2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
54 xlog_clear_stale_blocks(
59 xlog_recover_check_summary(
62 #define xlog_recover_check_summary(log)
66 * This structure is used during recovery to record the buf log items which
67 * have been canceled and should not be replayed.
69 struct xfs_buf_cancel
{
73 struct list_head bc_list
;
77 * Sector aligned buffer routines for buffer create/read/write/access
81 * Verify the given count of basic blocks is valid number of blocks
82 * to specify for an operation involving the given XFS log buffer.
83 * Returns nonzero if the count is valid, 0 otherwise.
87 xlog_buf_bbcount_valid(
91 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
106 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
107 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
109 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
114 * We do log I/O in units of log sectors (a power-of-2
115 * multiple of the basic block size), so we round up the
116 * requested size to accommodate the basic blocks required
117 * for complete log sectors.
119 * In addition, the buffer may be used for a non-sector-
120 * aligned block offset, in which case an I/O of the
121 * requested size could extend beyond the end of the
122 * buffer. If the requested size is only 1 basic block it
123 * will never straddle a sector boundary, so this won't be
124 * an issue. Nor will this be a problem if the log I/O is
125 * done in basic blocks (sector size 1). But otherwise we
126 * extend the buffer by one extra log sector to ensure
127 * there's space to accommodate this possibility.
129 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
130 nbblks
+= log
->l_sectBBsize
;
131 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
133 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
147 * Return the address of the start of the given block number's data
148 * in a log buffer. The buffer covers a log sector-aligned region.
157 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
159 ASSERT(offset
+ nbblks
<= bp
->b_length
);
160 return bp
->b_addr
+ BBTOB(offset
);
165 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
176 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
177 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
179 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
180 return -EFSCORRUPTED
;
183 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
184 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
187 ASSERT(nbblks
<= bp
->b_length
);
189 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
191 bp
->b_io_length
= nbblks
;
194 error
= xfs_buf_submit_wait(bp
);
195 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
196 xfs_buf_ioerror_alert(bp
, __func__
);
210 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
214 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
219 * Read at an offset into the buffer. Returns with the buffer in it's original
220 * state regardless of the result of the read.
225 xfs_daddr_t blk_no
, /* block to read from */
226 int nbblks
, /* blocks to read */
230 xfs_caddr_t orig_offset
= bp
->b_addr
;
231 int orig_len
= BBTOB(bp
->b_length
);
234 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
238 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
240 /* must reset buffer pointer even on error */
241 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
248 * Write out the buffer at the given block for the given number of blocks.
249 * The buffer is kept locked across the write and is returned locked.
250 * This can only be used for synchronous log writes.
261 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
262 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
264 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
265 return -EFSCORRUPTED
;
268 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
269 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
272 ASSERT(nbblks
<= bp
->b_length
);
274 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
275 XFS_BUF_ZEROFLAGS(bp
);
278 bp
->b_io_length
= nbblks
;
281 error
= xfs_bwrite(bp
);
283 xfs_buf_ioerror_alert(bp
, __func__
);
290 * dump debug superblock and log record information
293 xlog_header_check_dump(
295 xlog_rec_header_t
*head
)
297 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
298 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
299 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
300 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
303 #define xlog_header_check_dump(mp, head)
307 * check log record header for recovery
310 xlog_header_check_recover(
312 xlog_rec_header_t
*head
)
314 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
317 * IRIX doesn't write the h_fmt field and leaves it zeroed
318 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
319 * a dirty log created in IRIX.
321 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
323 "dirty log written in incompatible format - can't recover");
324 xlog_header_check_dump(mp
, head
);
325 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
326 XFS_ERRLEVEL_HIGH
, mp
);
327 return -EFSCORRUPTED
;
328 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
330 "dirty log entry has mismatched uuid - can't recover");
331 xlog_header_check_dump(mp
, head
);
332 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
333 XFS_ERRLEVEL_HIGH
, mp
);
334 return -EFSCORRUPTED
;
340 * read the head block of the log and check the header
343 xlog_header_check_mount(
345 xlog_rec_header_t
*head
)
347 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
349 if (uuid_is_nil(&head
->h_fs_uuid
)) {
351 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
352 * h_fs_uuid is nil, we assume this log was last mounted
353 * by IRIX and continue.
