ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / fs / xfs / xfs_icache.c
blob9771b7ef62ed516bf12a7b3db58247ec12b78071
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
40 STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
41 struct xfs_perag *pag, struct xfs_inode *ip);
44 * Allocate and initialise an xfs_inode.
46 struct xfs_inode *
47 xfs_inode_alloc(
48 struct xfs_mount *mp,
49 xfs_ino_t ino)
51 struct xfs_inode *ip;
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
58 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 if (!ip)
60 return NULL;
61 if (inode_init_always(mp->m_super, VFS_I(ip))) {
62 kmem_zone_free(xfs_inode_zone, ip);
63 return NULL;
66 XFS_STATS_INC(vn_active);
67 ASSERT(atomic_read(&ip->i_pincount) == 0);
68 ASSERT(!spin_is_locked(&ip->i_flags_lock));
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
72 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
74 /* initialise the xfs inode */
75 ip->i_ino = ino;
76 ip->i_mount = mp;
77 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
78 ip->i_afp = NULL;
79 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
80 ip->i_flags = 0;
81 ip->i_delayed_blks = 0;
82 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
84 return ip;
87 STATIC void
88 xfs_inode_free_callback(
89 struct rcu_head *head)
91 struct inode *inode = container_of(head, struct inode, i_rcu);
92 struct xfs_inode *ip = XFS_I(inode);
94 kmem_zone_free(xfs_inode_zone, ip);
97 void
98 xfs_inode_free(
99 struct xfs_inode *ip)
101 switch (ip->i_d.di_mode & S_IFMT) {
102 case S_IFREG:
103 case S_IFDIR:
104 case S_IFLNK:
105 xfs_idestroy_fork(ip, XFS_DATA_FORK);
106 break;
109 if (ip->i_afp)
110 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
112 if (ip->i_itemp) {
113 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
114 xfs_inode_item_destroy(ip);
115 ip->i_itemp = NULL;
119 * Because we use RCU freeing we need to ensure the inode always
120 * appears to be reclaimed with an invalid inode number when in the
121 * free state. The ip->i_flags_lock provides the barrier against lookup
122 * races.
124 spin_lock(&ip->i_flags_lock);
125 ip->i_flags = XFS_IRECLAIM;
126 ip->i_ino = 0;
127 spin_unlock(&ip->i_flags_lock);
129 /* asserts to verify all state is correct here */
130 ASSERT(atomic_read(&ip->i_pincount) == 0);
131 ASSERT(!xfs_isiflocked(ip));
132 XFS_STATS_DEC(vn_active);
134 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138 * Check the validity of the inode we just found it the cache
140 static int
141 xfs_iget_cache_hit(
142 struct xfs_perag *pag,
143 struct xfs_inode *ip,
144 xfs_ino_t ino,
145 int flags,
146 int lock_flags) __releases(RCU)
148 struct inode *inode = VFS_I(ip);
149 struct xfs_mount *mp = ip->i_mount;
150 int error;
153 * check for re-use of an inode within an RCU grace period due to the
154 * radix tree nodes not being updated yet. We monitor for this by
155 * setting the inode number to zero before freeing the inode structure.
156 * If the inode has been reallocated and set up, then the inode number
157 * will not match, so check for that, too.
159 spin_lock(&ip->i_flags_lock);
160 if (ip->i_ino != ino) {
161 trace_xfs_iget_skip(ip);
162 XFS_STATS_INC(xs_ig_frecycle);
163 error = -EAGAIN;
164 goto out_error;
169 * If we are racing with another cache hit that is currently
170 * instantiating this inode or currently recycling it out of
171 * reclaimabe state, wait for the initialisation to complete
172 * before continuing.
174 * XXX(hch): eventually we should do something equivalent to
175 * wait_on_inode to wait for these flags to be cleared
176 * instead of polling for it.
178 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
179 trace_xfs_iget_skip(ip);
180 XFS_STATS_INC(xs_ig_frecycle);
181 error = -EAGAIN;
182 goto out_error;
186 * If lookup is racing with unlink return an error immediately.
188 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
189 error = -ENOENT;
190 goto out_error;
194 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195 * Need to carefully get it back into useable state.
197 if (ip->i_flags & XFS_IRECLAIMABLE) {
198 trace_xfs_iget_reclaim(ip);
201 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202 * from stomping over us while we recycle the inode. We can't
203 * clear the radix tree reclaimable tag yet as it requires
204 * pag_ici_lock to be held exclusive.
206 ip->i_flags |= XFS_IRECLAIM;
208 spin_unlock(&ip->i_flags_lock);
209 rcu_read_unlock();
211 error = inode_init_always(mp->m_super, inode);
212 if (error) {
214 * Re-initializing the inode failed, and we are in deep
215 * trouble. Try to re-add it to the reclaim list.
