2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp
->b_addr
&& bp
->b_page_count
> 1;
79 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84 * b_lru_ref count so that the buffer is freed immediately when the buffer
85 * reference count falls to zero. If the buffer is already on the LRU, we need
86 * to remove the reference that LRU holds on the buffer.
88 * This prevents build-up of stale buffers on the LRU.
94 ASSERT(xfs_buf_islocked(bp
));
96 bp
->b_flags
|= XBF_STALE
;
99 * Clear the delwri status so that a delwri queue walker will not
100 * flush this buffer to disk now that it is stale. The delwri queue has
101 * a reference to the buffer, so this is safe to do.
103 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
105 spin_lock(&bp
->b_lock
);
106 atomic_set(&bp
->b_lru_ref
, 0);
107 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
108 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
109 atomic_dec(&bp
->b_hold
);
111 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
112 spin_unlock(&bp
->b_lock
);
120 ASSERT(bp
->b_maps
== NULL
);
121 bp
->b_map_count
= map_count
;
123 if (map_count
== 1) {
124 bp
->b_maps
= &bp
->__b_map
;
128 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
136 * Frees b_pages if it was allocated.
142 if (bp
->b_maps
!= &bp
->__b_map
) {
143 kmem_free(bp
->b_maps
);
150 struct xfs_buftarg
*target
,
151 struct xfs_buf_map
*map
,
153 xfs_buf_flags_t flags
)
159 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
164 * We don't want certain flags to appear in b_flags unless they are
165 * specifically set by later operations on the buffer.
167 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
169 atomic_set(&bp
->b_hold
, 1);
170 atomic_set(&bp
->b_lru_ref
, 1);
171 init_completion(&bp
->b_iowait
);
172 INIT_LIST_HEAD(&bp
->b_lru
);
173 INIT_LIST_HEAD(&bp
->b_list
);
174 RB_CLEAR_NODE(&bp
->b_rbnode
);
175 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
176 spin_lock_init(&bp
->b_lock
);
178 bp
->b_target
= target
;
182 * Set length and io_length to the same value initially.
183 * I/O routines should use io_length, which will be the same in
184 * most cases but may be reset (e.g. XFS recovery).
186 error
= xfs_buf_get_maps(bp
, nmaps
);
188 kmem_zone_free(xfs_buf_zone
, bp
);
192 bp
->b_bn
= map
[0].bm_bn
;
194 for (i
= 0; i
< nmaps
; i
++) {
195 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
196 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
197 bp
->b_length
+= map
[i
].bm_len
;
199 bp
->b_io_length
= bp
->b_length
;
201 atomic_set(&bp
->b_pin_count
, 0);
202 init_waitqueue_head(&bp
->b_waiters
);
204 XFS_STATS_INC(xb_create
);
205 trace_xfs_buf_init(bp
, _RET_IP_
);
211 * Allocate a page array capable of holding a specified number
212 * of pages, and point the page buf at it.
219 /* Make sure that we have a page list */
220 if (bp
->b_pages
== NULL
) {
221 bp
->b_page_count
= page_count
;
222 if (page_count
<= XB_PAGES
) {
223 bp
->b_pages
= bp
->b_page_array
;
225 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
226 page_count
, KM_NOFS
);
227 if (bp
->b_pages
== NULL
)
230 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
236 * Frees b_pages if it was allocated.
242 if (bp
->b_pages
!= bp
->b_page_array
) {
243 kmem_free(bp
->b_pages
);
249 * Releases the specified buffer.
251 * The modification state of any associated pages is left unchanged.
252 * The buffer must not be on any hash - use xfs_buf_rele instead for
253 * hashed and refcounted buffers
259 trace_xfs_buf_free(bp
, _RET_IP_
);
261 ASSERT(list_empty(&bp
->b_lru
));
263 if (bp
->b_flags
& _XBF_PAGES
) {
266 if (xfs_buf_is_vmapped(bp
))
267 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
270 for (i
= 0; i
< bp
->b_page_count
; i
++) {
271 struct page
*page
= bp
->b_pages
[i
];
275 } else if (bp
->b_flags
& _XBF_KMEM
)
276 kmem_free(bp
->b_addr
);
277 _xfs_buf_free_pages(bp
);
278 xfs_buf_free_maps(bp
);
279 kmem_zone_free(xfs_buf_zone
, bp
);
283 * Allocates all the pages for buffer in question and builds it's page list.
