2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
38 kmem_zone_t
*xfs_log_ticket_zone
;
40 /* Local miscellaneous function prototypes */
44 struct xlog_ticket
*ticket
,
45 struct xlog_in_core
**iclog
,
46 xfs_lsn_t
*commitlsnp
);
51 struct xfs_buftarg
*log_target
,
52 xfs_daddr_t blk_offset
,
61 struct xlog_in_core
*iclog
);
66 /* local state machine functions */
67 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
69 xlog_state_do_callback(
72 struct xlog_in_core
*iclog
);
74 xlog_state_get_iclog_space(
77 struct xlog_in_core
**iclog
,
78 struct xlog_ticket
*ticket
,
82 xlog_state_release_iclog(
84 struct xlog_in_core
*iclog
);
86 xlog_state_switch_iclogs(
88 struct xlog_in_core
*iclog
,
93 struct xlog_in_core
*iclog
);
100 xlog_regrant_reserve_log_space(
102 struct xlog_ticket
*ticket
);
104 xlog_ungrant_log_space(
106 struct xlog_ticket
*ticket
);
110 xlog_verify_dest_ptr(
114 xlog_verify_grant_tail(
119 struct xlog_in_core
*iclog
,
123 xlog_verify_tail_lsn(
125 struct xlog_in_core
*iclog
,
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
139 xlog_grant_sub_space(
144 int64_t head_val
= atomic64_read(head
);
150 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
154 space
+= log
->l_logsize
;
159 new = xlog_assign_grant_head_val(cycle
, space
);
160 head_val
= atomic64_cmpxchg(head
, old
, new);
161 } while (head_val
!= old
);
165 xlog_grant_add_space(
170 int64_t head_val
= atomic64_read(head
);
177 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
179 tmp
= log
->l_logsize
- space
;
188 new = xlog_assign_grant_head_val(cycle
, space
);
189 head_val
= atomic64_cmpxchg(head
, old
, new);
190 } while (head_val
!= old
);
194 xlog_grant_head_init(
195 struct xlog_grant_head
*head
)
197 xlog_assign_grant_head(&head
->grant
, 1, 0);
198 INIT_LIST_HEAD(&head
->waiters
);
199 spin_lock_init(&head
->lock
);
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head
*head
)
206 struct xlog_ticket
*tic
;
208 spin_lock(&head
->lock
);
209 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
210 wake_up_process(tic
->t_task
);
211 spin_unlock(&head
->lock
);
215 xlog_ticket_reservation(
217 struct xlog_grant_head
*head
,
218 struct xlog_ticket
*tic
)
220 if (head
== &log
->l_write_head
) {
221 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
222 return tic
->t_unit_res
;
224 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
225 return tic
->t_unit_res
* tic
->t_cnt
;
227 return tic
->t_unit_res
;
232 xlog_grant_head_wake(
234 struct xlog_grant_head
*head
,
237 struct xlog_ticket
*tic
;
240 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
)
245 *free_bytes
-= need_bytes
;
246 trace_xfs_log_grant_wake_up(log
, tic
);
247 wake_up_process(tic
->t_task
);
254 xlog_grant_head_wait(
256 struct xlog_grant_head
*head
,
257 struct xlog_ticket
*tic
,
258 int need_bytes
) __releases(&head
->lock
)
259 __acquires(&head
->lock
)
261 list_add_tail(&tic
->t_queue
, &head
->waiters
);
264 if (XLOG_FORCED_SHUTDOWN(log
))
266 xlog_grant_push_ail(log
, need_bytes
);
268 __set_current_state(TASK_UNINTERRUPTIBLE
);
269 spin_unlock(&head
->lock
);
271 XFS_STATS_INC(xs_sleep_logspace
);
273 trace_xfs_log_grant_sleep(log
, tic
);
275 trace_xfs_log_grant_wake(log
, tic
);
277 spin_lock(&head
->lock
);
278 if (XLOG_FORCED_SHUTDOWN(log
))
280 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
282 list_del_init(&tic
->t_queue
);
285 list_del_init(&tic
->t_queue
);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
307 xlog_grant_head_check(
309 struct xlog_grant_head
*head
,
310 struct xlog_ticket
*tic
,
316 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
325 free_bytes
= xlog_space_left(log
, &head
->grant
);
326 if (!list_empty_careful(&head
->waiters
)) {
327 spin_lock(&head
->lock
);
328 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
329 free_bytes
< *need_bytes
) {
330 error
= xlog_grant_head_wait(log
, head
, tic
,
333 spin_unlock(&head
->lock
);
334 } else if (free_bytes
< *need_bytes
) {
335 spin_lock(&head
->lock
);
336 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
337 spin_unlock(&head
->lock
);
344 xlog_tic_reset_res(xlog_ticket_t
*tic
)
347 tic
->t_res_arr_sum
= 0;
348 tic
->t_res_num_ophdrs
= 0;
352 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
354 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
355 /* add to overflow and start again */
356 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
358 tic
->t_res_arr_sum
= 0;
361 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
362 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
363 tic
->t_res_arr_sum
+= len
;
368 * Replenish the byte reservation required by moving the grant write head.
372 struct xfs_mount
*mp
,
373 struct xlog_ticket
*tic
)
375 struct xlog
*log
= mp
->m_log
;
379 if (XLOG_FORCED_SHUTDOWN(log
))
382 XFS_STATS_INC(xs_try_logspace
);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
392 xlog_grant_push_ail(log
, tic
->t_unit_res
);
394 tic
->t_curr_res
= tic
->t_unit_res
;
395 xlog_tic_reset_res(tic
);
400 trace_xfs_log_regrant(log
, tic
);
402 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
407 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
408 trace_xfs_log_regrant_exit(log
, tic
);
409 xlog_verify_grant_tail(log
);
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
419 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
433 struct xfs_mount
*mp
,
436 struct xlog_ticket
**ticp
,
441 struct xlog
*log
= mp
->m_log
;
442 struct xlog_ticket
*tic
;
446 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
448 if (XLOG_FORCED_SHUTDOWN(log
))
451 XFS_STATS_INC(xs_try_logspace
);
453 ASSERT(*ticp
== NULL
);
454 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
455 KM_SLEEP
| KM_MAYFAIL
);
459 tic
->t_trans_type
= t_type
;
462 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
465 trace_xfs_log_reserve(log
, tic
);
467 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
472 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
473 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
474 trace_xfs_log_reserve_exit(log
, tic
);
475 xlog_verify_grant_tail(log
);
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
485 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
493 * 1. currblock field gets updated at startup and after in-core logs
494 * marked as with WANT_SYNC.
498 * This routine is called when a user of a log manager ticket is done with
499 * the reservation. If the ticket was ever used, then a commit record for
500 * the associated transaction is written out as a log operation header with
501 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
502 * a given ticket. If the ticket was one with a permanent reservation, then
503 * a few operations are done differently. Permanent reservation tickets by
504 * default don't release the reservation. They just commit the current
505 * transaction with the belief that the reservation is still needed. A flag
506 * must be passed in before permanent reservations are actually released.
507 * When these type of tickets are not released, they need to be set into
508 * the inited state again. By doing this, a start record will be written
509 * out when the next write occurs.
513 struct xfs_mount
*mp
,
514 struct xlog_ticket
*ticket
,
515 struct xlog_in_core
**iclog
,
518 struct xlog
*log
= mp
->m_log
;
521 if (XLOG_FORCED_SHUTDOWN(log
) ||
523 * If nothing was ever written, don't write out commit record.
524 * If we get an error, just continue and give back the log ticket.
526 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
527 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
528 lsn
= (xfs_lsn_t
) -1;
529 if (ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) {
530 flags
|= XFS_LOG_REL_PERM_RESERV
;
535 if ((ticket
->t_flags
& XLOG_TIC_PERM_RESERV
) == 0 ||
536 (flags
& XFS_LOG_REL_PERM_RESERV
)) {
537 trace_xfs_log_done_nonperm(log
, ticket
);
540 * Release ticket if not permanent reservation or a specific
541 * request has been made to release a permanent reservation.
543 xlog_ungrant_log_space(log
, ticket
);
544 xfs_log_ticket_put(ticket
);
546 trace_xfs_log_done_perm(log
, ticket
);
548 xlog_regrant_reserve_log_space(log
, ticket
);
549 /* If this ticket was a permanent reservation and we aren't
550 * trying to release it, reset the inited flags; so next time
551 * we write, a start record will be written out.
553 ticket
->t_flags
|= XLOG_TIC_INITED
;
560 * Attaches a new iclog I/O completion callback routine during
561 * transaction commit. If the log is in error state, a non-zero
562 * return code is handed back and the caller is responsible for
563 * executing the callback at an appropriate time.
567 struct xfs_mount
*mp
,
568 struct xlog_in_core
*iclog
,
569 xfs_log_callback_t
*cb
)
573 spin_lock(&iclog
->ic_callback_lock
);
574 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
576 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
577 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
579 *(iclog
->ic_callback_tail
) = cb
;
580 iclog
->ic_callback_tail
= &(cb
->cb_next
);
582 spin_unlock(&iclog
->ic_callback_lock
);
587 xfs_log_release_iclog(
588 struct xfs_mount
*mp
,
589 struct xlog_in_core
*iclog
)
591 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
592 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
600 * Mount a log filesystem
602 * mp - ubiquitous xfs mount point structure
603 * log_target - buftarg of on-disk log device
604 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
605 * num_bblocks - Number of BBSIZE blocks in on-disk log
607 * Return error or zero.
612 xfs_buftarg_t
*log_target
,
613 xfs_daddr_t blk_offset
,
619 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
620 xfs_notice(mp
, "Mounting V%d Filesystem",
621 XFS_SB_VERSION_NUM(&mp
->m_sb
));
624 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
625 XFS_SB_VERSION_NUM(&mp
->m_sb
));
626 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
629 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
630 if (IS_ERR(mp
->m_log
)) {
631 error
= PTR_ERR(mp
->m_log
);
636 * Validate the given log space and drop a critical message via syslog
637 * if the log size is too small that would lead to some unexpected
638 * situations in transaction log space reservation stage.
640 * Note: we can't just reject the mount if the validation fails. This
641 * would mean that people would have to downgrade their kernel just to
642 * remedy the situation as there is no way to grow the log (short of
643 * black magic surgery with xfs_db).
645 * We can, however, reject mounts for CRC format filesystems, as the
646 * mkfs binary being used to make the filesystem should never create a
647 * filesystem with a log that is too small.
649 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
651 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
653 "Log size %d blocks too small, minimum size is %d blocks",
654 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
656 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
658 "Log size %d blocks too large, maximum size is %lld blocks",
659 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
661 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
663 "log size %lld bytes too large, maximum size is %lld bytes",
664 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
669 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
670 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
675 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
676 "experienced then please report this message in the bug report.");
680 * Initialize the AIL now we have a log.