217 rcu_read_lock();
218 spin_lock(&ip->i_flags_lock);
220 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
221 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
222 trace_xfs_iget_reclaim_fail(ip);
223 goto out_error;
226 spin_lock(&pag->pag_ici_lock);
227 spin_lock(&ip->i_flags_lock);
230 * Clear the per-lifetime state in the inode as we are now
231 * effectively a new inode and need to return to the initial
232 * state before reuse occurs.
234 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
235 ip->i_flags |= XFS_INEW;
236 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
237 inode->i_state = I_NEW;
239 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
240 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
242 spin_unlock(&ip->i_flags_lock);
243 spin_unlock(&pag->pag_ici_lock);
244 } else {
245 /* If the VFS inode is being torn down, pause and try again. */
246 if (!igrab(inode)) {
247 trace_xfs_iget_skip(ip);
248 error = -EAGAIN;
249 goto out_error;
252 /* We've got a live one. */
253 spin_unlock(&ip->i_flags_lock);
254 rcu_read_unlock();
255 trace_xfs_iget_hit(ip);
258 if (lock_flags != 0)
259 xfs_ilock(ip, lock_flags);
261 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
262 XFS_STATS_INC(xs_ig_found);
264 return 0;
266 out_error:
267 spin_unlock(&ip->i_flags_lock);
268 rcu_read_unlock();
269 return error;
273 static int
274 xfs_iget_cache_miss(
275 struct xfs_mount *mp,
276 struct xfs_perag *pag,
277 xfs_trans_t *tp,
278 xfs_ino_t ino,
279 struct xfs_inode **ipp,
280 int flags,
281 int lock_flags)
283 struct xfs_inode *ip;
284 int error;
285 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
286 int iflags;
288 ip = xfs_inode_alloc(mp, ino);
289 if (!ip)
290 return -ENOMEM;
292 error = xfs_iread(mp, tp, ip, flags);
293 if (error)
294 goto out_destroy;
296 trace_xfs_iget_miss(ip);
298 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
299 error = -ENOENT;
300 goto out_destroy;
304 * Preload the radix tree so we can insert safely under the
305 * write spinlock. Note that we cannot sleep inside the preload
306 * region. Since we can be called from transaction context, don't
307 * recurse into the file system.
309 if (radix_tree_preload(GFP_NOFS)) {
310 error = -EAGAIN;
311 goto out_destroy;
315 * Because the inode hasn't been added to the radix-tree yet it can't
316 * be found by another thread, so we can do the non-sleeping lock here.
318 if (lock_flags) {
319 if (!xfs_ilock_nowait(ip, lock_flags))
320 BUG();
324 * These values must be set before inserting the inode into the radix
325 * tree as the moment it is inserted a concurrent lookup (allowed by the
326 * RCU locking mechanism) can find it and that lookup must see that this
327 * is an inode currently under construction (i.e. that XFS_INEW is set).
328 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
329 * memory barrier that ensures this detection works correctly at lookup
330 * time.
332 iflags = XFS_INEW;
333 if (flags & XFS_IGET_DONTCACHE)
334 iflags |= XFS_IDONTCACHE;
335 ip->i_udquot = NULL;
336 ip->i_gdquot = NULL;
337 ip->i_pdquot = NULL;
338 xfs_iflags_set(ip, iflags);
340 /* insert the new inode */
341 spin_lock(&pag->pag_ici_lock);
342 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
343 if (unlikely(error)) {
344 WARN_ON(error != -EEXIST);
345 XFS_STATS_INC(xs_ig_dup);
346 error = -EAGAIN;
347 goto out_preload_end;
349 spin_unlock(&pag->pag_ici_lock);
350 radix_tree_preload_end();
352 *ipp = ip;
353 return 0;
355 out_preload_end:
356 spin_unlock(&pag->pag_ici_lock);
357 radix_tree_preload_end();
358 if (lock_flags)
359 xfs_iunlock(ip, lock_flags);
360 out_destroy:
361 __destroy_inode(VFS_I(ip));
362 xfs_inode_free(ip);
363 return error;
367 * Look up an inode by number in the given file system.
368 * The inode is looked up in the cache held in each AG.
369 * If the inode is found in the cache, initialise the vfs inode
370 * if necessary.
372 * If it is not in core, read it in from the file system's device,
373 * add it to the cache and initialise the vfs inode.
375 * The inode is locked according to the value of the lock_flags parameter.
376 * This flag parameter indicates how and if the inode's IO lock and inode lock
377 * should be taken.
379 * mp -- the mount point structure for the current file system. It points
380 * to the inode hash table.
381 * tp -- a pointer to the current transaction if there is one. This is
382 * simply passed through to the xfs_iread() call.