286 xfs_buf_allocate_memory(
291 size_t nbytes
, offset
;
292 gfp_t gfp_mask
= xb_to_gfp(flags
);
293 unsigned short page_count
, i
;
294 xfs_off_t start
, end
;
298 * for buffers that are contained within a single page, just allocate
299 * the memory from the heap - there's no need for the complexity of
300 * page arrays to keep allocation down to order 0.
302 size
= BBTOB(bp
->b_length
);
303 if (size
< PAGE_SIZE
) {
304 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
306 /* low memory - use alloc_page loop instead */
310 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
311 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
312 /* b_addr spans two pages - use alloc_page instead */
313 kmem_free(bp
->b_addr
);
317 bp
->b_offset
= offset_in_page(bp
->b_addr
);
318 bp
->b_pages
= bp
->b_page_array
;
319 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
320 bp
->b_page_count
= 1;
321 bp
->b_flags
|= _XBF_KMEM
;
326 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
327 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
329 page_count
= end
- start
;
330 error
= _xfs_buf_get_pages(bp
, page_count
);
334 offset
= bp
->b_offset
;
335 bp
->b_flags
|= _XBF_PAGES
;
337 for (i
= 0; i
< bp
->b_page_count
; i
++) {
341 page
= alloc_page(gfp_mask
);
342 if (unlikely(page
== NULL
)) {
343 if (flags
& XBF_READ_AHEAD
) {
344 bp
->b_page_count
= i
;
350 * This could deadlock.
352 * But until all the XFS lowlevel code is revamped to
353 * handle buffer allocation failures we can't do much.
355 if (!(++retries
% 100))
357 "possible memory allocation deadlock in %s (mode:0x%x)",
360 XFS_STATS_INC(xb_page_retries
);
361 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
365 XFS_STATS_INC(xb_page_found
);
367 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
369 bp
->b_pages
[i
] = page
;
375 for (i
= 0; i
< bp
->b_page_count
; i
++)
376 __free_page(bp
->b_pages
[i
]);
381 * Map buffer into kernel address-space if necessary.
388 ASSERT(bp
->b_flags
& _XBF_PAGES
);
389 if (bp
->b_page_count
== 1) {
390 /* A single page buffer is always mappable */
391 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
392 } else if (flags
& XBF_UNMAPPED
) {
399 * vm_map_ram() will allocate auxillary structures (e.g.
400 * pagetables) with GFP_KERNEL, yet we are likely to be under
401 * GFP_NOFS context here. Hence we need to tell memory reclaim
402 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
403 * memory reclaim re-entering the filesystem here and
404 * potentially deadlocking.
406 noio_flag
= memalloc_noio_save();
408 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
413 } while (retried
++ <= 1);
414 memalloc_noio_restore(noio_flag
);
418 bp
->b_addr
+= bp
->b_offset
;
425 * Finding and Reading Buffers
429 * Look up, and creates if absent, a lockable buffer for
430 * a given range of an inode. The buffer is returned
431 * locked. No I/O is implied by this call.
435 struct xfs_buftarg
*btp
,
436 struct xfs_buf_map
*map
,
438 xfs_buf_flags_t flags
,
442 struct xfs_perag
*pag
;
443 struct rb_node
**rbp
;
444 struct rb_node
*parent
;
446 xfs_daddr_t blkno
= map
[0].bm_bn
;
451 for (i
= 0; i
< nmaps
; i
++)
452 numblks
+= map
[i
].bm_len
;
453 numbytes
= BBTOB(numblks
);
455 /* Check for IOs smaller than the sector size / not sector aligned */
456 ASSERT(!(numbytes
< btp
->bt_meta_sectorsize
));
457 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
460 * Corrupted block numbers can get through to here, unfortunately, so we
461 * have to check that the buffer falls within the filesystem bounds.
463 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
464 if (blkno
< 0 || blkno
>= eofs
) {
466 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
467 * but none of the higher level infrastructure supports
468 * returning a specific error on buffer lookup failures.
470 xfs_alert(btp
->bt_mount
,
471 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
472 __func__
, blkno
, eofs
);
478 pag
= xfs_perag_get(btp
->bt_mount
,
479 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
482 spin_lock(&pag
->pag_buf_lock
);
483 rbp
= &pag
->pag_buf_tree
.rb_node
;
488 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
490 if (blkno
< bp
->b_bn
)
491 rbp
= &(*rbp
)->rb_left
;
492 else if (blkno
> bp
->b_bn
)
493 rbp
= &(*rbp
)->rb_right
;
496 * found a block number match. If the range doesn't
497 * match, the only way this is allowed is if the buffer
498 * in the cache is stale and the transaction that made
499 * it stale has not yet committed. i.e. we are
500 * reallocating a busy extent. Skip this buffer and
501 * continue searching to the right for an exact match.