682 error
= xfs_trans_ail_init(mp
);
684 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
687 mp
->m_log
->l_ailp
= mp
->m_ail
;
690 * skip log recovery on a norecovery mount. pretend it all
693 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
694 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
697 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
699 error
= xlog_recover(mp
->m_log
);
702 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
704 xfs_warn(mp
, "log mount/recovery failed: error %d",
706 goto out_destroy_ail
;
710 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
713 goto out_destroy_ail
;
715 /* Normal transactions can now occur */
716 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
719 * Now the log has been fully initialised and we know were our
720 * space grant counters are, we can initialise the permanent ticket
721 * needed for delayed logging to work.
723 xlog_cil_init_post_recovery(mp
->m_log
);
728 xfs_trans_ail_destroy(mp
);
730 xlog_dealloc_log(mp
->m_log
);
736 * Finish the recovery of the file system. This is separate from the
737 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
738 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
741 * If we finish recovery successfully, start the background log work. If we are
742 * not doing recovery, then we have a RO filesystem and we don't need to start
746 xfs_log_mount_finish(xfs_mount_t
*mp
)
750 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
751 error
= xlog_recover_finish(mp
->m_log
);
753 xfs_log_work_queue(mp
);
755 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
763 * Final log writes as part of unmount.
765 * Mark the filesystem clean as unmount happens. Note that during relocation
766 * this routine needs to be executed as part of source-bag while the
767 * deallocation must not be done until source-end.
771 * Unmount record used to have a string "Unmount filesystem--" in the
772 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
773 * We just write the magic number now since that particular field isn't
774 * currently architecture converted and "Unmount" is a bit foo.
775 * As far as I know, there weren't any dependencies on the old behaviour.
779 xfs_log_unmount_write(xfs_mount_t
*mp
)
781 struct xlog
*log
= mp
->m_log
;
782 xlog_in_core_t
*iclog
;
784 xlog_in_core_t
*first_iclog
;
786 xlog_ticket_t
*tic
= NULL
;
791 * Don't write out unmount record on read-only mounts.
792 * Or, if we are doing a forced umount (typically because of IO errors).
794 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
797 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
798 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
801 first_iclog
= iclog
= log
->l_iclog
;
803 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
804 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
805 ASSERT(iclog
->ic_offset
== 0);
807 iclog
= iclog
->ic_next
;
808 } while (iclog
!= first_iclog
);
810 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
811 error
= xfs_log_reserve(mp
, 600, 1, &tic
,
812 XFS_LOG
, 0, XLOG_UNMOUNT_REC_TYPE
);
814 /* the data section must be 32 bit size aligned */
818 __uint32_t pad2
; /* may as well make it 64 bits */
820 .magic
= XLOG_UNMOUNT_TYPE
,
822 struct xfs_log_iovec reg
= {
824 .i_len
= sizeof(magic
),
825 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
827 struct xfs_log_vec vec
= {
832 /* remove inited flag, and account for space used */
834 tic
->t_curr_res
-= sizeof(magic
);
835 error
= xlog_write(log
, &vec
, tic
, &lsn
,
836 NULL
, XLOG_UNMOUNT_TRANS
);
838 * At this point, we're umounting anyway,
839 * so there's no point in transitioning log state
840 * to IOERROR. Just continue...
845 xfs_alert(mp
, "%s: unmount record failed", __func__
);
848 spin_lock(&log
->l_icloglock
);
849 iclog
= log
->l_iclog
;
850 atomic_inc(&iclog
->ic_refcnt
);
851 xlog_state_want_sync(log
, iclog
);
852 spin_unlock(&log
->l_icloglock
);
853 error
= xlog_state_release_iclog(log
, iclog
);
855 spin_lock(&log
->l_icloglock
);
856 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
857 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
858 if (!XLOG_FORCED_SHUTDOWN(log
)) {
859 xlog_wait(&iclog
->ic_force_wait
,
862 spin_unlock(&log
->l_icloglock
);
865 spin_unlock(&log
->l_icloglock
);
868 trace_xfs_log_umount_write(log
, tic
);
869 xlog_ungrant_log_space(log
, tic
);
870 xfs_log_ticket_put(tic
);
874 * We're already in forced_shutdown mode, couldn't
875 * even attempt to write out the unmount transaction.
877 * Go through the motions of sync'ing and releasing
878 * the iclog, even though no I/O will actually happen,
879 * we need to wait for other log I/Os that may already
880 * be in progress. Do this as a separate section of
881 * code so we'll know if we ever get stuck here that
882 * we're in this odd situation of trying to unmount
883 * a file system that went into forced_shutdown as
884 * the result of an unmount..
886 spin_lock(&log
->l_icloglock
);
887 iclog
= log
->l_iclog
;
888 atomic_inc(&iclog
->ic_refcnt
);
890 xlog_state_want_sync(log
, iclog
);
891 spin_unlock(&log
->l_icloglock
);
892 error
= xlog_state_release_iclog(log
, iclog
);
894 spin_lock(&log
->l_icloglock
);
896 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
897 || iclog
->ic_state
== XLOG_STATE_DIRTY
898 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
900 xlog_wait(&iclog
->ic_force_wait
,
903 spin_unlock(&log
->l_icloglock
);
908 } /* xfs_log_unmount_write */
911 * Empty the log for unmount/freeze.
913 * To do this, we first need to shut down the background log work so it is not
914 * trying to cover the log as we clean up. We then need to unpin all objects in
915 * the log so we can then flush them out. Once they have completed their IO and
916 * run the callbacks removing themselves from the AIL, we can write the unmount
921 struct xfs_mount
*mp
)
923 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
924 xfs_log_force(mp
, XFS_LOG_SYNC
);
927 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
928 * will push it, xfs_wait_buftarg() will not wait for it. Further,
929 * xfs_buf_iowait() cannot be used because it was pushed with the
930 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
931 * the IO to complete.
933 xfs_ail_push_all_sync(mp
->m_ail
);
934 xfs_wait_buftarg(mp
->m_ddev_targp
);
935 xfs_buf_lock(mp
->m_sb_bp
);
936 xfs_buf_unlock(mp
->m_sb_bp
);
938 xfs_log_unmount_write(mp
);
942 * Shut down and release the AIL and Log.
944 * During unmount, we need to ensure we flush all the dirty metadata objects
945 * from the AIL so that the log is empty before we write the unmount record to
946 * the log. Once this is done, we can tear down the AIL and the log.
950 struct xfs_mount
*mp
)
954 xfs_trans_ail_destroy(mp
);
956 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
958 xlog_dealloc_log(mp
->m_log
);
963 struct xfs_mount
*mp
,
964 struct xfs_log_item
*item
,
966 const struct xfs_item_ops
*ops
)
968 item
->li_mountp
= mp
;
969 item
->li_ailp
= mp
->m_ail
;
970 item
->li_type
= type
;
974 INIT_LIST_HEAD(&item
->li_ail
);
975 INIT_LIST_HEAD(&item
->li_cil
);
979 * Wake up processes waiting for log space after we have moved the log tail.
983 struct xfs_mount
*mp
)
985 struct xlog
*log
= mp
->m_log
;
988 if (XLOG_FORCED_SHUTDOWN(log
))
991 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
992 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
994 spin_lock(&log
->l_write_head
.lock
);
995 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
996 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
997 spin_unlock(&log
->l_write_head
.lock
);
1000 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1001 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1003 spin_lock(&log
->l_reserve_head
.lock
);
1004 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1005 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1006 spin_unlock(&log
->l_reserve_head
.lock
);
1011 * Determine if we have a transaction that has gone to disk that needs to be
1012 * covered. To begin the transition to the idle state firstly the log needs to
1013 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1014 * we start attempting to cover the log.
1016 * Only if we are then in a state where covering is needed, the caller is
1017 * informed that dummy transactions are required to move the log into the idle
1020 * If there are any items in the AIl or CIL, then we do not want to attempt to
1021 * cover the log as we may be in a situation where there isn't log space
1022 * available to run a dummy transaction and this can lead to deadlocks when the
1023 * tail of the log is pinned by an item that is modified in the CIL. Hence
1024 * there's no point in running a dummy transaction at this point because we
1025 * can't start trying to idle the log until both the CIL and AIL are empty.
1028 xfs_log_need_covered(xfs_mount_t
*mp
)
1030 struct xlog
*log
= mp
->m_log
;
1033 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1036 if (!xlog_cil_empty(log
))
1039 spin_lock(&log
->l_icloglock
);
1040 switch (log
->l_covered_state
) {
1041 case XLOG_STATE_COVER_DONE
:
1042 case XLOG_STATE_COVER_DONE2
:
1043 case XLOG_STATE_COVER_IDLE
:
1045 case XLOG_STATE_COVER_NEED
:
1046 case XLOG_STATE_COVER_NEED2
:
1047 if (xfs_ail_min_lsn(log
->l_ailp
))
1049 if (!xlog_iclogs_empty(log
))
1053 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1054 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1056 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1062 spin_unlock(&log
->l_icloglock
);
1067 * We may be holding the log iclog lock upon entering this routine.
1070 xlog_assign_tail_lsn_locked(
1071 struct xfs_mount
*mp
)
1073 struct xlog
*log
= mp
->m_log
;
1074 struct xfs_log_item
*lip
;
1077 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1080 * To make sure we always have a valid LSN for the log tail we keep
1081 * track of the last LSN which was committed in log->l_last_sync_lsn,
1082 * and use that when the AIL was empty.
1084 lip
= xfs_ail_min(mp
->m_ail
);
1086 tail_lsn
= lip
->li_lsn
;
1088 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1089 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1090 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1095 xlog_assign_tail_lsn(
1096 struct xfs_mount
*mp
)
1100 spin_lock(&mp
->m_ail
->xa_lock
);
1101 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1102 spin_unlock(&mp
->m_ail
->xa_lock
);
1108 * Return the space in the log between the tail and the head. The head
1109 * is passed in the cycle/bytes formal parms. In the special case where
1110 * the reserve head has wrapped passed the tail, this calculation is no
1111 * longer valid. In this case, just return 0 which means there is no space
1112 * in the log. This works for all places where this function is called
1113 * with the reserve head. Of course, if the write head were to ever
1114 * wrap the tail, we should blow up. Rather than catch this case here,
1115 * we depend on other ASSERTions in other parts of the code. XXXmiken
1117 * This code also handles the case where the reservation head is behind
1118 * the tail. The details of this case are described below, but the end
1119 * result is that we return the size of the log as the amount of space left.
1132 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1133 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1134 tail_bytes
= BBTOB(tail_bytes
);
1135 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1136 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1137 else if (tail_cycle
+ 1 < head_cycle
)
1139 else if (tail_cycle
< head_cycle
) {
1140 ASSERT(tail_cycle
== (head_cycle
- 1));
1141 free_bytes
= tail_bytes
- head_bytes
;
1144 * The reservation head is behind the tail.
1145 * In this case we just want to return the size of the
1146 * log as the amount of space left.
1148 xfs_alert(log
->l_mp
,
1149 "xlog_space_left: head behind tail\n"
1150 " tail_cycle = %d, tail_bytes = %d\n"
1151 " GH cycle = %d, GH bytes = %d",
1152 tail_cycle
, tail_bytes
, head_cycle
, head_bytes
);
1154 free_bytes
= log
->l_logsize
;
1161 * Log function which is called when an io completes.