383 * ino -- the number of the inode desired. This is the unique identifier
384 * within the file system for the inode being requested.
385 * lock_flags -- flags indicating how to lock the inode. See the comment
386 * for xfs_ilock() for a list of valid values.
389 xfs_iget(
390 xfs_mount_t *mp,
391 xfs_trans_t *tp,
392 xfs_ino_t ino,
393 uint flags,
394 uint lock_flags,
395 xfs_inode_t **ipp)
397 xfs_inode_t *ip;
398 int error;
399 xfs_perag_t *pag;
400 xfs_agino_t agino;
403 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
404 * doesn't get freed while it's being referenced during a
405 * radix tree traversal here. It assumes this function
406 * aqcuires only the ILOCK (and therefore it has no need to
407 * involve the IOLOCK in this synchronization).
409 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
411 /* reject inode numbers outside existing AGs */
412 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
413 return -EINVAL;
415 /* get the perag structure and ensure that it's inode capable */
416 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
417 agino = XFS_INO_TO_AGINO(mp, ino);
419 again:
420 error = 0;
421 rcu_read_lock();
422 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
424 if (ip) {
425 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
426 if (error)
427 goto out_error_or_again;
428 } else {
429 rcu_read_unlock();
430 XFS_STATS_INC(xs_ig_missed);
432 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
433 flags, lock_flags);
434 if (error)
435 goto out_error_or_again;
437 xfs_perag_put(pag);
439 *ipp = ip;
442 * If we have a real type for an on-disk inode, we can set ops(&unlock)
443 * now. If it's a new inode being created, xfs_ialloc will handle it.
445 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
446 xfs_setup_inode(ip);
447 return 0;
449 out_error_or_again:
450 if (error == -EAGAIN) {
451 delay(1);
452 goto again;
454 xfs_perag_put(pag);
455 return error;
459 * The inode lookup is done in batches to keep the amount of lock traffic and
460 * radix tree lookups to a minimum. The batch size is a trade off between
461 * lookup reduction and stack usage. This is in the reclaim path, so we can't
462 * be too greedy.
464 #define XFS_LOOKUP_BATCH 32
466 STATIC int
467 xfs_inode_ag_walk_grab(
468 struct xfs_inode *ip)
470 struct inode *inode = VFS_I(ip);
472 ASSERT(rcu_read_lock_held());
475 * check for stale RCU freed inode
477 * If the inode has been reallocated, it doesn't matter if it's not in
478 * the AG we are walking - we are walking for writeback, so if it
479 * passes all the "valid inode" checks and is dirty, then we'll write
480 * it back anyway. If it has been reallocated and still being
481 * initialised, the XFS_INEW check below will catch it.
483 spin_lock(&ip->i_flags_lock);
484 if (!ip->i_ino)
485 goto out_unlock_noent;
487 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
488 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
489 goto out_unlock_noent;
490 spin_unlock(&ip->i_flags_lock);
492 /* nothing to sync during shutdown */
493 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
494 return -EFSCORRUPTED;
496 /* If we can't grab the inode, it must on it's way to reclaim. */
497 if (!igrab(inode))
498 return -ENOENT;
500 /* inode is valid */
501 return 0;
503 out_unlock_noent:
504 spin_unlock(&ip->i_flags_lock);
505 return -ENOENT;
508 STATIC int
509 xfs_inode_ag_walk(
510 struct xfs_mount *mp,
511 struct xfs_perag *pag,
512 int (*execute)(struct xfs_inode *ip, int flags,
513 void *args),
514 int flags,
515 void *args,
516 int tag)
518 uint32_t first_index;
519 int last_error = 0;
520 int skipped;
521 int done;
522 int nr_found;
524 restart:
525 done = 0;
526 skipped = 0;
527 first_index = 0;
528 nr_found = 0;
529 do {
530 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
531 int error = 0;
532 int i;
534 rcu_read_lock();
536 if (tag == -1)
537 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
538 (void **)batch, first_index,
539 XFS_LOOKUP_BATCH);
540 else
541 nr_found = radix_tree_gang_lookup_tag(
542 &pag->pag_ici_root,
543 (void **) batch, first_index,
544 XFS_LOOKUP_BATCH, tag);
546 if (!nr_found) {
547 rcu_read_unlock();
548 break;
552 * Grab the inodes before we drop the lock. if we found
553 * nothing, nr == 0 and the loop will be skipped.
555 for (i = 0; i < nr_found; i++) {
556 struct xfs_inode *ip = batch[i];
558 if (done || xfs_inode_ag_walk_grab(ip))
559 batch[i] = NULL;
562 * Update the index for the next lookup. Catch
563 * overflows into the next AG range which can occur if
564 * we have inodes in the last block of the AG and we
565 * are currently pointing to the last inode.