503 if (bp
->b_length
!= numblks
) {
504 ASSERT(bp
->b_flags
& XBF_STALE
);
505 rbp
= &(*rbp
)->rb_right
;
508 atomic_inc(&bp
->b_hold
);
515 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
516 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
517 /* the buffer keeps the perag reference until it is freed */
519 spin_unlock(&pag
->pag_buf_lock
);
521 XFS_STATS_INC(xb_miss_locked
);
522 spin_unlock(&pag
->pag_buf_lock
);
528 spin_unlock(&pag
->pag_buf_lock
);
531 if (!xfs_buf_trylock(bp
)) {
532 if (flags
& XBF_TRYLOCK
) {
534 XFS_STATS_INC(xb_busy_locked
);
538 XFS_STATS_INC(xb_get_locked_waited
);
542 * if the buffer is stale, clear all the external state associated with
543 * it. We need to keep flags such as how we allocated the buffer memory
546 if (bp
->b_flags
& XBF_STALE
) {
547 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
548 ASSERT(bp
->b_iodone
== NULL
);
549 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
553 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
554 XFS_STATS_INC(xb_get_locked
);
559 * Assembles a buffer covering the specified range. The code is optimised for
560 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
561 * more hits than misses.
565 struct xfs_buftarg
*target
,
566 struct xfs_buf_map
*map
,
568 xfs_buf_flags_t flags
)
571 struct xfs_buf
*new_bp
;
574 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
578 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
579 if (unlikely(!new_bp
))
582 error
= xfs_buf_allocate_memory(new_bp
, flags
);
584 xfs_buf_free(new_bp
);
588 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
590 xfs_buf_free(new_bp
);
595 xfs_buf_free(new_bp
);
599 error
= _xfs_buf_map_pages(bp
, flags
);
600 if (unlikely(error
)) {
601 xfs_warn(target
->bt_mount
,
602 "%s: failed to map pagesn", __func__
);
608 XFS_STATS_INC(xb_get
);
609 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
616 xfs_buf_flags_t flags
)
618 ASSERT(!(flags
& XBF_WRITE
));
619 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
621 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
622 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
624 if (flags
& XBF_ASYNC
) {
628 return xfs_buf_submit_wait(bp
);
633 struct xfs_buftarg
*target
,
634 struct xfs_buf_map
*map
,
636 xfs_buf_flags_t flags
,
637 const struct xfs_buf_ops
*ops
)
643 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
645 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
647 if (!XFS_BUF_ISDONE(bp
)) {
648 XFS_STATS_INC(xb_get_read
);
650 _xfs_buf_read(bp
, flags
);
651 } else if (flags
& XBF_ASYNC
) {
653 * Read ahead call which is already satisfied,
659 /* We do not want read in the flags */
660 bp
->b_flags
&= ~XBF_READ
;
668 * If we are not low on memory then do the readahead in a deadlock
672 xfs_buf_readahead_map(
673 struct xfs_buftarg
*target
,
674 struct xfs_buf_map
*map
,
676 const struct xfs_buf_ops
*ops
)
678 if (bdi_read_congested(target
->bt_bdi
))
681 xfs_buf_read_map(target
, map
, nmaps
,
682 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
686 * Read an uncached buffer from disk. Allocates and returns a locked
687 * buffer containing the disk contents or nothing.
690 xfs_buf_read_uncached(
691 struct xfs_buftarg
*target
,
695 struct xfs_buf
**bpp
,
696 const struct xfs_buf_ops
*ops
)
702 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
706 /* set up the buffer for a read IO */
707 ASSERT(bp
->b_map_count
== 1);
708 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
709 bp
->b_maps
[0].bm_bn
= daddr
;
710 bp
->b_flags
|= XBF_READ
;
713 xfs_buf_submit_wait(bp
);
715 int error
= bp
->b_error
;
725 * Return a buffer allocated as an empty buffer and associated to external
726 * memory via xfs_buf_associate_memory() back to it's empty state.