1163 * The log manager needs its own routine, in order to control what
1164 * happens with the buffer after the write completes.
1167 xlog_iodone(xfs_buf_t
*bp
)
1169 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1170 struct xlog
*l
= iclog
->ic_log
;
1174 * Race to shutdown the filesystem if we see an error.
1176 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
,
1177 XFS_ERRTAG_IODONE_IOERR
, XFS_RANDOM_IODONE_IOERR
)) {
1178 xfs_buf_ioerror_alert(bp
, __func__
);
1180 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1182 * This flag will be propagated to the trans-committed
1183 * callback routines to let them know that the log-commit
1186 aborted
= XFS_LI_ABORTED
;
1187 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1188 aborted
= XFS_LI_ABORTED
;
1191 /* log I/O is always issued ASYNC */
1192 ASSERT(XFS_BUF_ISASYNC(bp
));
1193 xlog_state_done_syncing(iclog
, aborted
);
1196 * drop the buffer lock now that we are done. Nothing references
1197 * the buffer after this, so an unmount waiting on this lock can now
1198 * tear it down safely. As such, it is unsafe to reference the buffer
1199 * (bp) after the unlock as we could race with it being freed.
1205 * Return size of each in-core log record buffer.
1207 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1209 * If the filesystem blocksize is too large, we may need to choose a
1210 * larger size since the directory code currently logs entire blocks.
1214 xlog_get_iclog_buffer_size(
1215 struct xfs_mount
*mp
,
1221 if (mp
->m_logbufs
<= 0)
1222 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1224 log
->l_iclog_bufs
= mp
->m_logbufs
;
1227 * Buffer size passed in from mount system call.
1229 if (mp
->m_logbsize
> 0) {
1230 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1231 log
->l_iclog_size_log
= 0;
1233 log
->l_iclog_size_log
++;
1237 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1238 /* # headers = size / 32k
1239 * one header holds cycles from 32k of data
1242 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1243 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1245 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1246 log
->l_iclog_heads
= xhdrs
;
1248 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1249 log
->l_iclog_hsize
= BBSIZE
;
1250 log
->l_iclog_heads
= 1;
1255 /* All machines use 32kB buffers by default. */
1256 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1257 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1259 /* the default log size is 16k or 32k which is one header sector */
1260 log
->l_iclog_hsize
= BBSIZE
;
1261 log
->l_iclog_heads
= 1;
1264 /* are we being asked to make the sizes selected above visible? */
1265 if (mp
->m_logbufs
== 0)
1266 mp
->m_logbufs
= log
->l_iclog_bufs
;
1267 if (mp
->m_logbsize
== 0)
1268 mp
->m_logbsize
= log
->l_iclog_size
;
1269 } /* xlog_get_iclog_buffer_size */
1274 struct xfs_mount
*mp
)
1276 queue_delayed_work(mp
->m_log_workqueue
, &mp
->m_log
->l_work
,
1277 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1281 * Every sync period we need to unpin all items in the AIL and push them to
1282 * disk. If there is nothing dirty, then we might need to cover the log to
1283 * indicate that the filesystem is idle.
1287 struct work_struct
*work
)
1289 struct xlog
*log
= container_of(to_delayed_work(work
),
1290 struct xlog
, l_work
);
1291 struct xfs_mount
*mp
= log
->l_mp
;
1293 /* dgc: errors ignored - not fatal and nowhere to report them */
1294 if (xfs_log_need_covered(mp
)) {
1296 * Dump a transaction into the log that contains no real change.
1297 * This is needed to stamp the current tail LSN into the log
1298 * during the covering operation.
1300 * We cannot use an inode here for this - that will push dirty
1301 * state back up into the VFS and then periodic inode flushing
1302 * will prevent log covering from making progress. Hence we
1303 * synchronously log the superblock instead to ensure the
1304 * superblock is immediately unpinned and can be written back.
1306 xfs_sync_sb(mp
, true);
1308 xfs_log_force(mp
, 0);
1310 /* start pushing all the metadata that is currently dirty */
1311 xfs_ail_push_all(mp
->m_ail
);
1313 /* queue us up again */
1314 xfs_log_work_queue(mp
);
1318 * This routine initializes some of the log structure for a given mount point.
1319 * Its primary purpose is to fill in enough, so recovery can occur. However,
1320 * some other stuff may be filled in too.
1322 STATIC
struct xlog
*
1324 struct xfs_mount
*mp
,
1325 struct xfs_buftarg
*log_target
,
1326 xfs_daddr_t blk_offset
,
1330 xlog_rec_header_t
*head
;
1331 xlog_in_core_t
**iclogp
;
1332 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1335 int error
= -ENOMEM
;
1338 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1340 xfs_warn(mp
, "Log allocation failed: No memory!");
1345 log
->l_targ
= log_target
;
1346 log
->l_logsize
= BBTOB(num_bblks
);
1347 log
->l_logBBstart
= blk_offset
;
1348 log
->l_logBBsize
= num_bblks
;
1349 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1350 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1351 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1353 log
->l_prev_block
= -1;
1354 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1355 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1356 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1357 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1359 xlog_grant_head_init(&log
->l_reserve_head
);
1360 xlog_grant_head_init(&log
->l_write_head
);
1362 error
= -EFSCORRUPTED
;
1363 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1364 log2_size
= mp
->m_sb
.sb_logsectlog
;
1365 if (log2_size
< BBSHIFT
) {
1366 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1367 log2_size
, BBSHIFT
);
1371 log2_size
-= BBSHIFT
;
1372 if (log2_size
> mp
->m_sectbb_log
) {
1373 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1374 log2_size
, mp
->m_sectbb_log
);
1378 /* for larger sector sizes, must have v2 or external log */
1379 if (log2_size
&& log
->l_logBBstart
> 0 &&
1380 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1382 "log sector size (0x%x) invalid for configuration.",
1387 log
->l_sectBBsize
= 1 << log2_size
;
1389 xlog_get_iclog_buffer_size(mp
, log
);
1392 * Use a NULL block for the extra log buffer used during splits so that
1393 * it will trigger errors if we ever try to do IO on it without first
1394 * having set it up properly.
1397 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1398 BTOBB(log
->l_iclog_size
), 0);
1403 * The iclogbuf buffer locks are held over IO but we are not going to do
1404 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1405 * when appropriately.
1407 ASSERT(xfs_buf_islocked(bp
));
1410 /* use high priority wq for log I/O completion */
1411 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1412 bp
->b_iodone
= xlog_iodone
;
1415 spin_lock_init(&log
->l_icloglock
);
1416 init_waitqueue_head(&log
->l_flush_wait
);
1418 iclogp
= &log
->l_iclog
;
1420 * The amount of memory to allocate for the iclog structure is
1421 * rather funky due to the way the structure is defined. It is
1422 * done this way so that we can use different sizes for machines
1423 * with different amounts of memory. See the definition of
1424 * xlog_in_core_t in xfs_log_priv.h for details.
1426 ASSERT(log
->l_iclog_size
>= 4096);
1427 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1428 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1430 goto out_free_iclog
;
1433 iclog
->ic_prev
= prev_iclog
;
1436 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1437 BTOBB(log
->l_iclog_size
), 0);
1439 goto out_free_iclog
;
1441 ASSERT(xfs_buf_islocked(bp
));
1444 /* use high priority wq for log I/O completion */
1445 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1446 bp
->b_iodone
= xlog_iodone
;
1448 iclog
->ic_data
= bp
->b_addr
;
1450 log
->l_iclog_bak
[i
] = (xfs_caddr_t
)&(iclog
->ic_header
);
1452 head
= &iclog
->ic_header
;
1453 memset(head
, 0, sizeof(xlog_rec_header_t
));
1454 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1455 head
->h_version
= cpu_to_be32(
1456 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1457 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1459 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1460 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1462 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1463 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1464 iclog
->ic_log
= log
;
1465 atomic_set(&iclog
->ic_refcnt
, 0);
1466 spin_lock_init(&iclog
->ic_callback_lock
);
1467 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1468 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1470 init_waitqueue_head(&iclog
->ic_force_wait
);
1471 init_waitqueue_head(&iclog
->ic_write_wait
);
1473 iclogp
= &iclog
->ic_next
;
1475 *iclogp
= log
->l_iclog
; /* complete ring */
1476 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1478 error
= xlog_cil_init(log
);
1480 goto out_free_iclog
;
1484 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1485 prev_iclog
= iclog
->ic_next
;
1487 xfs_buf_free(iclog
->ic_bp
);
1490 spinlock_destroy(&log
->l_icloglock
);
1491 xfs_buf_free(log
->l_xbuf
);
1495 return ERR_PTR(error
);
1496 } /* xlog_alloc_log */
1500 * Write out the commit record of a transaction associated with the given
1501 * ticket. Return the lsn of the commit record.
1506 struct xlog_ticket
*ticket
,
1507 struct xlog_in_core
**iclog
,
1508 xfs_lsn_t
*commitlsnp
)
1510 struct xfs_mount
*mp
= log
->l_mp
;
1512 struct xfs_log_iovec reg
= {
1515 .i_type
= XLOG_REG_TYPE_COMMIT
,
1517 struct xfs_log_vec vec
= {
1522 ASSERT_ALWAYS(iclog
);
1523 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1526 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1531 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1532 * log space. This code pushes on the lsn which would supposedly free up
1533 * the 25% which we want to leave free. We may need to adopt a policy which
1534 * pushes on an lsn which is further along in the log once we reach the high
1535 * water mark. In this manner, we would be creating a low water mark.
1538 xlog_grant_push_ail(
1542 xfs_lsn_t threshold_lsn
= 0;
1543 xfs_lsn_t last_sync_lsn
;
1546 int threshold_block
;
1547 int threshold_cycle
;
1550 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1552 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1553 free_blocks
= BTOBBT(free_bytes
);
1556 * Set the threshold for the minimum number of free blocks in the
1557 * log to the maximum of what the caller needs, one quarter of the
1558 * log, and 256 blocks.
1560 free_threshold
= BTOBB(need_bytes
);
1561 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1562 free_threshold
= MAX(free_threshold
, 256);
1563 if (free_blocks
>= free_threshold
)
1566 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1568 threshold_block
+= free_threshold
;
1569 if (threshold_block
>= log
->l_logBBsize
) {
1570 threshold_block
-= log
->l_logBBsize
;
1571 threshold_cycle
+= 1;
1573 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1576 * Don't pass in an lsn greater than the lsn of the last
1577 * log record known to be on disk. Use a snapshot of the last sync lsn
1578 * so that it doesn't change between the compare and the set.
1580 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1581 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1582 threshold_lsn
= last_sync_lsn
;
1585 * Get the transaction layer to kick the dirty buffers out to
1586 * disk asynchronously. No point in trying to do this if
1587 * the filesystem is shutting down.