567 * Because we may see inodes that are from the wrong AG
568 * due to RCU freeing and reallocation, only update the
569 * index if it lies in this AG. It was a race that lead
570 * us to see this inode, so another lookup from the
571 * same index will not find it again.
573 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
574 continue;
575 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
576 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
577 done = 1;
580 /* unlock now we've grabbed the inodes. */
581 rcu_read_unlock();
583 for (i = 0; i < nr_found; i++) {
584 if (!batch[i])
585 continue;
586 error = execute(batch[i], flags, args);
587 IRELE(batch[i]);
588 if (error == -EAGAIN) {
589 skipped++;
590 continue;
592 if (error && last_error != -EFSCORRUPTED)
593 last_error = error;
596 /* bail out if the filesystem is corrupted. */
597 if (error == -EFSCORRUPTED)
598 break;
600 cond_resched();
602 } while (nr_found && !done);
604 if (skipped) {
605 delay(1);
606 goto restart;
608 return last_error;
612 * Background scanning to trim post-EOF preallocated space. This is queued
613 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
615 STATIC void
616 xfs_queue_eofblocks(
617 struct xfs_mount *mp)
619 rcu_read_lock();
620 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
621 queue_delayed_work(mp->m_eofblocks_workqueue,
622 &mp->m_eofblocks_work,
623 msecs_to_jiffies(xfs_eofb_secs * 1000));
624 rcu_read_unlock();
627 void
628 xfs_eofblocks_worker(
629 struct work_struct *work)
631 struct xfs_mount *mp = container_of(to_delayed_work(work),
632 struct xfs_mount, m_eofblocks_work);
633 xfs_icache_free_eofblocks(mp, NULL);
634 xfs_queue_eofblocks(mp);
638 xfs_inode_ag_iterator(
639 struct xfs_mount *mp,
640 int (*execute)(struct xfs_inode *ip, int flags,
641 void *args),
642 int flags,
643 void *args)
645 struct xfs_perag *pag;
646 int error = 0;
647 int last_error = 0;
648 xfs_agnumber_t ag;
650 ag = 0;
651 while ((pag = xfs_perag_get(mp, ag))) {
652 ag = pag->pag_agno + 1;
653 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
654 xfs_perag_put(pag);
655 if (error) {
656 last_error = error;
657 if (error == -EFSCORRUPTED)
658 break;
661 return last_error;
665 xfs_inode_ag_iterator_tag(
666 struct xfs_mount *mp,
667 int (*execute)(struct xfs_inode *ip, int flags,
668 void *args),
669 int flags,
670 void *args,
671 int tag)
673 struct xfs_perag *pag;
674 int error = 0;
675 int last_error = 0;
676 xfs_agnumber_t ag;
678 ag = 0;
679 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
680 ag = pag->pag_agno + 1;
681 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
682 xfs_perag_put(pag);
683 if (error) {
684 last_error = error;
685 if (error == -EFSCORRUPTED)
686 break;
689 return last_error;
693 * Queue a new inode reclaim pass if there are reclaimable inodes and there
694 * isn't a reclaim pass already in progress. By default it runs every 5s based
695 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
696 * tunable, but that can be done if this method proves to be ineffective or too
697 * aggressive.
699 static void
700 xfs_reclaim_work_queue(
701 struct xfs_mount *mp)
704 rcu_read_lock();
705 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
706 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
707 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
709 rcu_read_unlock();
713 * This is a fast pass over the inode cache to try to get reclaim moving on as
714 * many inodes as possible in a short period of time. It kicks itself every few
715 * seconds, as well as being kicked by the inode cache shrinker when memory
716 * goes low. It scans as quickly as possible avoiding locked inodes or those
717 * already being flushed, and once done schedules a future pass.
719 void
720 xfs_reclaim_worker(
721 struct work_struct *work)
723 struct xfs_mount *mp = container_of(to_delayed_work(work),
724 struct xfs_mount, m_reclaim_work);
726 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
727 xfs_reclaim_work_queue(mp);
730 static void
731 __xfs_inode_set_reclaim_tag(
732 struct xfs_perag *pag,
733 struct xfs_inode *ip)
735 radix_tree_tag_set(&pag->pag_ici_root,
736 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
737 XFS_ICI_RECLAIM_TAG);
739 if (!pag->pag_ici_reclaimable) {
740 /* propagate the reclaim tag up into the perag radix tree */
741 spin_lock(&ip->i_mount->m_perag_lock);
742 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
743 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
744 XFS_ICI_RECLAIM_TAG);
745 spin_unlock(&ip->i_mount->m_perag_lock);
747 /* schedule periodic background inode reclaim */
748 xfs_reclaim_work_queue(ip->i_mount);
750 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
751 -1, _RET_IP_);
753 pag->pag_ici_reclaimable++;
757 * We set the inode flag atomically with the radix tree tag.