355 xfs_warn(mp
, "nil uuid in log - IRIX style log");
356 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
357 xfs_warn(mp
, "log has mismatched uuid - can't recover");
358 xlog_header_check_dump(mp
, head
);
359 XFS_ERROR_REPORT("xlog_header_check_mount",
360 XFS_ERRLEVEL_HIGH
, mp
);
361 return -EFSCORRUPTED
;
372 * We're not going to bother about retrying
373 * this during recovery. One strike!
375 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
376 xfs_buf_ioerror_alert(bp
, __func__
);
377 xfs_force_shutdown(bp
->b_target
->bt_mount
,
378 SHUTDOWN_META_IO_ERROR
);
386 * This routine finds (to an approximation) the first block in the physical
387 * log which contains the given cycle. It uses a binary search algorithm.
388 * Note that the algorithm can not be perfect because the disk will not
389 * necessarily be perfect.
392 xlog_find_cycle_start(
395 xfs_daddr_t first_blk
,
396 xfs_daddr_t
*last_blk
,
406 mid_blk
= BLK_AVG(first_blk
, end_blk
);
407 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
408 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
411 mid_cycle
= xlog_get_cycle(offset
);
412 if (mid_cycle
== cycle
)
413 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
415 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
416 mid_blk
= BLK_AVG(first_blk
, end_blk
);
418 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
419 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
427 * Check that a range of blocks does not contain stop_on_cycle_no.
428 * Fill in *new_blk with the block offset where such a block is
429 * found, or with -1 (an invalid block number) if there is no such
430 * block in the range. The scan needs to occur from front to back
431 * and the pointer into the region must be updated since a later
432 * routine will need to perform another test.
435 xlog_find_verify_cycle(
437 xfs_daddr_t start_blk
,
439 uint stop_on_cycle_no
,
440 xfs_daddr_t
*new_blk
)
446 xfs_caddr_t buf
= NULL
;
450 * Greedily allocate a buffer big enough to handle the full
451 * range of basic blocks we'll be examining. If that fails,
452 * try a smaller size. We need to be able to read at least
453 * a log sector, or we're out of luck.
455 bufblks
= 1 << ffs(nbblks
);
456 while (bufblks
> log
->l_logBBsize
)
458 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
460 if (bufblks
< log
->l_sectBBsize
)
464 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
467 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
469 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
473 for (j
= 0; j
< bcount
; j
++) {
474 cycle
= xlog_get_cycle(buf
);
475 if (cycle
== stop_on_cycle_no
) {
492 * Potentially backup over partial log record write.
494 * In the typical case, last_blk is the number of the block directly after
495 * a good log record. Therefore, we subtract one to get the block number
496 * of the last block in the given buffer. extra_bblks contains the number
497 * of blocks we would have read on a previous read. This happens when the
498 * last log record is split over the end of the physical log.
500 * extra_bblks is the number of blocks potentially verified on a previous
501 * call to this routine.
504 xlog_find_verify_log_record(
506 xfs_daddr_t start_blk
,
507 xfs_daddr_t
*last_blk
,
512 xfs_caddr_t offset
= NULL
;
513 xlog_rec_header_t
*head
= NULL
;
516 int num_blks
= *last_blk
- start_blk
;
519 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
521 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
522 if (!(bp
= xlog_get_bp(log
, 1)))
526 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
529 offset
+= ((num_blks
- 1) << BBSHIFT
);
532 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
534 /* valid log record not found */
536 "Log inconsistent (didn't find previous header)");
543 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
548 head
= (xlog_rec_header_t
*)offset
;
550 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
558 * We hit the beginning of the physical log & still no header. Return
559 * to caller. If caller can handle a return of -1, then this routine
560 * will be called again for the end of the physical log.
568 * We have the final block of the good log (the first block
569 * of the log record _before_ the head. So we check the uuid.
571 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
575 * We may have found a log record header before we expected one.
576 * last_blk will be the 1st block # with a given cycle #. We may end
577 * up reading an entire log record. In this case, we don't want to
578 * reset last_blk. Only when last_blk points in the middle of a log
579 * record do we update last_blk.