1589 if (!XLOG_FORCED_SHUTDOWN(log
))
1590 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1594 * Stamp cycle number in every block
1599 struct xlog_in_core
*iclog
,
1603 int size
= iclog
->ic_offset
+ roundoff
;
1607 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1609 dp
= iclog
->ic_datap
;
1610 for (i
= 0; i
< BTOBB(size
); i
++) {
1611 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1613 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1614 *(__be32
*)dp
= cycle_lsn
;
1618 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1619 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1621 for ( ; i
< BTOBB(size
); i
++) {
1622 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1623 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1624 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1625 *(__be32
*)dp
= cycle_lsn
;
1629 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1630 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1635 * Calculate the checksum for a log buffer.
1637 * This is a little more complicated than it should be because the various
1638 * headers and the actual data are non-contiguous.
1643 struct xlog_rec_header
*rhead
,
1649 /* first generate the crc for the record header ... */
1650 crc
= xfs_start_cksum((char *)rhead
,
1651 sizeof(struct xlog_rec_header
),
1652 offsetof(struct xlog_rec_header
, h_crc
));
1654 /* ... then for additional cycle data for v2 logs ... */
1655 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1656 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1659 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
1660 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1661 sizeof(struct xlog_rec_ext_header
));
1665 /* ... and finally for the payload */
1666 crc
= crc32c(crc
, dp
, size
);
1668 return xfs_end_cksum(crc
);
1672 * The bdstrat callback function for log bufs. This gives us a central
1673 * place to trap bufs in case we get hit by a log I/O error and need to
1674 * shutdown. Actually, in practice, even when we didn't get a log error,
1675 * we transition the iclogs to IOERROR state *after* flushing all existing
1676 * iclogs to disk. This is because we don't want anymore new transactions to be
1677 * started or completed afterwards.
1679 * We lock the iclogbufs here so that we can serialise against IO completion
1680 * during unmount. We might be processing a shutdown triggered during unmount,
1681 * and that can occur asynchronously to the unmount thread, and hence we need to
1682 * ensure that completes before tearing down the iclogbufs. Hence we need to
1683 * hold the buffer lock across the log IO to acheive that.
1689 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1692 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1693 xfs_buf_ioerror(bp
, -EIO
);
1697 * It would seem logical to return EIO here, but we rely on
1698 * the log state machine to propagate I/O errors instead of
1699 * doing it here. Similarly, IO completion will unlock the
1700 * buffer, so we don't do it here.
1710 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1711 * fashion. Previously, we should have moved the current iclog
1712 * ptr in the log to point to the next available iclog. This allows further
1713 * write to continue while this code syncs out an iclog ready to go.
1714 * Before an in-core log can be written out, the data section must be scanned
1715 * to save away the 1st word of each BBSIZE block into the header. We replace
1716 * it with the current cycle count. Each BBSIZE block is tagged with the
1717 * cycle count because there in an implicit assumption that drives will
1718 * guarantee that entire 512 byte blocks get written at once. In other words,
1719 * we can't have part of a 512 byte block written and part not written. By
1720 * tagging each block, we will know which blocks are valid when recovering
1721 * after an unclean shutdown.
1723 * This routine is single threaded on the iclog. No other thread can be in
1724 * this routine with the same iclog. Changing contents of iclog can there-
1725 * fore be done without grabbing the state machine lock. Updating the global
1726 * log will require grabbing the lock though.
1728 * The entire log manager uses a logical block numbering scheme. Only
1729 * log_sync (and then only bwrite()) know about the fact that the log may
1730 * not start with block zero on a given device. The log block start offset
1731 * is added immediately before calling bwrite().
1737 struct xlog_in_core
*iclog
)
1741 uint count
; /* byte count of bwrite */
1742 uint count_init
; /* initial count before roundup */
1743 int roundoff
; /* roundoff to BB or stripe */
1744 int split
= 0; /* split write into two regions */
1746 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1749 XFS_STATS_INC(xs_log_writes
);
1750 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1752 /* Add for LR header */
1753 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1755 /* Round out the log write size */
1756 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1757 /* we have a v2 stripe unit to use */
1758 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1760 count
= BBTOB(BTOBB(count_init
));
1762 roundoff
= count
- count_init
;
1763 ASSERT(roundoff
>= 0);
1764 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1765 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1767 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1768 roundoff
< BBTOB(1)));
1770 /* move grant heads by roundoff in sync */
1771 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1772 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1774 /* put cycle number in every block */
1775 xlog_pack_data(log
, iclog
, roundoff
);
1777 /* real byte length */
1778 size
= iclog
->ic_offset
;
1781 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1784 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1786 XFS_STATS_ADD(xs_log_blocks
, BTOBB(count
));
1788 /* Do we need to split this write into 2 parts? */
1789 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1792 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1793 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1794 iclog
->ic_bwritecnt
= 2;
1797 * Bump the cycle numbers at the start of each block in the
1798 * part of the iclog that ends up in the buffer that gets
1799 * written to the start of the log.
1801 * Watch out for the header magic number case, though.
1803 dptr
= (char *)&iclog
->ic_header
+ count
;
1804 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1805 __uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1806 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1808 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1813 iclog
->ic_bwritecnt
= 1;
1816 /* calculcate the checksum */
1817 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1818 iclog
->ic_datap
, size
);
1820 bp
->b_io_length
= BTOBB(count
);
1821 bp
->b_fspriv
= iclog
;
1822 XFS_BUF_ZEROFLAGS(bp
);
1824 bp
->b_flags
|= XBF_SYNCIO
;
1826 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1827 bp
->b_flags
|= XBF_FUA
;
1830 * Flush the data device before flushing the log to make
1831 * sure all meta data written back from the AIL actually made
1832 * it to disk before stamping the new log tail LSN into the
1833 * log buffer. For an external log we need to issue the
1834 * flush explicitly, and unfortunately synchronously here;
1835 * for an internal log we can simply use the block layer
1836 * state machine for preflushes.
1838 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1839 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1841 bp
->b_flags
|= XBF_FLUSH
;
1844 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1845 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1847 xlog_verify_iclog(log
, iclog
, count
, true);
1849 /* account for log which doesn't start at block #0 */
1850 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1852 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1857 error
= xlog_bdstrat(bp
);
1859 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1863 bp
= iclog
->ic_log
->l_xbuf
;
1864 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1865 xfs_buf_associate_memory(bp
,
1866 (char *)&iclog
->ic_header
+ count
, split
);
1867 bp
->b_fspriv
= iclog
;
1868 XFS_BUF_ZEROFLAGS(bp
);
1870 bp
->b_flags
|= XBF_SYNCIO
;
1871 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1872 bp
->b_flags
|= XBF_FUA
;
1874 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1875 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1877 /* account for internal log which doesn't start at block #0 */
1878 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1880 error
= xlog_bdstrat(bp
);
1882 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1890 * Deallocate a log structure
1896 xlog_in_core_t
*iclog
, *next_iclog
;
1899 xlog_cil_destroy(log
);
1902 * Cycle all the iclogbuf locks to make sure all log IO completion
1903 * is done before we tear down these buffers.
1905 iclog
= log
->l_iclog
;
1906 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1907 xfs_buf_lock(iclog
->ic_bp
);
1908 xfs_buf_unlock(iclog
->ic_bp
);
1909 iclog
= iclog
->ic_next
;
1913 * Always need to ensure that the extra buffer does not point to memory
1914 * owned by another log buffer before we free it. Also, cycle the lock
1915 * first to ensure we've completed IO on it.
1917 xfs_buf_lock(log
->l_xbuf
);
1918 xfs_buf_unlock(log
->l_xbuf
);
1919 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1920 xfs_buf_free(log
->l_xbuf
);
1922 iclog
= log
->l_iclog
;
1923 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1924 xfs_buf_free(iclog
->ic_bp
);
1925 next_iclog
= iclog
->ic_next
;
1929 spinlock_destroy(&log
->l_icloglock
);
1931 log
->l_mp
->m_log
= NULL
;
1933 } /* xlog_dealloc_log */
1936 * Update counters atomically now that memcpy is done.
1940 xlog_state_finish_copy(
1942 struct xlog_in_core
*iclog
,
1946 spin_lock(&log
->l_icloglock
);
1948 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
1949 iclog
->ic_offset
+= copy_bytes
;
1951 spin_unlock(&log
->l_icloglock
);
1952 } /* xlog_state_finish_copy */
1958 * print out info relating to regions written which consume
1963 struct xfs_mount
*mp
,
1964 struct xlog_ticket
*ticket
)
1967 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
1969 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1970 static char *res_type_str
[XLOG_REG_TYPE_MAX
] = {
1991 static char *trans_type_str
[XFS_TRANS_TYPE_MAX
] = {
2035 "xlog_write: reservation summary:\n"
2036 " trans type = %s (%u)\n"
2037 " unit res = %d bytes\n"
2038 " current res = %d bytes\n"
2039 " total reg = %u bytes (o/flow = %u bytes)\n"
2040 " ophdrs = %u (ophdr space = %u bytes)\n"
2041 " ophdr + reg = %u bytes\n"
2042 " num regions = %u",
2043 ((ticket
->t_trans_type
<= 0 ||
2044 ticket
->t_trans_type
> XFS_TRANS_TYPE_MAX
) ?
2045 "bad-trans-type" : trans_type_str
[ticket
->t_trans_type
-1]),
2046 ticket
->t_trans_type
,
2049 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
,
2050 ticket
->t_res_num_ophdrs
, ophdr_spc
,
2051 ticket
->t_res_arr_sum
+
2052 ticket
->t_res_o_flow
+ ophdr_spc
,
2055 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2056 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2057 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2058 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2059 "bad-rtype" : res_type_str
[r_type
-1]),
2060 ticket
->t_res_arr
[i
].r_len
);
2063 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
2064 "xlog_write: reservation ran out. Need to up reservation");
2065 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
2069 * Calculate the potential space needed by the log vector. Each region gets
2070 * its own xlog_op_header_t and may need to be double word aligned.
2073 xlog_write_calc_vec_length(
2074 struct xlog_ticket
*ticket
,
2075 struct xfs_log_vec
*log_vector
)
2077 struct xfs_log_vec
*lv
;
2082 /* acct for start rec of xact */
2083 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2086 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2087 /* we don't write ordered log vectors */
2088 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2091 headers
+= lv
->lv_niovecs
;
2093 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2094 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2097 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2101 ticket
->t_res_num_ophdrs
+= headers
;
2102 len
+= headers
* sizeof(struct xlog_op_header
);
2108 * If first write for transaction, insert start record We can't be trying to
2109 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2112 xlog_write_start_rec(
2113 struct xlog_op_header
*ophdr
,
2114 struct xlog_ticket
*ticket
)
2116 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2119 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2120 ophdr
->oh_clientid
= ticket
->t_clientid
;
2122 ophdr
->oh_flags
= XLOG_START_TRANS
;
2125 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2127 return sizeof(struct xlog_op_header
);
2130 static xlog_op_header_t
*
2131 xlog_write_setup_ophdr(
2133 struct xlog_op_header
*ophdr
,
2134 struct xlog_ticket
*ticket
,
2137 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2138 ophdr
->oh_clientid
= ticket
->t_clientid
;
2141 /* are we copying a commit or unmount record? */
2142 ophdr
->oh_flags
= flags
;
2145 * We've seen logs corrupted with bad transaction client ids. This
2146 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2147 * and shut down the filesystem.