758 * Once we get tag lookups on the radix tree, this inode flag
759 * can go away.
761 void
762 xfs_inode_set_reclaim_tag(
763 xfs_inode_t *ip)
765 struct xfs_mount *mp = ip->i_mount;
766 struct xfs_perag *pag;
768 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
769 spin_lock(&pag->pag_ici_lock);
770 spin_lock(&ip->i_flags_lock);
771 __xfs_inode_set_reclaim_tag(pag, ip);
772 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
773 spin_unlock(&ip->i_flags_lock);
774 spin_unlock(&pag->pag_ici_lock);
775 xfs_perag_put(pag);
778 STATIC void
779 __xfs_inode_clear_reclaim(
780 xfs_perag_t *pag,
781 xfs_inode_t *ip)
783 pag->pag_ici_reclaimable--;
784 if (!pag->pag_ici_reclaimable) {
785 /* clear the reclaim tag from the perag radix tree */
786 spin_lock(&ip->i_mount->m_perag_lock);
787 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
788 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
789 XFS_ICI_RECLAIM_TAG);
790 spin_unlock(&ip->i_mount->m_perag_lock);
791 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
792 -1, _RET_IP_);
796 STATIC void
797 __xfs_inode_clear_reclaim_tag(
798 xfs_mount_t *mp,
799 xfs_perag_t *pag,
800 xfs_inode_t *ip)
802 radix_tree_tag_clear(&pag->pag_ici_root,
803 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
804 __xfs_inode_clear_reclaim(pag, ip);
808 * Grab the inode for reclaim exclusively.
809 * Return 0 if we grabbed it, non-zero otherwise.
811 STATIC int
812 xfs_reclaim_inode_grab(
813 struct xfs_inode *ip,
814 int flags)
816 ASSERT(rcu_read_lock_held());
818 /* quick check for stale RCU freed inode */
819 if (!ip->i_ino)
820 return 1;
823 * If we are asked for non-blocking operation, do unlocked checks to
824 * see if the inode already is being flushed or in reclaim to avoid
825 * lock traffic.
827 if ((flags & SYNC_TRYLOCK) &&
828 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
829 return 1;
832 * The radix tree lock here protects a thread in xfs_iget from racing
833 * with us starting reclaim on the inode. Once we have the
834 * XFS_IRECLAIM flag set it will not touch us.
836 * Due to RCU lookup, we may find inodes that have been freed and only
837 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
838 * aren't candidates for reclaim at all, so we must check the
839 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
841 spin_lock(&ip->i_flags_lock);
842 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
843 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
844 /* not a reclaim candidate. */
845 spin_unlock(&ip->i_flags_lock);
846 return 1;
848 __xfs_iflags_set(ip, XFS_IRECLAIM);
849 spin_unlock(&ip->i_flags_lock);
850 return 0;
854 * Inodes in different states need to be treated differently. The following
855 * table lists the inode states and the reclaim actions necessary:
857 * inode state iflush ret required action
858 * --------------- ---------- ---------------
859 * bad - reclaim
860 * shutdown EIO unpin and reclaim
861 * clean, unpinned 0 reclaim
862 * stale, unpinned 0 reclaim
863 * clean, pinned(*) 0 requeue
864 * stale, pinned EAGAIN requeue
865 * dirty, async - requeue
866 * dirty, sync 0 reclaim
868 * (*) dgc: I don't think the clean, pinned state is possible but it gets
869 * handled anyway given the order of checks implemented.
871 * Also, because we get the flush lock first, we know that any inode that has
872 * been flushed delwri has had the flush completed by the time we check that
873 * the inode is clean.
875 * Note that because the inode is flushed delayed write by AIL pushing, the
876 * flush lock may already be held here and waiting on it can result in very
877 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
878 * the caller should push the AIL first before trying to reclaim inodes to
879 * minimise the amount of time spent waiting. For background relaim, we only
880 * bother to reclaim clean inodes anyway.