581 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
582 uint h_size
= be32_to_cpu(head
->h_size
);
584 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
585 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
591 if (*last_blk
- i
+ extra_bblks
!=
592 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
601 * Head is defined to be the point of the log where the next log write
602 * could go. This means that incomplete LR writes at the end are
603 * eliminated when calculating the head. We aren't guaranteed that previous
604 * LR have complete transactions. We only know that a cycle number of
605 * current cycle number -1 won't be present in the log if we start writing
606 * from our current block number.
608 * last_blk contains the block number of the first block with a given
611 * Return: zero if normal, non-zero if error.
616 xfs_daddr_t
*return_head_blk
)
620 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
622 uint first_half_cycle
, last_half_cycle
;
624 int error
, log_bbnum
= log
->l_logBBsize
;
626 /* Is the end of the log device zeroed? */
627 error
= xlog_find_zeroed(log
, &first_blk
);
629 xfs_warn(log
->l_mp
, "empty log check failed");
633 *return_head_blk
= first_blk
;
635 /* Is the whole lot zeroed? */
637 /* Linux XFS shouldn't generate totally zeroed logs -
638 * mkfs etc write a dummy unmount record to a fresh
639 * log so we can store the uuid in there
641 xfs_warn(log
->l_mp
, "totally zeroed log");
647 first_blk
= 0; /* get cycle # of 1st block */
648 bp
= xlog_get_bp(log
, 1);
652 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
656 first_half_cycle
= xlog_get_cycle(offset
);
658 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
659 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
663 last_half_cycle
= xlog_get_cycle(offset
);
664 ASSERT(last_half_cycle
!= 0);
667 * If the 1st half cycle number is equal to the last half cycle number,
668 * then the entire log is stamped with the same cycle number. In this
669 * case, head_blk can't be set to zero (which makes sense). The below
670 * math doesn't work out properly with head_blk equal to zero. Instead,
671 * we set it to log_bbnum which is an invalid block number, but this
672 * value makes the math correct. If head_blk doesn't changed through
673 * all the tests below, *head_blk is set to zero at the very end rather
674 * than log_bbnum. In a sense, log_bbnum and zero are the same block
675 * in a circular file.
677 if (first_half_cycle
== last_half_cycle
) {
679 * In this case we believe that the entire log should have
680 * cycle number last_half_cycle. We need to scan backwards
681 * from the end verifying that there are no holes still
682 * containing last_half_cycle - 1. If we find such a hole,
683 * then the start of that hole will be the new head. The
684 * simple case looks like
685 * x | x ... | x - 1 | x
686 * Another case that fits this picture would be
687 * x | x + 1 | x ... | x
688 * In this case the head really is somewhere at the end of the
689 * log, as one of the latest writes at the beginning was
692 * x | x + 1 | x ... | x - 1 | x
693 * This is really the combination of the above two cases, and
694 * the head has to end up at the start of the x-1 hole at the
697 * In the 256k log case, we will read from the beginning to the
698 * end of the log and search for cycle numbers equal to x-1.
699 * We don't worry about the x+1 blocks that we encounter,
700 * because we know that they cannot be the head since the log
703 head_blk
= log_bbnum
;
704 stop_on_cycle
= last_half_cycle
- 1;
707 * In this case we want to find the first block with cycle
708 * number matching last_half_cycle. We expect the log to be
710 * x + 1 ... | x ... | x
711 * The first block with cycle number x (last_half_cycle) will
712 * be where the new head belongs. First we do a binary search
713 * for the first occurrence of last_half_cycle. The binary
714 * search may not be totally accurate, so then we scan back
715 * from there looking for occurrences of last_half_cycle before
716 * us. If that backwards scan wraps around the beginning of
717 * the log, then we look for occurrences of last_half_cycle - 1
718 * at the end of the log. The cases we're looking for look
720 * v binary search stopped here
721 * x + 1 ... | x | x + 1 | x ... | x
722 * ^ but we want to locate this spot
724 * <---------> less than scan distance
725 * x + 1 ... | x ... | x - 1 | x
726 * ^ we want to locate this spot
728 stop_on_cycle
= last_half_cycle
;
729 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
730 &head_blk
, last_half_cycle
)))
735 * Now validate the answer. Scan back some number of maximum possible
736 * blocks and make sure each one has the expected cycle number. The
737 * maximum is determined by the total possible amount of buffering
738 * in the in-core log. The following number can be made tighter if
739 * we actually look at the block size of the filesystem.