734 _xfs_buf_free_pages(bp
);
737 bp
->b_page_count
= 0;
739 bp
->b_length
= numblks
;
740 bp
->b_io_length
= numblks
;
742 ASSERT(bp
->b_map_count
== 1);
743 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
744 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
745 bp
->b_maps
[0].bm_len
= bp
->b_length
;
748 static inline struct page
*
752 if ((!is_vmalloc_addr(addr
))) {
753 return virt_to_page(addr
);
755 return vmalloc_to_page(addr
);
760 xfs_buf_associate_memory(
767 unsigned long pageaddr
;
768 unsigned long offset
;
772 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
773 offset
= (unsigned long)mem
- pageaddr
;
774 buflen
= PAGE_ALIGN(len
+ offset
);
775 page_count
= buflen
>> PAGE_SHIFT
;
777 /* Free any previous set of page pointers */
779 _xfs_buf_free_pages(bp
);
784 rval
= _xfs_buf_get_pages(bp
, page_count
);
788 bp
->b_offset
= offset
;
790 for (i
= 0; i
< bp
->b_page_count
; i
++) {
791 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
792 pageaddr
+= PAGE_SIZE
;
795 bp
->b_io_length
= BTOBB(len
);
796 bp
->b_length
= BTOBB(buflen
);
802 xfs_buf_get_uncached(
803 struct xfs_buftarg
*target
,
807 unsigned long page_count
;
810 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
812 bp
= _xfs_buf_alloc(target
, &map
, 1, 0);
813 if (unlikely(bp
== NULL
))
816 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
817 error
= _xfs_buf_get_pages(bp
, page_count
);
821 for (i
= 0; i
< page_count
; i
++) {
822 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
826 bp
->b_flags
|= _XBF_PAGES
;
828 error
= _xfs_buf_map_pages(bp
, 0);
829 if (unlikely(error
)) {
830 xfs_warn(target
->bt_mount
,
831 "%s: failed to map pages", __func__
);
835 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
840 __free_page(bp
->b_pages
[i
]);
841 _xfs_buf_free_pages(bp
);
843 xfs_buf_free_maps(bp
);
844 kmem_zone_free(xfs_buf_zone
, bp
);
850 * Increment reference count on buffer, to hold the buffer concurrently
851 * with another thread which may release (free) the buffer asynchronously.
852 * Must hold the buffer already to call this function.
858 trace_xfs_buf_hold(bp
, _RET_IP_
);
859 atomic_inc(&bp
->b_hold
);
863 * Releases a hold on the specified buffer. If the
864 * the hold count is 1, calls xfs_buf_free.
870 struct xfs_perag
*pag
= bp
->b_pag
;
872 trace_xfs_buf_rele(bp
, _RET_IP_
);
875 ASSERT(list_empty(&bp
->b_lru
));
876 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
877 if (atomic_dec_and_test(&bp
->b_hold
))
882 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
884 ASSERT(atomic_read(&bp
->b_hold
) > 0);
885 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
886 spin_lock(&bp
->b_lock
);
887 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
889 * If the buffer is added to the LRU take a new
890 * reference to the buffer for the LRU and clear the
891 * (now stale) dispose list state flag
893 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
894 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
895 atomic_inc(&bp
->b_hold
);
897 spin_unlock(&bp
->b_lock
);
898 spin_unlock(&pag
->pag_buf_lock
);
901 * most of the time buffers will already be removed from
902 * the LRU, so optimise that case by checking for the
903 * XFS_BSTATE_DISPOSE flag indicating the last list the
904 * buffer was on was the disposal list
906 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
907 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
909 ASSERT(list_empty(&bp
->b_lru
));
911 spin_unlock(&bp
->b_lock
);
913 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
914 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
915 spin_unlock(&pag
->pag_buf_lock
);
924 * Lock a buffer object, if it is not already locked.
926 * If we come across a stale, pinned, locked buffer, we know that we are
927 * being asked to lock a buffer that has been reallocated. Because it is
928 * pinned, we know that the log has not been pushed to disk and hence it
929 * will still be locked. Rather than continuing to have trylock attempts
930 * fail until someone else pushes the log, push it ourselves before
931 * returning. This means that the xfsaild will not get stuck trying
932 * to push on stale inode buffers.
940 locked
= down_trylock(&bp
->b_sema
) == 0;
944 trace_xfs_buf_trylock(bp
, _RET_IP_
);
949 * Lock a buffer object.
951 * If we come across a stale, pinned, locked buffer, we know that we
952 * are being asked to lock a buffer that has been reallocated. Because
953 * it is pinned, we know that the log has not been pushed to disk and
954 * hence it will still be locked. Rather than sleeping until someone
955 * else pushes the log, push it ourselves before trying to get the lock.