882 * Hence the order of actions after gaining the locks should be:
883 * bad => reclaim
884 * shutdown => unpin and reclaim
885 * pinned, async => requeue
886 * pinned, sync => unpin
887 * stale => reclaim
888 * clean => reclaim
889 * dirty, async => requeue
890 * dirty, sync => flush, wait and reclaim
892 STATIC int
893 xfs_reclaim_inode(
894 struct xfs_inode *ip,
895 struct xfs_perag *pag,
896 int sync_mode)
898 struct xfs_buf *bp = NULL;
899 int error;
901 restart:
902 error = 0;
903 xfs_ilock(ip, XFS_ILOCK_EXCL);
904 if (!xfs_iflock_nowait(ip)) {
905 if (!(sync_mode & SYNC_WAIT))
906 goto out;
907 xfs_iflock(ip);
910 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
911 xfs_iunpin_wait(ip);
912 xfs_iflush_abort(ip, false);
913 goto reclaim;
915 if (xfs_ipincount(ip)) {
916 if (!(sync_mode & SYNC_WAIT))
917 goto out_ifunlock;
918 xfs_iunpin_wait(ip);
920 if (xfs_iflags_test(ip, XFS_ISTALE))
921 goto reclaim;
922 if (xfs_inode_clean(ip))
923 goto reclaim;
926 * Never flush out dirty data during non-blocking reclaim, as it would
927 * just contend with AIL pushing trying to do the same job.
929 if (!(sync_mode & SYNC_WAIT))
930 goto out_ifunlock;
933 * Now we have an inode that needs flushing.
935 * Note that xfs_iflush will never block on the inode buffer lock, as
936 * xfs_ifree_cluster() can lock the inode buffer before it locks the
937 * ip->i_lock, and we are doing the exact opposite here. As a result,
938 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
939 * result in an ABBA deadlock with xfs_ifree_cluster().
941 * As xfs_ifree_cluser() must gather all inodes that are active in the
942 * cache to mark them stale, if we hit this case we don't actually want
943 * to do IO here - we want the inode marked stale so we can simply
944 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
945 * inode, back off and try again. Hopefully the next pass through will
946 * see the stale flag set on the inode.
948 error = xfs_iflush(ip, &bp);
949 if (error == -EAGAIN) {
950 xfs_iunlock(ip, XFS_ILOCK_EXCL);
951 /* backoff longer than in xfs_ifree_cluster */
952 delay(2);
953 goto restart;
956 if (!error) {
957 error = xfs_bwrite(bp);
958 xfs_buf_relse(bp);
961 xfs_iflock(ip);
962 reclaim:
963 xfs_ifunlock(ip);
964 xfs_iunlock(ip, XFS_ILOCK_EXCL);
966 XFS_STATS_INC(xs_ig_reclaims);
968 * Remove the inode from the per-AG radix tree.
970 * Because radix_tree_delete won't complain even if the item was never
971 * added to the tree assert that it's been there before to catch
972 * problems with the inode life time early on.
974 spin_lock(&pag->pag_ici_lock);
975 if (!radix_tree_delete(&pag->pag_ici_root,
976 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
977 ASSERT(0);
978 __xfs_inode_clear_reclaim(pag, ip);
979 spin_unlock(&pag->pag_ici_lock);
982 * Here we do an (almost) spurious inode lock in order to coordinate
983 * with inode cache radix tree lookups. This is because the lookup
984 * can reference the inodes in the cache without taking references.
986 * We make that OK here by ensuring that we wait until the inode is
987 * unlocked after the lookup before we go ahead and free it.
989 xfs_ilock(ip, XFS_ILOCK_EXCL);
990 xfs_qm_dqdetach(ip);
991 xfs_iunlock(ip, XFS_ILOCK_EXCL);
993 xfs_inode_free(ip);
994 return error;
996 out_ifunlock:
997 xfs_ifunlock(ip);
998 out:
999 xfs_iflags_clear(ip, XFS_IRECLAIM);
1000 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1002 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1003 * a short while. However, this just burns CPU time scanning the tree
1004 * waiting for IO to complete and the reclaim work never goes back to
1005 * the idle state. Instead, return 0 to let the next scheduled
1006 * background reclaim attempt to reclaim the inode again.
1008 return 0;
1012 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1013 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1014 * then a shut down during filesystem unmount reclaim walk leak all the
1015 * unreclaimed inodes.
1017 STATIC int
1018 xfs_reclaim_inodes_ag(
1019 struct xfs_mount *mp,
1020 int flags,
1021 int *nr_to_scan)
1023 struct xfs_perag *pag;
1024 int error = 0;
1025 int last_error = 0;
1026 xfs_agnumber_t ag;
1027 int trylock = flags & SYNC_TRYLOCK;
1028 int skipped;
1030 restart:
1031 ag = 0;
1032 skipped = 0;
1033 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1034 unsigned long first_index = 0;
1035 int done = 0;
1036 int nr_found = 0;
1038 ag = pag->pag_agno + 1;
1040 if (trylock) {
1041 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1042 skipped++;
1043 xfs_perag_put(pag);
1044 continue;
1046 first_index = pag->pag_ici_reclaim_cursor;
1047 } else
1048 mutex_lock(&pag->pag_ici_reclaim_lock);
1050 do {
1051 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1052 int i;
1054 rcu_read_lock();
1055 nr_found = radix_tree_gang_lookup_tag(
1056 &pag->pag_ici_root,
1057 (void **)batch, first_index,
1058 XFS_LOOKUP_BATCH,
1059 XFS_ICI_RECLAIM_TAG);
1060 if (!nr_found) {
1061 done = 1;
1062 rcu_read_unlock();
1063 break;
1067 * Grab the inodes before we drop the lock. if we found
1068 * nothing, nr == 0 and the loop will be skipped.