2149 switch (ophdr
->oh_clientid
) {
2150 case XFS_TRANSACTION
:
2156 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2157 ophdr
->oh_clientid
, ticket
);
2165 * Set up the parameters of the region copy into the log. This has
2166 * to handle region write split across multiple log buffers - this
2167 * state is kept external to this function so that this code can
2168 * be written in an obvious, self documenting manner.
2171 xlog_write_setup_copy(
2172 struct xlog_ticket
*ticket
,
2173 struct xlog_op_header
*ophdr
,
2174 int space_available
,
2178 int *last_was_partial_copy
,
2179 int *bytes_consumed
)
2183 still_to_copy
= space_required
- *bytes_consumed
;
2184 *copy_off
= *bytes_consumed
;
2186 if (still_to_copy
<= space_available
) {
2187 /* write of region completes here */
2188 *copy_len
= still_to_copy
;
2189 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2190 if (*last_was_partial_copy
)
2191 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2192 *last_was_partial_copy
= 0;
2193 *bytes_consumed
= 0;
2197 /* partial write of region, needs extra log op header reservation */
2198 *copy_len
= space_available
;
2199 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2200 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2201 if (*last_was_partial_copy
)
2202 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2203 *bytes_consumed
+= *copy_len
;
2204 (*last_was_partial_copy
)++;
2206 /* account for new log op header */
2207 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2208 ticket
->t_res_num_ophdrs
++;
2210 return sizeof(struct xlog_op_header
);
2214 xlog_write_copy_finish(
2216 struct xlog_in_core
*iclog
,
2221 int *partial_copy_len
,
2223 struct xlog_in_core
**commit_iclog
)
2225 if (*partial_copy
) {
2227 * This iclog has already been marked WANT_SYNC by
2228 * xlog_state_get_iclog_space.
2230 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2233 return xlog_state_release_iclog(log
, iclog
);
2237 *partial_copy_len
= 0;
2239 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2240 /* no more space in this iclog - push it. */
2241 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2245 spin_lock(&log
->l_icloglock
);
2246 xlog_state_want_sync(log
, iclog
);
2247 spin_unlock(&log
->l_icloglock
);
2250 return xlog_state_release_iclog(log
, iclog
);
2251 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2252 *commit_iclog
= iclog
;
2259 * Write some region out to in-core log
2261 * This will be called when writing externally provided regions or when
2262 * writing out a commit record for a given transaction.
2264 * General algorithm:
2265 * 1. Find total length of this write. This may include adding to the
2266 * lengths passed in.
2267 * 2. Check whether we violate the tickets reservation.
2268 * 3. While writing to this iclog
2269 * A. Reserve as much space in this iclog as can get
2270 * B. If this is first write, save away start lsn
2271 * C. While writing this region:
2272 * 1. If first write of transaction, write start record
2273 * 2. Write log operation header (header per region)
2274 * 3. Find out if we can fit entire region into this iclog
2275 * 4. Potentially, verify destination memcpy ptr
2276 * 5. Memcpy (partial) region
2277 * 6. If partial copy, release iclog; otherwise, continue
2278 * copying more regions into current iclog
2279 * 4. Mark want sync bit (in simulation mode)
2280 * 5. Release iclog for potential flush to on-disk log.
2283 * 1. Panic if reservation is overrun. This should never happen since
2284 * reservation amounts are generated internal to the filesystem.
2286 * 1. Tickets are single threaded data structures.
2287 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2288 * syncing routine. When a single log_write region needs to span
2289 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2290 * on all log operation writes which don't contain the end of the
2291 * region. The XLOG_END_TRANS bit is used for the in-core log
2292 * operation which contains the end of the continued log_write region.
2293 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2294 * we don't really know exactly how much space will be used. As a result,
2295 * we don't update ic_offset until the end when we know exactly how many
2296 * bytes have been written out.
2301 struct xfs_log_vec
*log_vector
,
2302 struct xlog_ticket
*ticket
,
2303 xfs_lsn_t
*start_lsn
,
2304 struct xlog_in_core
**commit_iclog
,
2307 struct xlog_in_core
*iclog
= NULL
;
2308 struct xfs_log_iovec
*vecp
;
2309 struct xfs_log_vec
*lv
;
2312 int partial_copy
= 0;
2313 int partial_copy_len
= 0;
2321 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2324 * Region headers and bytes are already accounted for.
2325 * We only need to take into account start records and
2326 * split regions in this function.
2328 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2329 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2332 * Commit record headers need to be accounted for. These
2333 * come in as separate writes so are easy to detect.
2335 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2336 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2338 if (ticket
->t_curr_res
< 0)
2339 xlog_print_tic_res(log
->l_mp
, ticket
);
2343 vecp
= lv
->lv_iovecp
;
2344 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2348 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2349 &contwr
, &log_offset
);
2353 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2354 ptr
= iclog
->ic_datap
+ log_offset
;
2356 /* start_lsn is the first lsn written to. That's all we need. */
2358 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2361 * This loop writes out as many regions as can fit in the amount
2362 * of space which was allocated by xlog_state_get_iclog_space().
2364 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2365 struct xfs_log_iovec
*reg
;
2366 struct xlog_op_header
*ophdr
;
2370 bool ordered
= false;
2372 /* ordered log vectors have no regions to write */
2373 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2374 ASSERT(lv
->lv_niovecs
== 0);
2380 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2381 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2383 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2384 if (start_rec_copy
) {
2386 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2390 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2394 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2395 sizeof(struct xlog_op_header
));
2397 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2398 iclog
->ic_size
-log_offset
,
2400 ©_off
, ©_len
,
2403 xlog_verify_dest_ptr(log
, ptr
);
2406 ASSERT(copy_len
>= 0);
2407 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2408 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
, copy_len
);
2410 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2412 data_cnt
+= contwr
? copy_len
: 0;
2414 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2415 &record_cnt
, &data_cnt
,
2424 * if we had a partial copy, we need to get more iclog
2425 * space but we don't want to increment the region
2426 * index because there is still more is this region to
2429 * If we completed writing this region, and we flushed
2430 * the iclog (indicated by resetting of the record
2431 * count), then we also need to get more log space. If
2432 * this was the last record, though, we are done and
2438 if (++index
== lv
->lv_niovecs
) {
2443 vecp
= lv
->lv_iovecp
;
2445 if (record_cnt
== 0 && ordered
== false) {
2455 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2457 return xlog_state_release_iclog(log
, iclog
);
2459 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2460 *commit_iclog
= iclog
;
2465 /*****************************************************************************
2467 * State Machine functions
2469 *****************************************************************************
2472 /* Clean iclogs starting from the head. This ordering must be
2473 * maintained, so an iclog doesn't become ACTIVE beyond one that
2474 * is SYNCING. This is also required to maintain the notion that we use
2475 * a ordered wait queue to hold off would be writers to the log when every
2476 * iclog is trying to sync to disk.
2478 * State Change: DIRTY -> ACTIVE
2481 xlog_state_clean_log(
2484 xlog_in_core_t
*iclog
;
2487 iclog
= log
->l_iclog
;
2489 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2490 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2491 iclog
->ic_offset
= 0;
2492 ASSERT(iclog
->ic_callback
== NULL
);
2494 * If the number of ops in this iclog indicate it just
2495 * contains the dummy transaction, we can
2496 * change state into IDLE (the second time around).
2497 * Otherwise we should change the state into
2499 * We don't need to cover the dummy.
2502 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2507 * We have two dirty iclogs so start over
2508 * This could also be num of ops indicates
2509 * this is not the dummy going out.
2513 iclog
->ic_header
.h_num_logops
= 0;
2514 memset(iclog
->ic_header
.h_cycle_data
, 0,
2515 sizeof(iclog
->ic_header
.h_cycle_data
));
2516 iclog
->ic_header
.h_lsn
= 0;
2517 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2520 break; /* stop cleaning */
2521 iclog
= iclog
->ic_next
;
2522 } while (iclog
!= log
->l_iclog
);
2524 /* log is locked when we are called */
2526 * Change state for the dummy log recording.
2527 * We usually go to NEED. But we go to NEED2 if the changed indicates
2528 * we are done writing the dummy record.
2529 * If we are done with the second dummy recored (DONE2), then
2533 switch (log
->l_covered_state
) {
2534 case XLOG_STATE_COVER_IDLE
:
2535 case XLOG_STATE_COVER_NEED
:
2536 case XLOG_STATE_COVER_NEED2
:
2537 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2540 case XLOG_STATE_COVER_DONE
:
2542 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2544 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2547 case XLOG_STATE_COVER_DONE2
:
2549 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2551 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2558 } /* xlog_state_clean_log */
2561 xlog_get_lowest_lsn(
2564 xlog_in_core_t
*lsn_log
;
2565 xfs_lsn_t lowest_lsn
, lsn
;
2567 lsn_log
= log
->l_iclog
;
2570 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2571 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2572 if ((lsn
&& !lowest_lsn
) ||
2573 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2577 lsn_log
= lsn_log
->ic_next
;
2578 } while (lsn_log
!= log
->l_iclog
);
2584 xlog_state_do_callback(
2587 struct xlog_in_core
*ciclog
)
2589 xlog_in_core_t
*iclog
;
2590 xlog_in_core_t
*first_iclog
; /* used to know when we've
2591 * processed all iclogs once */
2592 xfs_log_callback_t
*cb
, *cb_next
;
2594 xfs_lsn_t lowest_lsn
;
2595 int ioerrors
; /* counter: iclogs with errors */
2596 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2597 int funcdidcallbacks
; /* flag: function did callbacks */
2598 int repeats
; /* for issuing console warnings if
2599 * looping too many times */
2602 spin_lock(&log
->l_icloglock
);
2603 first_iclog
= iclog
= log
->l_iclog
;
2605 funcdidcallbacks
= 0;
2610 * Scan all iclogs starting with the one pointed to by the
2611 * log. Reset this starting point each time the log is
2612 * unlocked (during callbacks).
2614 * Keep looping through iclogs until one full pass is made
2615 * without running any callbacks.
2617 first_iclog
= log
->l_iclog
;
2618 iclog
= log
->l_iclog
;
2619 loopdidcallbacks
= 0;
2624 /* skip all iclogs in the ACTIVE & DIRTY states */
2625 if (iclog
->ic_state
&
2626 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2627 iclog
= iclog
->ic_next
;
2632 * Between marking a filesystem SHUTDOWN and stopping
2633 * the log, we do flush all iclogs to disk (if there
2634 * wasn't a log I/O error). So, we do want things to
2635 * go smoothly in case of just a SHUTDOWN w/o a
2638 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2640 * Can only perform callbacks in order. Since
2641 * this iclog is not in the DONE_SYNC/
2642 * DO_CALLBACK state, we skip the rest and
2643 * just try to clean up. If we set our iclog
2644 * to DO_CALLBACK, we will not process it when
2645 * we retry since a previous iclog is in the
2646 * CALLBACK and the state cannot change since
2647 * we are holding the l_icloglock.