961 trace_xfs_buf_lock(bp
, _RET_IP_
);
963 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
964 xfs_log_force(bp
->b_target
->bt_mount
, 0);
968 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
978 trace_xfs_buf_unlock(bp
, _RET_IP_
);
985 DECLARE_WAITQUEUE (wait
, current
);
987 if (atomic_read(&bp
->b_pin_count
) == 0)
990 add_wait_queue(&bp
->b_waiters
, &wait
);
992 set_current_state(TASK_UNINTERRUPTIBLE
);
993 if (atomic_read(&bp
->b_pin_count
) == 0)
997 remove_wait_queue(&bp
->b_waiters
, &wait
);
998 set_current_state(TASK_RUNNING
);
1002 * Buffer Utility Routines
1009 bool read
= bp
->b_flags
& XBF_READ
;
1011 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1013 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1016 * Pull in IO completion errors now. We are guaranteed to be running
1017 * single threaded, so we don't need the lock to read b_io_error.
1019 if (!bp
->b_error
&& bp
->b_io_error
)
1020 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1022 /* Only validate buffers that were read without errors */
1023 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1024 ASSERT(!bp
->b_iodone
);
1025 bp
->b_ops
->verify_read(bp
);
1029 bp
->b_flags
|= XBF_DONE
;
1032 (*(bp
->b_iodone
))(bp
);
1033 else if (bp
->b_flags
& XBF_ASYNC
)
1036 complete(&bp
->b_iowait
);
1041 struct work_struct
*work
)
1043 struct xfs_buf
*bp
=
1044 container_of(work
, xfs_buf_t
, b_ioend_work
);
1050 xfs_buf_ioend_async(
1053 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1054 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1062 ASSERT(error
<= 0 && error
>= -1000);
1063 bp
->b_error
= error
;
1064 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1068 xfs_buf_ioerror_alert(
1072 xfs_alert(bp
->b_target
->bt_mount
,
1073 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1074 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1083 ASSERT(xfs_buf_islocked(bp
));
1085 bp
->b_flags
|= XBF_WRITE
;
1086 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1087 XBF_WRITE_FAIL
| XBF_DONE
);
1089 error
= xfs_buf_submit_wait(bp
);
1091 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1092 SHUTDOWN_META_IO_ERROR
);
1102 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1105 * don't overwrite existing errors - otherwise we can lose errors on
1106 * buffers that require multiple bios to complete.
1109 spin_lock(&bp
->b_lock
);
1110 if (!bp
->b_io_error
)
1111 bp
->b_io_error
= error
;
1112 spin_unlock(&bp
->b_lock
);
1115 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1116 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1118 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1119 xfs_buf_ioend_async(bp
);
1124 xfs_buf_ioapply_map(
1132 int total_nr_pages
= bp
->b_page_count
;
1135 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1139 total_nr_pages
= bp
->b_page_count
;
1141 /* skip the pages in the buffer before the start offset */
1143 offset
= *buf_offset
;
1144 while (offset
>= PAGE_SIZE
) {
1146 offset
-= PAGE_SIZE
;
1150 * Limit the IO size to the length of the current vector, and update the
1151 * remaining IO count for the next time around.
1153 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1155 *buf_offset
+= size
;
1158 atomic_inc(&bp
->b_io_remaining
);
1159 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1160 if (nr_pages
> total_nr_pages
)
1161 nr_pages
= total_nr_pages
;
1163 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1164 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1165 bio
->bi_iter
.bi_sector
= sector
;
1166 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1167 bio
->bi_private
= bp
;
1170 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1171 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1176 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1178 if (rbytes
< nbytes
)
1182 sector
+= BTOBB(nbytes
);
1187 if (likely(bio
->bi_iter
.bi_size
)) {
1188 if (xfs_buf_is_vmapped(bp
)) {
1189 flush_kernel_vmap_range(bp
->b_addr
,
1190 xfs_buf_vmap_len(bp
));
1192 submit_bio(rw
, bio
);
1197 * This is guaranteed not to be the last io reference count
1198 * because the caller (xfs_buf_submit) holds a count itself.
1200 atomic_dec(&bp
->b_io_remaining
);
1201 xfs_buf_ioerror(bp
, -EIO
);
1211 struct blk_plug plug
;
1218 * Make sure we capture only current IO errors rather than stale errors
1219 * left over from previous use of the buffer (e.g. failed readahead).
1224 * Initialize the I/O completion workqueue if we haven't yet or the
1225 * submitter has not opted to specify a custom one.
1227 if (!bp
->b_ioend_wq
)
1228 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1230 if (bp
->b_flags
& XBF_WRITE
) {
1231 if (bp
->b_flags
& XBF_SYNCIO
)
1235 if (bp
->b_flags
& XBF_FUA
)
1237 if (bp
->b_flags
& XBF_FLUSH
)
1241 * Run the write verifier callback function if it exists. If
1242 * this function fails it will mark the buffer with an error and
1243 * the IO should not be dispatched.