1070 for (i = 0; i < nr_found; i++) {
1071 struct xfs_inode *ip = batch[i];
1073 if (done || xfs_reclaim_inode_grab(ip, flags))
1074 batch[i] = NULL;
1077 * Update the index for the next lookup. Catch
1078 * overflows into the next AG range which can
1079 * occur if we have inodes in the last block of
1080 * the AG and we are currently pointing to the
1081 * last inode.
1083 * Because we may see inodes that are from the
1084 * wrong AG due to RCU freeing and
1085 * reallocation, only update the index if it
1086 * lies in this AG. It was a race that lead us
1087 * to see this inode, so another lookup from
1088 * the same index will not find it again.
1090 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1091 pag->pag_agno)
1092 continue;
1093 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1094 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1095 done = 1;
1098 /* unlock now we've grabbed the inodes. */
1099 rcu_read_unlock();
1101 for (i = 0; i < nr_found; i++) {
1102 if (!batch[i])
1103 continue;
1104 error = xfs_reclaim_inode(batch[i], pag, flags);
1105 if (error && last_error != -EFSCORRUPTED)
1106 last_error = error;
1109 *nr_to_scan -= XFS_LOOKUP_BATCH;
1111 cond_resched();
1113 } while (nr_found && !done && *nr_to_scan > 0);
1115 if (trylock && !done)
1116 pag->pag_ici_reclaim_cursor = first_index;
1117 else
1118 pag->pag_ici_reclaim_cursor = 0;
1119 mutex_unlock(&pag->pag_ici_reclaim_lock);
1120 xfs_perag_put(pag);
1124 * if we skipped any AG, and we still have scan count remaining, do
1125 * another pass this time using blocking reclaim semantics (i.e
1126 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1127 * ensure that when we get more reclaimers than AGs we block rather
1128 * than spin trying to execute reclaim.
1130 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1131 trylock = 0;
1132 goto restart;
1134 return last_error;
1138 xfs_reclaim_inodes(
1139 xfs_mount_t *mp,
1140 int mode)
1142 int nr_to_scan = INT_MAX;
1144 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1148 * Scan a certain number of inodes for reclaim.
1150 * When called we make sure that there is a background (fast) inode reclaim in
1151 * progress, while we will throttle the speed of reclaim via doing synchronous
1152 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1153 * them to be cleaned, which we hope will not be very long due to the
1154 * background walker having already kicked the IO off on those dirty inodes.
1156 long
1157 xfs_reclaim_inodes_nr(
1158 struct xfs_mount *mp,
1159 int nr_to_scan)
1161 /* kick background reclaimer and push the AIL */
1162 xfs_reclaim_work_queue(mp);
1163 xfs_ail_push_all(mp->m_ail);
1165 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1169 * Return the number of reclaimable inodes in the filesystem for
1170 * the shrinker to determine how much to reclaim.
1173 xfs_reclaim_inodes_count(
1174 struct xfs_mount *mp)
1176 struct xfs_perag *pag;
1177 xfs_agnumber_t ag = 0;
1178 int reclaimable = 0;
1180 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1181 ag = pag->pag_agno + 1;
1182 reclaimable += pag->pag_ici_reclaimable;
1183 xfs_perag_put(pag);
1185 return reclaimable;
1188 STATIC int
1189 xfs_inode_match_id(
1190 struct xfs_inode *ip,
1191 struct xfs_eofblocks *eofb)
1193 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1194 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1195 return 0;
1197 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1198 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1199 return 0;
1201 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1202 xfs_get_projid(ip) != eofb->eof_prid)
1203 return 0;
1205 return 1;
1209 * A union-based inode filtering algorithm. Process the inode if any of the
1210 * criteria match. This is for global/internal scans only.
1212 STATIC int
1213 xfs_inode_match_id_union(
1214 struct xfs_inode *ip,
1215 struct xfs_eofblocks *eofb)
1217 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1218 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1219 return 1;
1221 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1222 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1223 return 1;
1225 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1226 xfs_get_projid(ip) == eofb->eof_prid)
1227 return 1;
1229 return 0;
1232 STATIC int
1233 xfs_inode_free_eofblocks(
1234 struct xfs_inode *ip,
1235 int flags,
1236 void *args)
1238 int ret;
1239 struct xfs_eofblocks *eofb = args;
1240 bool need_iolock = true;
1241 int match;
1243 ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1245 if (!xfs_can_free_eofblocks(ip, false)) {
1246 /* inode could be preallocated or append-only */
1247 trace_xfs_inode_free_eofblocks_invalid(ip);
1248 xfs_inode_clear_eofblocks_tag(ip);
1249 return 0;
1253 * If the mapping is dirty the operation can block and wait for some
1254 * time. Unless we are waiting, skip it.
