done on that same region - the delalloc extent is returned when none is
870 * supposed to be there.
872 * We prevent this by truncating away the delalloc regions on the page before
873 * invalidating it. Because they are delalloc, we can do this without needing a
874 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
875 * truncation without a transaction as there is no space left for block
876 * reservation (typically why we see a ENOSPC in writeback).
878 * This is not a performance critical path, so for now just do the punching a
879 * buffer head at a time.
882 xfs_aops_discard_page(
885 struct inode
*inode
= page
->mapping
->host
;
886 struct xfs_inode
*ip
= XFS_I(inode
);
887 struct buffer_head
*bh
, *head
;
888 loff_t offset
= page_offset(page
);
890 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
893 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
896 xfs_alert(ip
->i_mount
,
897 "page discard on page %p, inode 0x%llx, offset %llu.",
898 page
, ip
->i_ino
, offset
);
900 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
901 bh
= head
= page_buffers(page
);
904 xfs_fileoff_t start_fsb
;
906 if (!buffer_delay(bh
))
909 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
910 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
912 /* something screwed, just bail */
913 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
914 xfs_alert(ip
->i_mount
,
915 "page discard unable to remove delalloc mapping.");
920 offset
+= 1 << inode
->i_blkbits
;
922 } while ((bh
= bh
->b_this_page
) != head
);
924 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
926 xfs_vm_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
931 * Write out a dirty page.
933 * For delalloc space on the page we need to allocate space and flush it.
934 * For unwritten space on the page we need to start the conversion to
935 * regular allocated space.
936 * For any other dirty buffer heads on the page we should flush them.
941 struct writeback_control
*wbc
)
943 struct inode
*inode
= page
->mapping
->host
;
944 struct buffer_head
*bh
, *head
;
945 struct xfs_bmbt_irec imap
;
946 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
949 __uint64_t end_offset
;
950 pgoff_t end_index
, last_index
;
952 int err
, imap_valid
= 0, uptodate
= 1;
956 trace_xfs_writepage(inode
, page
, 0, 0);
958 ASSERT(page_has_buffers(page
));
961 * Refuse to write the page out if we are called from reclaim context.
963 * This avoids stack overflows when called from deeply used stacks in
964 * random callers for direct reclaim or memcg reclaim. We explicitly
965 * allow reclaim from kswapd as the stack usage there is relatively low.
967 * This should never happen except in the case of a VM regression so
970 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
975 * Given that we do not allow direct reclaim to call us, we should
976 * never be called while in a filesystem transaction.
978 if (WARN_ON_ONCE(current
->flags
& PF_FSTRANS
))
981 /* Is this page beyond the end of the file? */
982 offset
= i_size_read(inode
);
983 end_index
= offset
>> PAGE_CACHE_SHIFT
;
984 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
987 * The page index is less than the end_index, adjust the end_offset
988 * to the highest offset that this page should represent.
989 * -----------------------------------------------------
990 * | file mapping | <EOF> |
991 * -----------------------------------------------------
992 * | Page ... | Page N-2 | Page N-1 | Page N | |
993 * ^--------------------------------^----------|--------
994 * | desired writeback range | see else |
995 * ---------------------------------^------------------|
997 if (page
->index
< end_index
)
998 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
;
1001 * Check whether the page to write out is beyond or straddles
1003 * -------------------------------------------------------
1004 * | file mapping | <EOF> |
1005 * -------------------------------------------------------
1006 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1007 * ^--------------------------------^-----------|---------
1009 * ---------------------------------^-----------|--------|
1011 unsigned offset_into_page
= offset
& (PAGE_CACHE_SIZE
- 1);
1014 * Skip the page if it is fully outside i_size, e.g. due to a
1015 * truncate operation that is in progress. We must redirty the
1016 * page so that reclaim stops reclaiming it. Otherwise
1017 * xfs_vm_releasepage() is called on it and gets confused.
1019 * Note that the end_index is unsigned long, it would overflow
1020 * if the given offset is greater than 16TB on 32-bit system
1021 * and if we do check the page is fully outside i_size or not
1022 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1023 * will be evaluated to 0. Hence this page will be redirtied
1024 * and be written out repeatedly which would result in an
1025 * infinite loop, the user program that perform this operation
1026 * will hang. Instead, we can verify this situation by checking
1027 * if the page to write is totally beyond the i_size or if it's
1028 * offset is just equal to the EOF.
1030 if (page
->index
> end_index
||
1031 (page
->index
== end_index
&& offset_into_page
== 0))
1035 * The page straddles i_size. It must be zeroed out on each
1036 * and every writepage invocation because it may be mmapped.