2649 if (!(iclog
->ic_state
&
2650 (XLOG_STATE_DONE_SYNC
|
2651 XLOG_STATE_DO_CALLBACK
))) {
2652 if (ciclog
&& (ciclog
->ic_state
==
2653 XLOG_STATE_DONE_SYNC
)) {
2654 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2659 * We now have an iclog that is in either the
2660 * DO_CALLBACK or DONE_SYNC states. The other
2661 * states (WANT_SYNC, SYNCING, or CALLBACK were
2662 * caught by the above if and are going to
2663 * clean (i.e. we aren't doing their callbacks)
2668 * We will do one more check here to see if we
2669 * have chased our tail around.
2672 lowest_lsn
= xlog_get_lowest_lsn(log
);
2674 XFS_LSN_CMP(lowest_lsn
,
2675 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2676 iclog
= iclog
->ic_next
;
2677 continue; /* Leave this iclog for
2681 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2685 * Completion of a iclog IO does not imply that
2686 * a transaction has completed, as transactions
2687 * can be large enough to span many iclogs. We
2688 * cannot change the tail of the log half way
2689 * through a transaction as this may be the only
2690 * transaction in the log and moving th etail to
2691 * point to the middle of it will prevent
2692 * recovery from finding the start of the
2693 * transaction. Hence we should only update the
2694 * last_sync_lsn if this iclog contains
2695 * transaction completion callbacks on it.
2697 * We have to do this before we drop the
2698 * icloglock to ensure we are the only one that
2701 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2702 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2703 if (iclog
->ic_callback
)
2704 atomic64_set(&log
->l_last_sync_lsn
,
2705 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2710 spin_unlock(&log
->l_icloglock
);
2713 * Keep processing entries in the callback list until
2714 * we come around and it is empty. We need to
2715 * atomically see that the list is empty and change the
2716 * state to DIRTY so that we don't miss any more
2717 * callbacks being added.
2719 spin_lock(&iclog
->ic_callback_lock
);
2720 cb
= iclog
->ic_callback
;
2722 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2723 iclog
->ic_callback
= NULL
;
2724 spin_unlock(&iclog
->ic_callback_lock
);
2726 /* perform callbacks in the order given */
2727 for (; cb
; cb
= cb_next
) {
2728 cb_next
= cb
->cb_next
;
2729 cb
->cb_func(cb
->cb_arg
, aborted
);
2731 spin_lock(&iclog
->ic_callback_lock
);
2732 cb
= iclog
->ic_callback
;
2738 spin_lock(&log
->l_icloglock
);
2739 ASSERT(iclog
->ic_callback
== NULL
);
2740 spin_unlock(&iclog
->ic_callback_lock
);
2741 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2742 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2745 * Transition from DIRTY to ACTIVE if applicable.
2746 * NOP if STATE_IOERROR.
2748 xlog_state_clean_log(log
);
2750 /* wake up threads waiting in xfs_log_force() */
2751 wake_up_all(&iclog
->ic_force_wait
);
2753 iclog
= iclog
->ic_next
;
2754 } while (first_iclog
!= iclog
);
2756 if (repeats
> 5000) {
2757 flushcnt
+= repeats
;
2760 "%s: possible infinite loop (%d iterations)",
2761 __func__
, flushcnt
);
2763 } while (!ioerrors
&& loopdidcallbacks
);
2766 * make one last gasp attempt to see if iclogs are being left in
2770 if (funcdidcallbacks
) {
2771 first_iclog
= iclog
= log
->l_iclog
;
2773 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2775 * Terminate the loop if iclogs are found in states
2776 * which will cause other threads to clean up iclogs.
2778 * SYNCING - i/o completion will go through logs
2779 * DONE_SYNC - interrupt thread should be waiting for
2781 * IOERROR - give up hope all ye who enter here
2783 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2784 iclog
->ic_state
== XLOG_STATE_SYNCING
||
2785 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2786 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2788 iclog
= iclog
->ic_next
;
2789 } while (first_iclog
!= iclog
);
2793 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2795 spin_unlock(&log
->l_icloglock
);
2798 wake_up_all(&log
->l_flush_wait
);
2803 * Finish transitioning this iclog to the dirty state.
2805 * Make sure that we completely execute this routine only when this is
2806 * the last call to the iclog. There is a good chance that iclog flushes,
2807 * when we reach the end of the physical log, get turned into 2 separate
2808 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2809 * routine. By using the reference count bwritecnt, we guarantee that only
2810 * the second completion goes through.
2812 * Callbacks could take time, so they are done outside the scope of the
2813 * global state machine log lock.
2816 xlog_state_done_syncing(
2817 xlog_in_core_t
*iclog
,
2820 struct xlog
*log
= iclog
->ic_log
;
2822 spin_lock(&log
->l_icloglock
);
2824 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2825 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2826 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2827 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2831 * If we got an error, either on the first buffer, or in the case of
2832 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2833 * and none should ever be attempted to be written to disk
2836 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2837 if (--iclog
->ic_bwritecnt
== 1) {
2838 spin_unlock(&log
->l_icloglock
);
2841 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2845 * Someone could be sleeping prior to writing out the next
2846 * iclog buffer, we wake them all, one will get to do the
2847 * I/O, the others get to wait for the result.
2849 wake_up_all(&iclog
->ic_write_wait
);
2850 spin_unlock(&log
->l_icloglock
);
2851 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2852 } /* xlog_state_done_syncing */
2856 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2857 * sleep. We wait on the flush queue on the head iclog as that should be
2858 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2859 * we will wait here and all new writes will sleep until a sync completes.
2861 * The in-core logs are used in a circular fashion. They are not used
2862 * out-of-order even when an iclog past the head is free.
2865 * * log_offset where xlog_write() can start writing into the in-core
2867 * * in-core log pointer to which xlog_write() should write.
2868 * * boolean indicating this is a continued write to an in-core log.
2869 * If this is the last write, then the in-core log's offset field
2870 * needs to be incremented, depending on the amount of data which
2874 xlog_state_get_iclog_space(
2877 struct xlog_in_core
**iclogp
,
2878 struct xlog_ticket
*ticket
,
2879 int *continued_write
,
2883 xlog_rec_header_t
*head
;
2884 xlog_in_core_t
*iclog
;
2888 spin_lock(&log
->l_icloglock
);
2889 if (XLOG_FORCED_SHUTDOWN(log
)) {
2890 spin_unlock(&log
->l_icloglock
);
2894 iclog
= log
->l_iclog
;
2895 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2896 XFS_STATS_INC(xs_log_noiclogs
);
2898 /* Wait for log writes to have flushed */
2899 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2903 head
= &iclog
->ic_header
;
2905 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2906 log_offset
= iclog
->ic_offset
;
2908 /* On the 1st write to an iclog, figure out lsn. This works
2909 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2910 * committing to. If the offset is set, that's how many blocks
2913 if (log_offset
== 0) {
2914 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2915 xlog_tic_add_region(ticket
,
2917 XLOG_REG_TYPE_LRHEADER
);
2918 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2919 head
->h_lsn
= cpu_to_be64(
2920 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2921 ASSERT(log
->l_curr_block
>= 0);
2924 /* If there is enough room to write everything, then do it. Otherwise,
2925 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2926 * bit is on, so this will get flushed out. Don't update ic_offset
2927 * until you know exactly how many bytes get copied. Therefore, wait
2928 * until later to update ic_offset.
2930 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2931 * can fit into remaining data section.
2933 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2934 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2937 * If I'm the only one writing to this iclog, sync it to disk.
2938 * We need to do an atomic compare and decrement here to avoid
2939 * racing with concurrent atomic_dec_and_lock() calls in
2940 * xlog_state_release_iclog() when there is more than one
2941 * reference to the iclog.
2943 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2944 /* we are the only one */
2945 spin_unlock(&log
->l_icloglock
);
2946 error
= xlog_state_release_iclog(log
, iclog
);
2950 spin_unlock(&log
->l_icloglock
);
2955 /* Do we have enough room to write the full amount in the remainder
2956 * of this iclog? Or must we continue a write on the next iclog and
2957 * mark this iclog as completely taken? In the case where we switch
2958 * iclogs (to mark it taken), this particular iclog will release/sync
2959 * to disk in xlog_write().
2961 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
2962 *continued_write
= 0;
2963 iclog
->ic_offset
+= len
;
2965 *continued_write
= 1;
2966 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2970 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
2971 spin_unlock(&log
->l_icloglock
);
2973 *logoffsetp
= log_offset
;
2975 } /* xlog_state_get_iclog_space */
2977 /* The first cnt-1 times through here we don't need to
2978 * move the grant write head because the permanent
2979 * reservation has reserved cnt times the unit amount.
2980 * Release part of current permanent unit reservation and
2981 * reset current reservation to be one units worth. Also
2982 * move grant reservation head forward.
2985 xlog_regrant_reserve_log_space(
2987 struct xlog_ticket
*ticket
)
2989 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
2991 if (ticket
->t_cnt
> 0)
2994 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
2995 ticket
->t_curr_res
);
2996 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
2997 ticket
->t_curr_res
);
2998 ticket
->t_curr_res
= ticket
->t_unit_res
;
2999 xlog_tic_reset_res(ticket
);
3001 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3003 /* just return if we still have some of the pre-reserved space */
3004 if (ticket
->t_cnt
> 0)
3007 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3008 ticket
->t_unit_res
);
3010 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3012 ticket
->t_curr_res
= ticket
->t_unit_res
;
3013 xlog_tic_reset_res(ticket
);
3014 } /* xlog_regrant_reserve_log_space */
3018 * Give back the space left from a reservation.
3020 * All the information we need to make a correct determination of space left
3021 * is present. For non-permanent reservations, things are quite easy. The
3022 * count should have been decremented to zero. We only need to deal with the
3023 * space remaining in the current reservation part of the ticket. If the
3024 * ticket contains a permanent reservation, there may be left over space which
3025 * needs to be released. A count of N means that N-1 refills of the current
3026 * reservation can be done before we need to ask for more space. The first
3027 * one goes to fill up the first current reservation. Once we run out of
3028 * space, the count will stay at zero and the only space remaining will be
3029 * in the current reservation field.
3032 xlog_ungrant_log_space(
3034 struct xlog_ticket
*ticket
)
3038 if (ticket
->t_cnt
> 0)
3041 trace_xfs_log_ungrant_enter(log
, ticket
);
3042 trace_xfs_log_ungrant_sub(log
, ticket
);
3045 * If this is a permanent reservation ticket, we may be able to free
3046 * up more space based on the remaining count.