741 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
742 if (head_blk
>= num_scan_bblks
) {
744 * We are guaranteed that the entire check can be performed
747 start_blk
= head_blk
- num_scan_bblks
;
748 if ((error
= xlog_find_verify_cycle(log
,
749 start_blk
, num_scan_bblks
,
750 stop_on_cycle
, &new_blk
)))
754 } else { /* need to read 2 parts of log */
756 * We are going to scan backwards in the log in two parts.
757 * First we scan the physical end of the log. In this part
758 * of the log, we are looking for blocks with cycle number
759 * last_half_cycle - 1.
760 * If we find one, then we know that the log starts there, as
761 * we've found a hole that didn't get written in going around
762 * the end of the physical log. The simple case for this is
763 * x + 1 ... | x ... | x - 1 | x
764 * <---------> less than scan distance
765 * If all of the blocks at the end of the log have cycle number
766 * last_half_cycle, then we check the blocks at the start of
767 * the log looking for occurrences of last_half_cycle. If we
768 * find one, then our current estimate for the location of the
769 * first occurrence of last_half_cycle is wrong and we move
770 * back to the hole we've found. This case looks like
771 * x + 1 ... | x | x + 1 | x ...
772 * ^ binary search stopped here
773 * Another case we need to handle that only occurs in 256k
775 * x + 1 ... | x ... | x+1 | x ...
776 * ^ binary search stops here
777 * In a 256k log, the scan at the end of the log will see the
778 * x + 1 blocks. We need to skip past those since that is
779 * certainly not the head of the log. By searching for
780 * last_half_cycle-1 we accomplish that.
782 ASSERT(head_blk
<= INT_MAX
&&
783 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
784 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
785 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
786 num_scan_bblks
- (int)head_blk
,
787 (stop_on_cycle
- 1), &new_blk
)))
795 * Scan beginning of log now. The last part of the physical
796 * log is good. This scan needs to verify that it doesn't find
797 * the last_half_cycle.
800 ASSERT(head_blk
<= INT_MAX
);
801 if ((error
= xlog_find_verify_cycle(log
,
802 start_blk
, (int)head_blk
,
803 stop_on_cycle
, &new_blk
)))
811 * Now we need to make sure head_blk is not pointing to a block in
812 * the middle of a log record.
814 num_scan_bblks
= XLOG_REC_SHIFT(log
);
815 if (head_blk
>= num_scan_bblks
) {
816 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
818 /* start ptr at last block ptr before head_blk */
819 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
826 ASSERT(head_blk
<= INT_MAX
);
827 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
831 /* We hit the beginning of the log during our search */
832 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
834 ASSERT(start_blk
<= INT_MAX
&&
835 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
836 ASSERT(head_blk
<= INT_MAX
);
837 error
= xlog_find_verify_log_record(log
, start_blk
,
838 &new_blk
, (int)head_blk
);
843 if (new_blk
!= log_bbnum
)
850 if (head_blk
== log_bbnum
)
851 *return_head_blk
= 0;
853 *return_head_blk
= head_blk
;
855 * When returning here, we have a good block number. Bad block
856 * means that during a previous crash, we didn't have a clean break
857 * from cycle number N to cycle number N-1. In this case, we need
858 * to find the first block with cycle number N-1.
866 xfs_warn(log
->l_mp
, "failed to find log head");
871 * Find the sync block number or the tail of the log.
873 * This will be the block number of the last record to have its
874 * associated buffers synced to disk. Every log record header has
875 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
876 * to get a sync block number. The only concern is to figure out which
877 * log record header to believe.
879 * The following algorithm uses the log record header with the largest
880 * lsn. The entire log record does not need to be valid. We only care
881 * that the header is valid.