1256 if (!(flags & SYNC_WAIT) &&
1257 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1258 return 0;
1260 if (eofb) {
1261 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1262 match = xfs_inode_match_id_union(ip, eofb);
1263 else
1264 match = xfs_inode_match_id(ip, eofb);
1265 if (!match)
1266 return 0;
1268 /* skip the inode if the file size is too small */
1269 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1270 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1271 return 0;
1274 * A scan owner implies we already hold the iolock. Skip it in
1275 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1276 * the possibility of EAGAIN being returned.
1278 if (eofb->eof_scan_owner == ip->i_ino)
1279 need_iolock = false;
1282 ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1284 /* don't revisit the inode if we're not waiting */
1285 if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1286 ret = 0;
1288 return ret;
1292 xfs_icache_free_eofblocks(
1293 struct xfs_mount *mp,
1294 struct xfs_eofblocks *eofb)
1296 int flags = SYNC_TRYLOCK;
1298 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1299 flags = SYNC_WAIT;
1301 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1302 eofb, XFS_ICI_EOFBLOCKS_TAG);
1306 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1307 * multiple quotas, we don't know exactly which quota caused an allocation
1308 * failure. We make a best effort by including each quota under low free space
1309 * conditions (less than 1% free space) in the scan.
1312 xfs_inode_free_quota_eofblocks(
1313 struct xfs_inode *ip)
1315 int scan = 0;
1316 struct xfs_eofblocks eofb = {0};
1317 struct xfs_dquot *dq;
1319 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1322 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1323 * can repeatedly trylock on the inode we're currently processing. We
1324 * run a sync scan to increase effectiveness and use the union filter to
1325 * cover all applicable quotas in a single scan.
1327 eofb.eof_scan_owner = ip->i_ino;
1328 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1330 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1331 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1332 if (dq && xfs_dquot_lowsp(dq)) {
1333 eofb.eof_uid = VFS_I(ip)->i_uid;
1334 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1335 scan = 1;
1339 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1340 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1341 if (dq && xfs_dquot_lowsp(dq)) {
1342 eofb.eof_gid = VFS_I(ip)->i_gid;
1343 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1344 scan = 1;
1348 if (scan)
1349 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1351 return scan;
1354 void
1355 xfs_inode_set_eofblocks_tag(
1356 xfs_inode_t *ip)
1358 struct xfs_mount *mp = ip->i_mount;
1359 struct xfs_perag *pag;
1360 int tagged;
1362 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1363 spin_lock(&pag->pag_ici_lock);
1364 trace_xfs_inode_set_eofblocks_tag(ip);
1366 tagged = radix_tree_tagged(&pag->pag_ici_root,
1367 XFS_ICI_EOFBLOCKS_TAG);
1368 radix_tree_tag_set(&pag->pag_ici_root,
1369 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1370 XFS_ICI_EOFBLOCKS_TAG);
1371 if (!tagged) {
1372 /* propagate the eofblocks tag up into the perag radix tree */
1373 spin_lock(&ip->i_mount->m_perag_lock);
1374 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1375 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1376 XFS_ICI_EOFBLOCKS_TAG);
1377 spin_unlock(&ip->i_mount->m_perag_lock);
1379 /* kick off background trimming */
1380 xfs_queue_eofblocks(ip->i_mount);
1382 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1383 -1, _RET_IP_);
1386 spin_unlock(&pag->pag_ici_lock);
1387 xfs_perag_put(pag);
1390 void
1391 xfs_inode_clear_eofblocks_tag(
1392 xfs_inode_t *ip)
1394 struct xfs_mount *mp = ip->i_mount;
1395 struct xfs_perag *pag;
1397 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1398 spin_lock(&pag->pag_ici_lock);
1399 trace_xfs_inode_clear_eofblocks_tag(ip);
1401 radix_tree_tag_clear(&pag->pag_ici_root,
1402 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403 XFS_ICI_EOFBLOCKS_TAG);
1404 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1405 /* clear the eofblocks tag from the perag radix tree */
1406 spin_lock(&ip->i_mount->m_perag_lock);
1407 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1408 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409 XFS_ICI_EOFBLOCKS_TAG);
1410 spin_unlock(&ip->i_mount->m_perag_lock);
1411 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1412 -1, _RET_IP_);
1415 spin_unlock(&pag->pag_ici_lock);
1416 xfs_perag_put(pag);