3048 bytes
= ticket
->t_curr_res
;
3049 if (ticket
->t_cnt
> 0) {
3050 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3051 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3054 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3055 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3057 trace_xfs_log_ungrant_exit(log
, ticket
);
3059 xfs_log_space_wake(log
->l_mp
);
3063 * Flush iclog to disk if this is the last reference to the given iclog and
3064 * the WANT_SYNC bit is set.
3066 * When this function is entered, the iclog is not necessarily in the
3067 * WANT_SYNC state. It may be sitting around waiting to get filled.
3072 xlog_state_release_iclog(
3074 struct xlog_in_core
*iclog
)
3076 int sync
= 0; /* do we sync? */
3078 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3081 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3082 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3085 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3086 spin_unlock(&log
->l_icloglock
);
3089 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3090 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3092 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3093 /* update tail before writing to iclog */
3094 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3096 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3097 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3098 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3099 /* cycle incremented when incrementing curr_block */
3101 spin_unlock(&log
->l_icloglock
);
3104 * We let the log lock go, so it's possible that we hit a log I/O
3105 * error or some other SHUTDOWN condition that marks the iclog
3106 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3107 * this iclog has consistent data, so we ignore IOERROR
3108 * flags after this point.
3111 return xlog_sync(log
, iclog
);
3113 } /* xlog_state_release_iclog */
3117 * This routine will mark the current iclog in the ring as WANT_SYNC
3118 * and move the current iclog pointer to the next iclog in the ring.
3119 * When this routine is called from xlog_state_get_iclog_space(), the
3120 * exact size of the iclog has not yet been determined. All we know is
3121 * that every data block. We have run out of space in this log record.
3124 xlog_state_switch_iclogs(
3126 struct xlog_in_core
*iclog
,
3129 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3131 eventual_size
= iclog
->ic_offset
;
3132 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3133 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3134 log
->l_prev_block
= log
->l_curr_block
;
3135 log
->l_prev_cycle
= log
->l_curr_cycle
;
3137 /* roll log?: ic_offset changed later */
3138 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3140 /* Round up to next log-sunit */
3141 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3142 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3143 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3144 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3147 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3148 log
->l_curr_cycle
++;
3149 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3150 log
->l_curr_cycle
++;
3151 log
->l_curr_block
-= log
->l_logBBsize
;
3152 ASSERT(log
->l_curr_block
>= 0);
3154 ASSERT(iclog
== log
->l_iclog
);
3155 log
->l_iclog
= iclog
->ic_next
;
3156 } /* xlog_state_switch_iclogs */
3159 * Write out all data in the in-core log as of this exact moment in time.
3161 * Data may be written to the in-core log during this call. However,
3162 * we don't guarantee this data will be written out. A change from past
3163 * implementation means this routine will *not* write out zero length LRs.
3165 * Basically, we try and perform an intelligent scan of the in-core logs.
3166 * If we determine there is no flushable data, we just return. There is no
3167 * flushable data if:
3169 * 1. the current iclog is active and has no data; the previous iclog
3170 * is in the active or dirty state.
3171 * 2. the current iclog is drity, and the previous iclog is in the
3172 * active or dirty state.
3176 * 1. the current iclog is not in the active nor dirty state.
3177 * 2. the current iclog dirty, and the previous iclog is not in the
3178 * active nor dirty state.
3179 * 3. the current iclog is active, and there is another thread writing
3180 * to this particular iclog.
3181 * 4. a) the current iclog is active and has no other writers
3182 * b) when we return from flushing out this iclog, it is still
3183 * not in the active nor dirty state.
3187 struct xfs_mount
*mp
,
3191 struct xlog
*log
= mp
->m_log
;
3192 struct xlog_in_core
*iclog
;
3195 XFS_STATS_INC(xs_log_force
);
3197 xlog_cil_force(log
);
3199 spin_lock(&log
->l_icloglock
);
3201 iclog
= log
->l_iclog
;
3202 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3203 spin_unlock(&log
->l_icloglock
);
3207 /* If the head iclog is not active nor dirty, we just attach
3208 * ourselves to the head and go to sleep.
3210 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3211 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3213 * If the head is dirty or (active and empty), then
3214 * we need to look at the previous iclog. If the previous
3215 * iclog is active or dirty we are done. There is nothing
3216 * to sync out. Otherwise, we attach ourselves to the
3217 * previous iclog and go to sleep.
3219 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3220 (atomic_read(&iclog
->ic_refcnt
) == 0
3221 && iclog
->ic_offset
== 0)) {
3222 iclog
= iclog
->ic_prev
;
3223 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3224 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3229 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3230 /* We are the only one with access to this
3231 * iclog. Flush it out now. There should
3232 * be a roundoff of zero to show that someone
3233 * has already taken care of the roundoff from
3234 * the previous sync.
3236 atomic_inc(&iclog
->ic_refcnt
);
3237 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3238 xlog_state_switch_iclogs(log
, iclog
, 0);
3239 spin_unlock(&log
->l_icloglock
);
3241 if (xlog_state_release_iclog(log
, iclog
))
3246 spin_lock(&log
->l_icloglock
);
3247 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3248 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3253 /* Someone else is writing to this iclog.
3254 * Use its call to flush out the data. However,
3255 * the other thread may not force out this LR,
3256 * so we mark it WANT_SYNC.
3258 xlog_state_switch_iclogs(log
, iclog
, 0);
3264 /* By the time we come around again, the iclog could've been filled
3265 * which would give it another lsn. If we have a new lsn, just
3266 * return because the relevant data has been flushed.
3269 if (flags
& XFS_LOG_SYNC
) {
3271 * We must check if we're shutting down here, before
3272 * we wait, while we're holding the l_icloglock.
3273 * Then we check again after waking up, in case our
3274 * sleep was disturbed by a bad news.
3276 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3277 spin_unlock(&log
->l_icloglock
);
3280 XFS_STATS_INC(xs_log_force_sleep
);
3281 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3283 * No need to grab the log lock here since we're
3284 * only deciding whether or not to return EIO
3285 * and the memory read should be atomic.
3287 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3294 spin_unlock(&log
->l_icloglock
);
3300 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3301 * about errors or whether the log was flushed or not. This is the normal
3302 * interface to use when trying to unpin items or move the log forward.
3311 trace_xfs_log_force(mp
, 0);
3312 error
= _xfs_log_force(mp
, flags
, NULL
);
3314 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3318 * Force the in-core log to disk for a specific LSN.
3320 * Find in-core log with lsn.
3321 * If it is in the DIRTY state, just return.
3322 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3323 * state and go to sleep or return.
3324 * If it is in any other state, go to sleep or return.
3326 * Synchronous forces are implemented with a signal variable. All callers
3327 * to force a given lsn to disk will wait on a the sv attached to the
3328 * specific in-core log. When given in-core log finally completes its
3329 * write to disk, that thread will wake up all threads waiting on the
3334 struct xfs_mount
*mp
,
3339 struct xlog
*log
= mp
->m_log
;
3340 struct xlog_in_core
*iclog
;
3341 int already_slept
= 0;
3345 XFS_STATS_INC(xs_log_force
);
3347 lsn
= xlog_cil_force_lsn(log
, lsn
);
3348 if (lsn
== NULLCOMMITLSN
)
3352 spin_lock(&log
->l_icloglock
);
3353 iclog
= log
->l_iclog
;
3354 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3355 spin_unlock(&log
->l_icloglock
);
3360 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3361 iclog
= iclog
->ic_next
;
3365 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3366 spin_unlock(&log
->l_icloglock
);
3370 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3372 * We sleep here if we haven't already slept (e.g.
3373 * this is the first time we've looked at the correct
3374 * iclog buf) and the buffer before us is going to
3375 * be sync'ed. The reason for this is that if we
3376 * are doing sync transactions here, by waiting for
3377 * the previous I/O to complete, we can allow a few
3378 * more transactions into this iclog before we close
3381 * Otherwise, we mark the buffer WANT_SYNC, and bump
3382 * up the refcnt so we can release the log (which
3383 * drops the ref count). The state switch keeps new
3384 * transaction commits from using this buffer. When
3385 * the current commits finish writing into the buffer,
3386 * the refcount will drop to zero and the buffer will
3389 if (!already_slept
&&
3390 (iclog
->ic_prev
->ic_state
&
3391 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3392 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3394 XFS_STATS_INC(xs_log_force_sleep
);
3396 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3403 atomic_inc(&iclog
->ic_refcnt
);
3404 xlog_state_switch_iclogs(log
, iclog
, 0);
3405 spin_unlock(&log
->l_icloglock
);
3406 if (xlog_state_release_iclog(log
, iclog
))
3410 spin_lock(&log
->l_icloglock
);
3413 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3415 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3417 * Don't wait on completion if we know that we've
3418 * gotten a log write error.
3420 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3421 spin_unlock(&log
->l_icloglock
);
3424 XFS_STATS_INC(xs_log_force_sleep
);
3425 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3427 * No need to grab the log lock here since we're
3428 * only deciding whether or not to return EIO
3429 * and the memory read should be atomic.
3431 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3436 } else { /* just return */
3437 spin_unlock(&log
->l_icloglock
);
3441 } while (iclog
!= log
->l_iclog
);
3443 spin_unlock(&log
->l_icloglock
);
3448 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3449 * about errors or whether the log was flushed or not. This is the normal
3450 * interface to use when trying to unpin items or move the log forward.
3460 trace_xfs_log_force(mp
, lsn
);
3461 error
= _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3463 xfs_warn(mp
, "%s: error %d returned.", __func__
, error
);
3467 * Called when we want to mark the current iclog as being ready to sync to
3471 xlog_state_want_sync(
3473 struct xlog_in_core
*iclog
)
3475 assert_spin_locked(&log
->l_icloglock
);
3477 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3478 xlog_state_switch_iclogs(log
, iclog
, 0);
3480 ASSERT(iclog
->ic_state
&
3481 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3486 /*****************************************************************************
3490 *****************************************************************************
3494 * Free a used ticket when its refcount falls to zero.
3498 xlog_ticket_t
*ticket
)
3500 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3501 if (atomic_dec_and_test(&ticket
->t_ref
))
3502 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3507 xlog_ticket_t
*ticket
)
3509 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3510 atomic_inc(&ticket
->t_ref
);
3515 * Figure out the total log space unit (in bytes) that would be
3516 * required for a log ticket.
3519 xfs_log_calc_unit_res(
3520 struct xfs_mount
*mp
,
3523 struct xlog
*log
= mp
->m_log
;
3528 * Permanent reservations have up to 'cnt'-1 active log operations
3529 * in the log. A unit in this case is the amount of space for one
3530 * of these log operations. Normal reservations have a cnt of 1
3531 * and their unit amount is the total amount of space required.
3533 * The following lines of code account for non-transaction data
3534 * which occupy space in the on-disk log.
3536 * Normal form of a transaction is:
3537 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3538 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3540 * We need to account for all the leadup data and trailer data
3541 * around the transaction data.
3542 * And then we need to account for the worst case in terms of using
3544 * The worst case will happen if:
3545 * - the placement of the transaction happens to be such that the
3546 * roundoff is at its maximum
3547 * - the transaction data is synced before the commit record is synced
3548 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3549 * Therefore the commit record is in its own Log Record.