883 * We could speed up search by using current head_blk buffer, but it is not
889 xfs_daddr_t
*head_blk
,
890 xfs_daddr_t
*tail_blk
)
892 xlog_rec_header_t
*rhead
;
893 xlog_op_header_t
*op_head
;
894 xfs_caddr_t offset
= NULL
;
897 xfs_daddr_t umount_data_blk
;
898 xfs_daddr_t after_umount_blk
;
905 * Find previous log record
907 if ((error
= xlog_find_head(log
, head_blk
)))
910 bp
= xlog_get_bp(log
, 1);
913 if (*head_blk
== 0) { /* special case */
914 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
918 if (xlog_get_cycle(offset
) == 0) {
920 /* leave all other log inited values alone */
926 * Search backwards looking for log record header block
928 ASSERT(*head_blk
< INT_MAX
);
929 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
930 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
934 if (*(__be32
*)offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
940 * If we haven't found the log record header block, start looking
941 * again from the end of the physical log. XXXmiken: There should be
942 * a check here to make sure we didn't search more than N blocks in
946 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
947 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
951 if (*(__be32
*)offset
==
952 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
959 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
965 /* find blk_no of tail of log */
966 rhead
= (xlog_rec_header_t
*)offset
;
967 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
970 * Reset log values according to the state of the log when we
971 * crashed. In the case where head_blk == 0, we bump curr_cycle
972 * one because the next write starts a new cycle rather than
973 * continuing the cycle of the last good log record. At this
974 * point we have guaranteed that all partial log records have been
975 * accounted for. Therefore, we know that the last good log record
976 * written was complete and ended exactly on the end boundary
977 * of the physical log.
979 log
->l_prev_block
= i
;
980 log
->l_curr_block
= (int)*head_blk
;
981 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
984 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
985 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
986 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
987 BBTOB(log
->l_curr_block
));
988 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
989 BBTOB(log
->l_curr_block
));
992 * Look for unmount record. If we find it, then we know there
993 * was a clean unmount. Since 'i' could be the last block in
994 * the physical log, we convert to a log block before comparing
997 * Save the current tail lsn to use to pass to
998 * xlog_clear_stale_blocks() below. We won't want to clear the
999 * unmount record if there is one, so we pass the lsn of the
1000 * unmount record rather than the block after it.
1002 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1003 int h_size
= be32_to_cpu(rhead
->h_size
);
1004 int h_version
= be32_to_cpu(rhead
->h_version
);
1006 if ((h_version
& XLOG_VERSION_2
) &&
1007 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1008 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1009 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1017 after_umount_blk
= (i
+ hblks
+ (int)
1018 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
1019 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1020 if (*head_blk
== after_umount_blk
&&
1021 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1022 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
1023 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1027 op_head
= (xlog_op_header_t
*)offset
;
1028 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1030 * Set tail and last sync so that newly written
1031 * log records will point recovery to after the
1032 * current unmount record.
1034 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1035 log
->l_curr_cycle
, after_umount_blk
);
1036 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1037 log
->l_curr_cycle
, after_umount_blk
);
1038 *tail_blk
= after_umount_blk
;
1041 * Note that the unmount was clean. If the unmount
1042 * was not clean, we need to know this to rebuild the
1043 * superblock counters from the perag headers if we
1044 * have a filesystem using non-persistent counters.
1046 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1051 * Make sure that there are no blocks in front of the head
1052 * with the same cycle number as the head. This can happen
1053 * because we allow multiple outstanding log writes concurrently,
1054 * and the later writes might make it out before earlier ones.
1056 * We use the lsn from before modifying it so that we'll never
1057 * overwrite the unmount record after a clean unmount.
1059 * Do this only if we are going to recover the filesystem
1061 * NOTE: This used to say "if (!readonly)"
1062 * However on Linux, we can & do recover a read-only filesystem.
1063 * We only skip recovery if NORECOVERY is specified on mount,
1064 * in which case we would not be here.
1066 * But... if the -device- itself is readonly, just skip this.
1067 * We can't recover this device anyway, so it won't matter.
1069 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1070 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1076 xfs_warn(log
->l_mp
, "failed to locate log tail");
1081 * Is the log zeroed at all?
1083 * The last binary search should be changed to perform an X block read
1084 * once X becomes small enough. You can then search linearly through
1085 * the X blocks. This will cut down on the number of reads we need to do.