1037 * "A file is mapped in multiples of the page size. For a file
1038 * that is not a multiple of the page size, the remaining
1039 * memory is zeroed when mapped, and writes to that region are
1040 * not written out to the file."
1042 zero_user_segment(page
, offset_into_page
, PAGE_CACHE_SIZE
);
1044 /* Adjust the end_offset to the end of file */
1045 end_offset
= offset
;
1048 len
= 1 << inode
->i_blkbits
;
1050 bh
= head
= page_buffers(page
);
1051 offset
= page_offset(page
);
1052 type
= XFS_IO_OVERWRITE
;
1054 if (wbc
->sync_mode
== WB_SYNC_NONE
)
1060 if (offset
>= end_offset
)
1062 if (!buffer_uptodate(bh
))
1066 * set_page_dirty dirties all buffers in a page, independent
1067 * of their state. The dirty state however is entirely
1068 * meaningless for holes (!mapped && uptodate), so skip
1069 * buffers covering holes here.
1071 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
1076 if (buffer_unwritten(bh
)) {
1077 if (type
!= XFS_IO_UNWRITTEN
) {
1078 type
= XFS_IO_UNWRITTEN
;
1081 } else if (buffer_delay(bh
)) {
1082 if (type
!= XFS_IO_DELALLOC
) {
1083 type
= XFS_IO_DELALLOC
;
1086 } else if (buffer_uptodate(bh
)) {
1087 if (type
!= XFS_IO_OVERWRITE
) {
1088 type
= XFS_IO_OVERWRITE
;
1092 if (PageUptodate(page
))
1093 ASSERT(buffer_mapped(bh
));
1095 * This buffer is not uptodate and will not be
1096 * written to disk. Ensure that we will put any
1097 * subsequent writeable buffers into a new
1105 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1108 * If we didn't have a valid mapping then we need to
1109 * put the new mapping into a separate ioend structure.
1110 * This ensures non-contiguous extents always have
1111 * separate ioends, which is particularly important
1112 * for unwritten extent conversion at I/O completion
1116 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1120 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1124 if (type
!= XFS_IO_OVERWRITE
)
1125 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1126 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1134 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1136 if (uptodate
&& bh
== head
)
1137 SetPageUptodate(page
);
1139 xfs_start_page_writeback(page
, 1, count
);
1141 /* if there is no IO to be submitted for this page, we are done */
1148 * Any errors from this point onwards need tobe reported through the IO
1149 * completion path as we have marked the initial page as under writeback
1153 xfs_off_t end_index
;
1155 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1158 end_index
<<= inode
->i_blkbits
;
1161 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1163 /* check against file size */
1164 if (end_index
> last_index
)
1165 end_index
= last_index
;
1167 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1173 * Reserve log space if we might write beyond the on-disk inode size.
1176 if (ioend
->io_type
!= XFS_IO_UNWRITTEN
&& xfs_ioend_is_append(ioend
))
1177 err
= xfs_setfilesize_trans_alloc(ioend
);
1179 xfs_submit_ioend(wbc
, iohead
, err
);
1185 xfs_cancel_ioend(iohead
);
1190 xfs_aops_discard_page(page
);
1191 ClearPageUptodate(page
);
1196 redirty_page_for_writepage(wbc
, page
);
1203 struct address_space
*mapping
,
1204 struct writeback_control
*wbc
)
1206 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1207 return generic_writepages(mapping
, wbc
);
1211 * Called to move a page into cleanable state - and from there
1212 * to be released. The page should already be clean. We always
1213 * have buffer heads in this call.
1215 * Returns 1 if the page is ok to release, 0 otherwise.
1222 int delalloc
, unwritten
;
1224 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1226 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1228 if (WARN_ON_ONCE(delalloc
))
1230 if (WARN_ON_ONCE(unwritten
))
1233 return try_to_free_buffers(page
);
1238 struct inode
*inode
,
1240 struct buffer_head
*bh_result
,
1244 struct xfs_inode
*ip
= XFS_I(inode
);
1245 struct xfs_mount
*mp
= ip
->i_mount
;
1246 xfs_fileoff_t offset_fsb
, end_fsb
;
1249 struct xfs_bmbt_irec imap
;
1255 if (XFS_FORCED_SHUTDOWN(mp
))
1258 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1259 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1260 size
= bh_result
->b_size
;
1262 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1266 * Direct I/O is usually done on preallocated files, so try getting
1267 * a block mapping without an exclusive lock first. For buffered
1268 * writes we already have the exclusive iolock anyway, so avoiding
1269 * a lock roundtrip here by taking the ilock exclusive from the
1270 * beginning is a useful micro optimization.