1246 bp
->b_ops
->verify_write(bp
);
1248 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1249 SHUTDOWN_CORRUPT_INCORE
);
1252 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1253 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1256 * non-crc filesystems don't attach verifiers during
1257 * log recovery, so don't warn for such filesystems.
1259 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1261 "%s: no ops on block 0x%llx/0x%x",
1262 __func__
, bp
->b_bn
, bp
->b_length
);
1263 xfs_hex_dump(bp
->b_addr
, 64);
1267 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1273 /* we only use the buffer cache for meta-data */
1277 * Walk all the vectors issuing IO on them. Set up the initial offset
1278 * into the buffer and the desired IO size before we start -
1279 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1282 offset
= bp
->b_offset
;
1283 size
= BBTOB(bp
->b_io_length
);
1284 blk_start_plug(&plug
);
1285 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1286 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, rw
);
1290 break; /* all done */
1292 blk_finish_plug(&plug
);
1296 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1297 * the current reference to the IO. It is not safe to reference the buffer after
1298 * a call to this function unless the caller holds an additional reference
1305 trace_xfs_buf_submit(bp
, _RET_IP_
);
1307 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1308 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1310 /* on shutdown we stale and complete the buffer immediately */
1311 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1312 xfs_buf_ioerror(bp
, -EIO
);
1313 bp
->b_flags
&= ~XBF_DONE
;
1319 if (bp
->b_flags
& XBF_WRITE
)
1320 xfs_buf_wait_unpin(bp
);
1322 /* clear the internal error state to avoid spurious errors */
1326 * The caller's reference is released during I/O completion.
1327 * This occurs some time after the last b_io_remaining reference is
1328 * released, so after we drop our Io reference we have to have some
1329 * other reference to ensure the buffer doesn't go away from underneath
1330 * us. Take a direct reference to ensure we have safe access to the
1331 * buffer until we are finished with it.
1336 * Set the count to 1 initially, this will stop an I/O completion
1337 * callout which happens before we have started all the I/O from calling
1338 * xfs_buf_ioend too early.
1340 atomic_set(&bp
->b_io_remaining
, 1);
1341 _xfs_buf_ioapply(bp
);
1344 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1345 * reference we took above. If we drop it to zero, run completion so
1346 * that we don't return to the caller with completion still pending.
1348 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1352 xfs_buf_ioend_async(bp
);
1356 /* Note: it is not safe to reference bp now we've dropped our ref */
1360 * Synchronous buffer IO submission path, read or write.
1363 xfs_buf_submit_wait(
1368 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1370 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1372 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1373 xfs_buf_ioerror(bp
, -EIO
);
1375 bp
->b_flags
&= ~XBF_DONE
;
1379 if (bp
->b_flags
& XBF_WRITE
)
1380 xfs_buf_wait_unpin(bp
);
1382 /* clear the internal error state to avoid spurious errors */
1386 * For synchronous IO, the IO does not inherit the submitters reference
1387 * count, nor the buffer lock. Hence we cannot release the reference we
1388 * are about to take until we've waited for all IO completion to occur,
1389 * including any xfs_buf_ioend_async() work that may be pending.
1394 * Set the count to 1 initially, this will stop an I/O completion
1395 * callout which happens before we have started all the I/O from calling
1396 * xfs_buf_ioend too early.
1398 atomic_set(&bp
->b_io_remaining
, 1);
1399 _xfs_buf_ioapply(bp
);
1402 * make sure we run completion synchronously if it raced with us and is
1405 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1408 /* wait for completion before gathering the error from the buffer */
1409 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1410 wait_for_completion(&bp
->b_iowait
);
1411 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1412 error
= bp
->b_error
;
1415 * all done now, we can release the hold that keeps the buffer
1416 * referenced for the entire IO.
1430 return bp
->b_addr
+ offset
;
1432 offset
+= bp
->b_offset
;
1433 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1434 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_SIZE
-1));
1438 * Move data into or out of a buffer.
1442 xfs_buf_t
*bp
, /* buffer to process */
1443 size_t boff
, /* starting buffer offset */
1444 size_t bsize
, /* length to copy */
1445 void *data
, /* data address */
1446 xfs_buf_rw_t mode
) /* read/write/zero flag */
1450 bend
= boff
+ bsize
;
1451 while (boff
< bend
) {
1453 int page_index
, page_offset
, csize
;
1455 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1456 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1457 page
= bp
->b_pages
[page_index
];
1458 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1459 BBTOB(bp
->b_io_length
) - boff
);
1461 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1465 memset(page_address(page
) + page_offset
, 0, csize
);
1468 memcpy(data
, page_address(page
) + page_offset
, csize
);
1471 memcpy(page_address(page
) + page_offset
, data
, csize
);
1480 * Handling of buffer targets (buftargs).