1087 * If the log is partially zeroed, this routine will pass back the blkno
1088 * of the first block with cycle number 0. It won't have a complete LR
1092 * 0 => the log is completely written to
1093 * 1 => use *blk_no as the first block of the log
1094 * <0 => error has occurred
1099 xfs_daddr_t
*blk_no
)
1103 uint first_cycle
, last_cycle
;
1104 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1105 xfs_daddr_t num_scan_bblks
;
1106 int error
, log_bbnum
= log
->l_logBBsize
;
1110 /* check totally zeroed log */
1111 bp
= xlog_get_bp(log
, 1);
1114 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1118 first_cycle
= xlog_get_cycle(offset
);
1119 if (first_cycle
== 0) { /* completely zeroed log */
1125 /* check partially zeroed log */
1126 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1130 last_cycle
= xlog_get_cycle(offset
);
1131 if (last_cycle
!= 0) { /* log completely written to */
1134 } else if (first_cycle
!= 1) {
1136 * If the cycle of the last block is zero, the cycle of
1137 * the first block must be 1. If it's not, maybe we're
1138 * not looking at a log... Bail out.
1141 "Log inconsistent or not a log (last==0, first!=1)");
1146 /* we have a partially zeroed log */
1147 last_blk
= log_bbnum
-1;
1148 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1152 * Validate the answer. Because there is no way to guarantee that
1153 * the entire log is made up of log records which are the same size,
1154 * we scan over the defined maximum blocks. At this point, the maximum
1155 * is not chosen to mean anything special. XXXmiken
1157 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1158 ASSERT(num_scan_bblks
<= INT_MAX
);
1160 if (last_blk
< num_scan_bblks
)
1161 num_scan_bblks
= last_blk
;
1162 start_blk
= last_blk
- num_scan_bblks
;
1165 * We search for any instances of cycle number 0 that occur before
1166 * our current estimate of the head. What we're trying to detect is
1167 * 1 ... | 0 | 1 | 0...
1168 * ^ binary search ends here
1170 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1171 (int)num_scan_bblks
, 0, &new_blk
)))
1177 * Potentially backup over partial log record write. We don't need
1178 * to search the end of the log because we know it is zero.
1180 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1195 * These are simple subroutines used by xlog_clear_stale_blocks() below
1196 * to initialize a buffer full of empty log record headers and write
1197 * them into the log.
1208 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1210 memset(buf
, 0, BBSIZE
);
1211 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1212 recp
->h_cycle
= cpu_to_be32(cycle
);
1213 recp
->h_version
= cpu_to_be32(
1214 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1215 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1216 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1217 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1218 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1222 xlog_write_log_records(
1233 int sectbb
= log
->l_sectBBsize
;
1234 int end_block
= start_block
+ blocks
;
1240 * Greedily allocate a buffer big enough to handle the full
1241 * range of basic blocks to be written. If that fails, try
1242 * a smaller size. We need to be able to write at least a
1243 * log sector, or we're out of luck.
1245 bufblks
= 1 << ffs(blocks
);
1246 while (bufblks
> log
->l_logBBsize
)
1248 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1250 if (bufblks
< sectbb
)
1254 /* We may need to do a read at the start to fill in part of
1255 * the buffer in the starting sector not covered by the first
1258 balign
= round_down(start_block
, sectbb
);
1259 if (balign
!= start_block
) {
1260 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1264 j
= start_block
- balign
;
1267 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1268 int bcount
, endcount
;
1270 bcount
= min(bufblks
, end_block
- start_block
);
1271 endcount
= bcount
- j
;
1273 /* We may need to do a read at the end to fill in part of
1274 * the buffer in the final sector not covered by the write.
1275 * If this is the same sector as the above read, skip it.
1277 ealign
= round_down(end_block
, sectbb
);
1278 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1279 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1280 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1287 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1288 for (; j
< endcount
; j
++) {
1289 xlog_add_record(log
, offset
, cycle
, i
+j
,
1290 tail_cycle
, tail_block
);
1293 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1296 start_block
+= endcount
;
1306 * This routine is called to blow away any incomplete log writes out
1307 * in front of the log head. We do this so that we won't become confused
1308 * if we come up, write only a little bit more, and then crash again.
1309 * If we leave the partial log records out there, this situation could
1310 * cause us to think those partial writes are valid blocks since they
1311 * have the current cycle number. We get rid of them by overwriting them
1312 * with empty log records with the old cycle number rather than the
1315 * The tail lsn is passed in rather than taken from
1316 * the log so that we will not write over the unmount record after a
1317 * clean unmount in a 512 block log. Doing so would leave the log without
1318 * any valid log records in it until a new one was written. If we crashed
1319 * during that time we would not be able to recover.