3550 * This can happen as the commit record is called with its
3551 * own region to xlog_write().
3552 * This then means that in the worst case, roundoff can happen for
3553 * the commit-rec as well.
3554 * The commit-rec is smaller than padding in this scenario and so it is
3555 * not added separately.
3558 /* for trans header */
3559 unit_bytes
+= sizeof(xlog_op_header_t
);
3560 unit_bytes
+= sizeof(xfs_trans_header_t
);
3563 unit_bytes
+= sizeof(xlog_op_header_t
);
3566 * for LR headers - the space for data in an iclog is the size minus
3567 * the space used for the headers. If we use the iclog size, then we
3568 * undercalculate the number of headers required.
3570 * Furthermore - the addition of op headers for split-recs might
3571 * increase the space required enough to require more log and op
3572 * headers, so take that into account too.
3574 * IMPORTANT: This reservation makes the assumption that if this
3575 * transaction is the first in an iclog and hence has the LR headers
3576 * accounted to it, then the remaining space in the iclog is
3577 * exclusively for this transaction. i.e. if the transaction is larger
3578 * than the iclog, it will be the only thing in that iclog.
3579 * Fundamentally, this means we must pass the entire log vector to
3580 * xlog_write to guarantee this.
3582 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3583 num_headers
= howmany(unit_bytes
, iclog_space
);
3585 /* for split-recs - ophdrs added when data split over LRs */
3586 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3588 /* add extra header reservations if we overrun */
3589 while (!num_headers
||
3590 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3591 unit_bytes
+= sizeof(xlog_op_header_t
);
3594 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3596 /* for commit-rec LR header - note: padding will subsume the ophdr */
3597 unit_bytes
+= log
->l_iclog_hsize
;
3599 /* for roundoff padding for transaction data and one for commit record */
3600 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3601 /* log su roundoff */
3602 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3605 unit_bytes
+= 2 * BBSIZE
;
3612 * Allocate and initialise a new log ticket.
3614 struct xlog_ticket
*
3621 xfs_km_flags_t alloc_flags
)
3623 struct xlog_ticket
*tic
;
3626 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3630 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3632 atomic_set(&tic
->t_ref
, 1);
3633 tic
->t_task
= current
;
3634 INIT_LIST_HEAD(&tic
->t_queue
);
3635 tic
->t_unit_res
= unit_res
;
3636 tic
->t_curr_res
= unit_res
;
3639 tic
->t_tid
= prandom_u32();
3640 tic
->t_clientid
= client
;
3641 tic
->t_flags
= XLOG_TIC_INITED
;
3642 tic
->t_trans_type
= 0;
3644 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3646 xlog_tic_reset_res(tic
);
3652 /******************************************************************************
3654 * Log debug routines
3656 ******************************************************************************
3660 * Make sure that the destination ptr is within the valid data region of
3661 * one of the iclogs. This uses backup pointers stored in a different
3662 * part of the log in case we trash the log structure.
3665 xlog_verify_dest_ptr(
3672 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3673 if (ptr
>= log
->l_iclog_bak
[i
] &&
3674 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3679 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3683 * Check to make sure the grant write head didn't just over lap the tail. If
3684 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3685 * the cycles differ by exactly one and check the byte count.
3687 * This check is run unlocked, so can give false positives. Rather than assert
3688 * on failures, use a warn-once flag and a panic tag to allow the admin to
3689 * determine if they want to panic the machine when such an error occurs. For
3690 * debug kernels this will have the same effect as using an assert but, unlinke
3691 * an assert, it can be turned off at runtime.
3694 xlog_verify_grant_tail(
3697 int tail_cycle
, tail_blocks
;
3700 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3701 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3702 if (tail_cycle
!= cycle
) {
3703 if (cycle
- 1 != tail_cycle
&&
3704 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3705 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3706 "%s: cycle - 1 != tail_cycle", __func__
);
3707 log
->l_flags
|= XLOG_TAIL_WARN
;
3710 if (space
> BBTOB(tail_blocks
) &&
3711 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3712 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3713 "%s: space > BBTOB(tail_blocks)", __func__
);
3714 log
->l_flags
|= XLOG_TAIL_WARN
;
3719 /* check if it will fit */
3721 xlog_verify_tail_lsn(
3723 struct xlog_in_core
*iclog
,
3728 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3730 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3731 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3732 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3734 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3736 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3737 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3739 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3740 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3741 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3743 } /* xlog_verify_tail_lsn */
3746 * Perform a number of checks on the iclog before writing to disk.
3748 * 1. Make sure the iclogs are still circular
3749 * 2. Make sure we have a good magic number
3750 * 3. Make sure we don't have magic numbers in the data
3751 * 4. Check fields of each log operation header for:
3752 * A. Valid client identifier
3753 * B. tid ptr value falls in valid ptr space (user space code)
3754 * C. Length in log record header is correct according to the
3755 * individual operation headers within record.
3756 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3757 * log, check the preceding blocks of the physical log to make sure all
3758 * the cycle numbers agree with the current cycle number.
3763 struct xlog_in_core
*iclog
,
3767 xlog_op_header_t
*ophead
;
3768 xlog_in_core_t
*icptr
;
3769 xlog_in_core_2_t
*xhdr
;
3771 xfs_caddr_t base_ptr
;
3772 __psint_t field_offset
;
3774 int len
, i
, j
, k
, op_len
;
3777 /* check validity of iclog pointers */
3778 spin_lock(&log
->l_icloglock
);
3779 icptr
= log
->l_iclog
;
3780 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3783 if (icptr
!= log
->l_iclog
)
3784 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3785 spin_unlock(&log
->l_icloglock
);
3787 /* check log magic numbers */
3788 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3789 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3791 ptr
= (xfs_caddr_t
) &iclog
->ic_header
;
3792 for (ptr
+= BBSIZE
; ptr
< ((xfs_caddr_t
)&iclog
->ic_header
) + count
;
3794 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3795 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3800 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3801 ptr
= iclog
->ic_datap
;
3803 ophead
= (xlog_op_header_t
*)ptr
;
3804 xhdr
= iclog
->ic_data
;
3805 for (i
= 0; i
< len
; i
++) {
3806 ophead
= (xlog_op_header_t
*)ptr
;
3808 /* clientid is only 1 byte */
3809 field_offset
= (__psint_t
)
3810 ((xfs_caddr_t
)&(ophead
->oh_clientid
) - base_ptr
);
3811 if (!syncing
|| (field_offset
& 0x1ff)) {
3812 clientid
= ophead
->oh_clientid
;
3814 idx
= BTOBBT((xfs_caddr_t
)&(ophead
->oh_clientid
) - iclog
->ic_datap
);
3815 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3816 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3817 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3818 clientid
= xlog_get_client_id(
3819 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3821 clientid
= xlog_get_client_id(
3822 iclog
->ic_header
.h_cycle_data
[idx
]);
3825 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3827 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3828 __func__
, clientid
, ophead
,
3829 (unsigned long)field_offset
);
3832 field_offset
= (__psint_t
)
3833 ((xfs_caddr_t
)&(ophead
->oh_len
) - base_ptr
);
3834 if (!syncing
|| (field_offset
& 0x1ff)) {
3835 op_len
= be32_to_cpu(ophead
->oh_len
);
3837 idx
= BTOBBT((__psint_t
)&ophead
->oh_len
-
3838 (__psint_t
)iclog
->ic_datap
);
3839 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3840 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3841 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3842 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3844 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3847 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3849 } /* xlog_verify_iclog */
3853 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3859 xlog_in_core_t
*iclog
, *ic
;
3861 iclog
= log
->l_iclog
;
3862 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3864 * Mark all the incore logs IOERROR.
3865 * From now on, no log flushes will result.
3869 ic
->ic_state
= XLOG_STATE_IOERROR
;
3871 } while (ic
!= iclog
);
3875 * Return non-zero, if state transition has already happened.
3881 * This is called from xfs_force_shutdown, when we're forcibly
3882 * shutting down the filesystem, typically because of an IO error.
3883 * Our main objectives here are to make sure that:
3884 * a. if !logerror, flush the logs to disk. Anything modified
3885 * after this is ignored.
3886 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3887 * parties to find out, 'atomically'.
3888 * c. those who're sleeping on log reservations, pinned objects and
3889 * other resources get woken up, and be told the bad news.
3890 * d. nothing new gets queued up after (b) and (c) are done.
3892 * Note: for the !logerror case we need to flush the regions held in memory out
3893 * to disk first. This needs to be done before the log is marked as shutdown,
3894 * otherwise the iclog writes will fail.
3897 xfs_log_force_umount(
3898 struct xfs_mount
*mp
,
3907 * If this happens during log recovery, don't worry about
3908 * locking; the log isn't open for business yet.
3911 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3912 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3914 XFS_BUF_DONE(mp
->m_sb_bp
);
3919 * Somebody could've already done the hard work for us.
3920 * No need to get locks for this.
3922 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3923 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3928 * Flush all the completed transactions to disk before marking the log
3929 * being shut down. We need to do it in this order to ensure that
3930 * completed operations are safely on disk before we shut down, and that
3931 * we don't have to issue any buffer IO after the shutdown flags are set
3932 * to guarantee this.
3935 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3938 * mark the filesystem and the as in a shutdown state and wake
3939 * everybody up to tell them the bad news.
3941 spin_lock(&log
->l_icloglock
);
3942 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3944 XFS_BUF_DONE(mp
->m_sb_bp
);
3947 * Mark the log and the iclogs with IO error flags to prevent any
3948 * further log IO from being issued or completed.
3950 log
->l_flags
|= XLOG_IO_ERROR
;
3951 retval
= xlog_state_ioerror(log
);
3952 spin_unlock(&log
->l_icloglock
);
3955 * We don't want anybody waiting for log reservations after this. That
3956 * means we have to wake up everybody queued up on reserveq as well as
3957 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3958 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959 * action is protected by the grant locks.
3961 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3962 xlog_grant_head_wake_all(&log
->l_write_head
);
3965 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966 * as if the log writes were completed. The abort handling in the log
3967 * item committed callback functions will do this again under lock to
3970 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
3971 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
3973 #ifdef XFSERRORDEBUG
3975 xlog_in_core_t
*iclog
;
3977 spin_lock(&log
->l_icloglock
);
3978 iclog
= log
->l_iclog
;
3980 ASSERT(iclog
->ic_callback
== 0);
3981 iclog
= iclog
->ic_next
;
3982 } while (iclog
!= log
->l_iclog
);
3983 spin_unlock(&log
->l_icloglock
);
3986 /* return non-zero if log IOERROR transition had already happened */
3994 xlog_in_core_t
*iclog
;
3996 iclog
= log
->l_iclog
;
3998 /* endianness does not matter here, zero is zero in
4001 if (iclog
->ic_header
.h_num_logops
)
4003 iclog
= iclog
->ic_next
;
4004 } while (iclog
!= log
->l_iclog
);