1272 if (create
&& !direct
) {
1273 lockmode
= XFS_ILOCK_EXCL
;
1274 xfs_ilock(ip
, lockmode
);
1276 lockmode
= xfs_ilock_data_map_shared(ip
);
1279 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1280 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1281 size
= mp
->m_super
->s_maxbytes
- offset
;
1282 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1283 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1285 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1286 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1292 (imap
.br_startblock
== HOLESTARTBLOCK
||
1293 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1294 if (direct
|| xfs_get_extsz_hint(ip
)) {
1296 * Drop the ilock in preparation for starting the block
1297 * allocation transaction. It will be retaken
1298 * exclusively inside xfs_iomap_write_direct for the
1299 * actual allocation.
1301 xfs_iunlock(ip
, lockmode
);
1302 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1309 * Delalloc reservations do not require a transaction,
1310 * we can go on without dropping the lock here. If we
1311 * are allocating a new delalloc block, make sure that
1312 * we set the new flag so that we mark the buffer new so
1313 * that we know that it is newly allocated if the write
1316 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1318 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1322 xfs_iunlock(ip
, lockmode
);
1325 trace_xfs_get_blocks_alloc(ip
, offset
, size
, 0, &imap
);
1326 } else if (nimaps
) {
1327 trace_xfs_get_blocks_found(ip
, offset
, size
, 0, &imap
);
1328 xfs_iunlock(ip
, lockmode
);
1330 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1334 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1335 imap
.br_startblock
!= DELAYSTARTBLOCK
) {
1337 * For unwritten extents do not report a disk address on
1338 * the read case (treat as if we're reading into a hole).
1340 if (create
|| !ISUNWRITTEN(&imap
))
1341 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1342 if (create
&& ISUNWRITTEN(&imap
)) {
1344 bh_result
->b_private
= inode
;
1345 set_buffer_defer_completion(bh_result
);
1347 set_buffer_unwritten(bh_result
);
1352 * If this is a realtime file, data may be on a different device.
1353 * to that pointed to from the buffer_head b_bdev currently.
1355 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1358 * If we previously allocated a block out beyond eof and we are now
1359 * coming back to use it then we will need to flag it as new even if it
1360 * has a disk address.
1362 * With sub-block writes into unwritten extents we also need to mark
1363 * the buffer as new so that the unwritten parts of the buffer gets
1367 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1368 (offset
>= i_size_read(inode
)) ||
1369 (new || ISUNWRITTEN(&imap
))))
1370 set_buffer_new(bh_result
);
1372 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1375 set_buffer_uptodate(bh_result
);
1376 set_buffer_mapped(bh_result
);
1377 set_buffer_delay(bh_result
);
1382 * If this is O_DIRECT or the mpage code calling tell them how large
1383 * the mapping is, so that we can avoid repeated get_blocks calls.
1385 * If the mapping spans EOF, then we have to break the mapping up as the
1386 * mapping for blocks beyond EOF must be marked new so that sub block
1387 * regions can be correctly zeroed. We can't do this for mappings within
1388 * EOF unless the mapping was just allocated or is unwritten, otherwise
1389 * the callers would overwrite existing data with zeros. Hence we have
1390 * to split the mapping into a range up to and including EOF, and a
1391 * second mapping for beyond EOF.
1393 if (direct
|| size
> (1 << inode
->i_blkbits
)) {
1394 xfs_off_t mapping_size
;
1396 mapping_size
= imap
.br_startoff
+ imap
.br_blockcount
- iblock
;
1397 mapping_size
<<= inode
->i_blkbits
;
1399 ASSERT(mapping_size
> 0);
1400 if (mapping_size
> size
)
1401 mapping_size
= size
;
1402 if (offset
< i_size_read(inode
) &&
1403 offset
+ mapping_size
>= i_size_read(inode
)) {
1404 /* limit mapping to block that spans EOF */
1405 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1406 1 << inode
->i_blkbits
);
1408 if (mapping_size
> LONG_MAX
)
1409 mapping_size
= LONG_MAX
;
1411 bh_result
->b_size
= mapping_size
;
1417 xfs_iunlock(ip
, lockmode
);
1423 struct inode
*inode
,
1425 struct buffer_head
*bh_result
,
1428 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 0);
1432 xfs_get_blocks_direct(
1433 struct inode
*inode
,
1435 struct buffer_head
*bh_result
,
1438 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, 1);
1442 * Complete a direct I/O write request.