1484 * Wait for any bufs with callbacks that have been submitted but have not yet
1485 * returned. These buffers will have an elevated hold count, so wait on those
1486 * while freeing all the buffers only held by the LRU.
1488 static enum lru_status
1489 xfs_buftarg_wait_rele(
1490 struct list_head
*item
,
1491 struct list_lru_one
*lru
,
1492 spinlock_t
*lru_lock
,
1496 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1497 struct list_head
*dispose
= arg
;
1499 if (atomic_read(&bp
->b_hold
) > 1) {
1500 /* need to wait, so skip it this pass */
1501 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1504 if (!spin_trylock(&bp
->b_lock
))
1508 * clear the LRU reference count so the buffer doesn't get
1509 * ignored in xfs_buf_rele().
1511 atomic_set(&bp
->b_lru_ref
, 0);
1512 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1513 list_lru_isolate_move(lru
, item
, dispose
);
1514 spin_unlock(&bp
->b_lock
);
1520 struct xfs_buftarg
*btp
)
1525 /* loop until there is nothing left on the lru list. */
1526 while (list_lru_count(&btp
->bt_lru
)) {
1527 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1528 &dispose
, LONG_MAX
);
1530 while (!list_empty(&dispose
)) {
1532 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1533 list_del_init(&bp
->b_lru
);
1534 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1535 xfs_alert(btp
->bt_mount
,
1536 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1537 "Please run xfs_repair to determine the extent of the problem.",
1538 (long long)bp
->b_bn
);
1547 static enum lru_status
1548 xfs_buftarg_isolate(
1549 struct list_head
*item
,
1550 struct list_lru_one
*lru
,
1551 spinlock_t
*lru_lock
,
1554 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1555 struct list_head
*dispose
= arg
;
1558 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1559 * If we fail to get the lock, just skip it.
1561 if (!spin_trylock(&bp
->b_lock
))
1564 * Decrement the b_lru_ref count unless the value is already
1565 * zero. If the value is already zero, we need to reclaim the
1566 * buffer, otherwise it gets another trip through the LRU.
1568 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1569 spin_unlock(&bp
->b_lock
);
1573 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1574 list_lru_isolate_move(lru
, item
, dispose
);
1575 spin_unlock(&bp
->b_lock
);
1579 static unsigned long
1580 xfs_buftarg_shrink_scan(
1581 struct shrinker
*shrink
,
1582 struct shrink_control
*sc
)
1584 struct xfs_buftarg
*btp
= container_of(shrink
,
1585 struct xfs_buftarg
, bt_shrinker
);
1587 unsigned long freed
;
1589 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1590 xfs_buftarg_isolate
, &dispose
);
1592 while (!list_empty(&dispose
)) {
1594 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1595 list_del_init(&bp
->b_lru
);
1602 static unsigned long
1603 xfs_buftarg_shrink_count(
1604 struct shrinker
*shrink
,
1605 struct shrink_control
*sc
)
1607 struct xfs_buftarg
*btp
= container_of(shrink
,
1608 struct xfs_buftarg
, bt_shrinker
);
1609 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1614 struct xfs_mount
*mp
,
1615 struct xfs_buftarg
*btp
)
1617 unregister_shrinker(&btp
->bt_shrinker
);
1618 list_lru_destroy(&btp
->bt_lru
);
1620 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1621 xfs_blkdev_issue_flush(btp
);
1627 xfs_setsize_buftarg(
1629 unsigned int sectorsize
)
1631 /* Set up metadata sector size info */
1632 btp
->bt_meta_sectorsize
= sectorsize
;
1633 btp
->bt_meta_sectormask
= sectorsize
- 1;
1635 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1636 char name
[BDEVNAME_SIZE
];
1638 bdevname(btp
->bt_bdev
, name
);
1640 xfs_warn(btp
->bt_mount
,
1641 "Cannot set_blocksize to %u on device %s",
1646 /* Set up device logical sector size mask */
1647 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1648 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1654 * When allocating the initial buffer target we have not yet
1655 * read in the superblock, so don't know what sized sectors
1656 * are being used at this early stage. Play safe.
1659 xfs_setsize_buftarg_early(
1661 struct block_device
*bdev
)
1663 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1668 struct xfs_mount
*mp
,
1669 struct block_device
*bdev
)
1673 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1676 btp
->bt_dev
= bdev
->bd_dev
;
1677 btp
->bt_bdev
= bdev
;
1678 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1680 if (xfs_setsize_buftarg_early(btp
, bdev
))
1683 if (list_lru_init(&btp
->bt_lru
))
1686 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1687 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1688 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1689 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1690 register_shrinker(&btp
->bt_shrinker
);
1699 * Add a buffer to the delayed write list.
1701 * This queues a buffer for writeout if it hasn't already been. Note that
1702 * neither this routine nor the buffer list submission functions perform
1703 * any internal synchronization. It is expected that the lists are thread-local
1706 * Returns true if we queued up the buffer, or false if it already had
1707 * been on the buffer list.
1710 xfs_buf_delwri_queue(
1712 struct list_head
*list
)
1714 ASSERT(xfs_buf_islocked(bp
));
1715 ASSERT(!(bp
->b_flags
& XBF_READ
));
1718 * If the buffer is already marked delwri it already is queued up
1719 * by someone else for imediate writeout. Just ignore it in that
1722 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1723 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1727 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1730 * If a buffer gets written out synchronously or marked stale while it
1731 * is on a delwri list we lazily remove it. To do this, the other party
1732 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1733 * It remains referenced and on the list. In a rare corner case it
1734 * might get readded to a delwri list after the synchronous writeout, in
1735 * which case we need just need to re-add the flag here.
1737 bp
->b_flags
|= _XBF_DELWRI_Q
;
1738 if (list_empty(&bp
->b_list
)) {
1739 atomic_inc(&bp
->b_hold
);
1740 list_add_tail(&bp
->b_list
, list
);
1747 * Compare function is more complex than it needs to be because
1748 * the return value is only 32 bits and we are doing comparisons
1754 struct list_head
*a
,
1755 struct list_head
*b
)
1757 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1758 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1761 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1770 __xfs_buf_delwri_submit(
1771 struct list_head
*buffer_list
,
1772 struct list_head
*io_list
,
1775 struct blk_plug plug
;
1776 struct xfs_buf
*bp
, *n
;
1779 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1781 if (xfs_buf_ispinned(bp
)) {
1785 if (!xfs_buf_trylock(bp
))
1792 * Someone else might have written the buffer synchronously or
1793 * marked it stale in the meantime. In that case only the
1794 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1795 * reference and remove it from the list here.
1797 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1798 list_del_init(&bp
->b_list
);
1803 list_move_tail(&bp
->b_list
, io_list
);
1804 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1807 list_sort(NULL
, io_list
, xfs_buf_cmp
);
1809 blk_start_plug(&plug
);
1810 list_for_each_entry_safe(bp
, n
, io_list
, b_list
) {
1811 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_ASYNC
| XBF_WRITE_FAIL
);
1812 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
1815 * we do all Io submission async. This means if we need to wait
1816 * for IO completion we need to take an extra reference so the
1817 * buffer is still valid on the other side.
1822 list_del_init(&bp
->b_list
);
1826 blk_finish_plug(&plug
);
1832 * Write out a buffer list asynchronously.
1834 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1835 * out and not wait for I/O completion on any of the buffers. This interface
1836 * is only safely useable for callers that can track I/O completion by higher
1837 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1841 xfs_buf_delwri_submit_nowait(
1842 struct list_head
*buffer_list
)
1844 LIST_HEAD (io_list
);
1845 return __xfs_buf_delwri_submit(buffer_list
, &io_list
, false);
1849 * Write out a buffer list synchronously.
1851 * This will take the @buffer_list, write all buffers out and wait for I/O
1852 * completion on all of the buffers. @buffer_list is consumed by the function,
1853 * so callers must have some other way of tracking buffers if they require such
1857 xfs_buf_delwri_submit(
1858 struct list_head
*buffer_list
)
1860 LIST_HEAD (io_list
);
1861 int error
= 0, error2
;
1864 __xfs_buf_delwri_submit(buffer_list
, &io_list
, true);
1866 /* Wait for IO to complete. */
1867 while (!list_empty(&io_list
)) {
1868 bp
= list_first_entry(&io_list
, struct xfs_buf
, b_list
);
1870 list_del_init(&bp
->b_list
);
1872 /* locking the buffer will wait for async IO completion. */
1874 error2
= bp
->b_error
;
1886 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1887 KM_ZONE_HWALIGN
, NULL
);
1898 xfs_buf_terminate(void)
1900 kmem_zone_destroy(xfs_buf_zone
);