1444 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1445 * need to issue a transaction to convert the range from unwritten to written
1449 xfs_end_io_direct_write(
1455 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1456 struct xfs_inode
*ip
= XFS_I(inode
);
1457 struct xfs_mount
*mp
= ip
->i_mount
;
1459 if (XFS_FORCED_SHUTDOWN(mp
))
1463 * While the generic direct I/O code updates the inode size, it does
1464 * so only after the end_io handler is called, which means our
1465 * end_io handler thinks the on-disk size is outside the in-core
1466 * size. To prevent this just update it a little bit earlier here.
1468 if (offset
+ size
> i_size_read(inode
))
1469 i_size_write(inode
, offset
+ size
);
1472 * For direct I/O we do not know if we need to allocate blocks or not,
1473 * so we can't preallocate an append transaction, as that results in
1474 * nested reservations and log space deadlocks. Hence allocate the
1475 * transaction here. While this is sub-optimal and can block IO
1476 * completion for some time, we're stuck with doing it this way until
1477 * we can pass the ioend to the direct IO allocation callbacks and
1478 * avoid nesting that way.
1480 if (private && size
> 0) {
1481 xfs_iomap_write_unwritten(ip
, offset
, size
);
1482 } else if (offset
+ size
> ip
->i_d
.di_size
) {
1483 struct xfs_trans
*tp
;
1486 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
1487 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
1489 xfs_trans_cancel(tp
, 0);
1493 xfs_setfilesize(ip
, tp
, offset
, size
);
1501 struct iov_iter
*iter
,
1504 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1505 struct block_device
*bdev
= xfs_find_bdev_for_inode(inode
);
1508 return __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iter
,
1509 offset
, xfs_get_blocks_direct
,
1510 xfs_end_io_direct_write
, NULL
,
1513 return __blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iter
,
1514 offset
, xfs_get_blocks_direct
,
1519 * Punch out the delalloc blocks we have already allocated.
1521 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1522 * as the page is still locked at this point.
1525 xfs_vm_kill_delalloc_range(
1526 struct inode
*inode
,
1530 struct xfs_inode
*ip
= XFS_I(inode
);
1531 xfs_fileoff_t start_fsb
;
1532 xfs_fileoff_t end_fsb
;
1535 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1536 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1537 if (end_fsb
<= start_fsb
)
1540 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1541 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1542 end_fsb
- start_fsb
);
1544 /* something screwed, just bail */
1545 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1546 xfs_alert(ip
->i_mount
,
1547 "xfs_vm_write_failed: unable to clean up ino %lld",
1551 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1555 xfs_vm_write_failed(
1556 struct inode
*inode
,
1561 loff_t block_offset
;
1564 loff_t from
= pos
& (PAGE_CACHE_SIZE
- 1);
1565 loff_t to
= from
+ len
;
1566 struct buffer_head
*bh
, *head
;
1569 * The request pos offset might be 32 or 64 bit, this is all fine
1570 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1571 * platform, the high 32-bit will be masked off if we evaluate the
1572 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1573 * 0xfffff000 as an unsigned long, hence the result is incorrect
1574 * which could cause the following ASSERT failed in most cases.
1575 * In order to avoid this, we can evaluate the block_offset of the
1576 * start of the page by using shifts rather than masks the mismatch
1579 block_offset
= (pos
>> PAGE_CACHE_SHIFT
) << PAGE_CACHE_SHIFT
;
1581 ASSERT(block_offset
+ from
== pos
);
1583 head
= page_buffers(page
);
1585 for (bh
= head
; bh
!= head
|| !block_start
;
1586 bh
= bh
->b_this_page
, block_start
= block_end
,
1587 block_offset
+= bh
->b_size
) {
1588 block_end
= block_start
+ bh
->b_size
;
1590 /* skip buffers before the write */
1591 if (block_end
<= from
)
1594 /* if the buffer is after the write, we're done */
1595 if (block_start
>= to
)
1598 if (!buffer_delay(bh
))
1601 if (!buffer_new(bh
) && block_offset
< i_size_read(inode
))
1604 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1605 block_offset
+ bh
->b_size
);
1608 * This buffer does not contain data anymore. make sure anyone
1609 * who finds it knows that for certain.
1611 clear_buffer_delay(bh
);
1612 clear_buffer_uptodate(bh
);
1613 clear_buffer_mapped(bh
);
1614 clear_buffer_new(bh
);
1615 clear_buffer_dirty(bh
);
1621 * This used to call block_write_begin(), but it unlocks and releases the page
1622 * on error, and we need that page to be able to punch stale delalloc blocks out
1623 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1624 * the appropriate point.
1629 struct address_space
*mapping
,
1633 struct page
**pagep
,
1636 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1640 ASSERT(len
<= PAGE_CACHE_SIZE
);
1642 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1646 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1647 if (unlikely(status
)) {
1648 struct inode
*inode
= mapping
->host
;
1649 size_t isize
= i_size_read(inode
);
1651 xfs_vm_write_failed(inode
, page
, pos
, len
);
1655 * If the write is beyond EOF, we only want to kill blocks
1656 * allocated in this write, not blocks that were previously
1657 * written successfully.
1659 if (pos
+ len
> isize
) {
1660 ssize_t start
= max_t(ssize_t
, pos
, isize
);
1662 truncate_pagecache_range(inode
, start
, pos
+ len
);
1665 page_cache_release(page
);
1674 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1675 * this specific write because they will never be written. Previous writes
1676 * beyond EOF where block allocation succeeded do not need to be trashed, so
1677 * only new blocks from this write should be trashed. For blocks within
1678 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1679 * written with all the other valid data.
1684 struct address_space
*mapping
,
1693 ASSERT(len
<= PAGE_CACHE_SIZE
);
1695 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1696 if (unlikely(ret
< len
)) {
1697 struct inode
*inode
= mapping
->host
;
1698 size_t isize
= i_size_read(inode
);
1699 loff_t to
= pos
+ len
;
1702 /* only kill blocks in this write beyond EOF */
1705 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1706 truncate_pagecache_range(inode
, isize
, to
);
1714 struct address_space
*mapping
,
1717 struct inode
*inode
= (struct inode
*)mapping
->host
;
1718 struct xfs_inode
*ip
= XFS_I(inode
);
1720 trace_xfs_vm_bmap(XFS_I(inode
));
1721 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1722 filemap_write_and_wait(mapping
);
1723 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1724 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1729 struct file
*unused
,
1732 return mpage_readpage(page
, xfs_get_blocks
);
1737 struct file
*unused
,
1738 struct address_space
*mapping
,
1739 struct list_head
*pages
,
1742 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1746 * This is basically a copy of __set_page_dirty_buffers() with one
1747 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1748 * dirty, we'll never be able to clean them because we don't write buffers
1749 * beyond EOF, and that means we can't invalidate pages that span EOF
1750 * that have been marked dirty. Further, the dirty state can leak into
1751 * the file interior if the file is extended, resulting in all sorts of
1752 * bad things happening as the state does not match the underlying data.
1754 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1755 * this only exist because of bufferheads and how the generic code manages them.
1758 xfs_vm_set_page_dirty(
1761 struct address_space
*mapping
= page
->mapping
;
1762 struct inode
*inode
= mapping
->host
;
1767 if (unlikely(!mapping
))
1768 return !TestSetPageDirty(page
);
1770 end_offset
= i_size_read(inode
);
1771 offset
= page_offset(page
);
1773 spin_lock(&mapping
->private_lock
);
1774 if (page_has_buffers(page
)) {
1775 struct buffer_head
*head
= page_buffers(page
);
1776 struct buffer_head
*bh
= head
;
1779 if (offset
< end_offset
)
1780 set_buffer_dirty(bh
);
1781 bh
= bh
->b_this_page
;
1782 offset
+= 1 << inode
->i_blkbits
;
1783 } while (bh
!= head
);
1785 newly_dirty
= !TestSetPageDirty(page
);
1786 spin_unlock(&mapping
->private_lock
);
1789 /* sigh - __set_page_dirty() is static, so copy it here, too */
1790 unsigned long flags
;
1792 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1793 if (page
->mapping
) { /* Race with truncate? */
1794 WARN_ON_ONCE(!PageUptodate(page
));
1795 account_page_dirtied(page
, mapping
);
1796 radix_tree_tag_set(&mapping
->page_tree
,
1797 page_index(page
), PAGECACHE_TAG_DIRTY
);
1799 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1800 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1805 const struct address_space_operations xfs_address_space_operations
= {
1806 .readpage
= xfs_vm_readpage
,
1807 .readpages
= xfs_vm_readpages
,
1808 .writepage
= xfs_vm_writepage
,
1809 .writepages
= xfs_vm_writepages
,
1810 .set_page_dirty
= xfs_vm_set_page_dirty
,
1811 .releasepage
= xfs_vm_releasepage
,
1812 .invalidatepage
= xfs_vm_invalidatepage
,
1813 .write_begin
= xfs_vm_write_begin
,
1814 .write_end
= xfs_vm_write_end
,
1815 .bmap
= xfs_vm_bmap
,
1816 .direct_IO
= xfs_vm_direct_IO
,
1817 .migratepage
= buffer_migrate_page
,
1818 .is_partially_uptodate
= block_is_partially_uptodate
,
1819 .error_remove_page
= generic_error_remove_page
,