1322 xlog_clear_stale_blocks(
1326 int tail_cycle
, head_cycle
;
1327 int tail_block
, head_block
;
1328 int tail_distance
, max_distance
;
1332 tail_cycle
= CYCLE_LSN(tail_lsn
);
1333 tail_block
= BLOCK_LSN(tail_lsn
);
1334 head_cycle
= log
->l_curr_cycle
;
1335 head_block
= log
->l_curr_block
;
1338 * Figure out the distance between the new head of the log
1339 * and the tail. We want to write over any blocks beyond the
1340 * head that we may have written just before the crash, but
1341 * we don't want to overwrite the tail of the log.
1343 if (head_cycle
== tail_cycle
) {
1345 * The tail is behind the head in the physical log,
1346 * so the distance from the head to the tail is the
1347 * distance from the head to the end of the log plus
1348 * the distance from the beginning of the log to the
1351 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1352 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1353 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1354 return -EFSCORRUPTED
;
1356 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1359 * The head is behind the tail in the physical log,
1360 * so the distance from the head to the tail is just
1361 * the tail block minus the head block.
1363 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1364 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1365 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1366 return -EFSCORRUPTED
;
1368 tail_distance
= tail_block
- head_block
;
1372 * If the head is right up against the tail, we can't clear
1375 if (tail_distance
<= 0) {
1376 ASSERT(tail_distance
== 0);
1380 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1382 * Take the smaller of the maximum amount of outstanding I/O
1383 * we could have and the distance to the tail to clear out.
1384 * We take the smaller so that we don't overwrite the tail and
1385 * we don't waste all day writing from the head to the tail
1388 max_distance
= MIN(max_distance
, tail_distance
);
1390 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1392 * We can stomp all the blocks we need to without
1393 * wrapping around the end of the log. Just do it
1394 * in a single write. Use the cycle number of the
1395 * current cycle minus one so that the log will look like:
1398 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1399 head_block
, max_distance
, tail_cycle
,
1405 * We need to wrap around the end of the physical log in
1406 * order to clear all the blocks. Do it in two separate
1407 * I/Os. The first write should be from the head to the
1408 * end of the physical log, and it should use the current
1409 * cycle number minus one just like above.
1411 distance
= log
->l_logBBsize
- head_block
;
1412 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1413 head_block
, distance
, tail_cycle
,
1420 * Now write the blocks at the start of the physical log.
1421 * This writes the remainder of the blocks we want to clear.
1422 * It uses the current cycle number since we're now on the
1423 * same cycle as the head so that we get:
1424 * n ... n ... | n - 1 ...
1425 * ^^^^^ blocks we're writing
1427 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1428 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1429 tail_cycle
, tail_block
);
1437 /******************************************************************************
1439 * Log recover routines
1441 ******************************************************************************
1445 * Sort the log items in the transaction.
1447 * The ordering constraints are defined by the inode allocation and unlink
1448 * behaviour. The rules are:
1450 * 1. Every item is only logged once in a given transaction. Hence it
1451 * represents the last logged state of the item. Hence ordering is
1452 * dependent on the order in which operations need to be performed so
1453 * required initial conditions are always met.
1455 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1456 * there's nothing to replay from them so we can simply cull them
1457 * from the transaction. However, we can't do that until after we've
1458 * replayed all the other items because they may be dependent on the
1459 * cancelled buffer and replaying the cancelled buffer can remove it
1460 * form the cancelled buffer table. Hence they have tobe done last.
1462 * 3. Inode allocation buffers must be replayed before inode items that
1463 * read the buffer and replay changes into it. For filesystems using the
1464 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1465 * treated the same as inode allocation buffers as they create and
1466 * initialise the buffers directly.
1468 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1469 * This ensures that inodes are completely flushed to the inode buffer
1470 * in a "free" state before we remove the unlinked inode list pointer.
1472 * Hence the ordering needs to be inode allocation buffers first, inode items
1473 * second, inode unlink buffers third and cancelled buffers last.
1475 * But there's a problem with that - we can't tell an inode allocation buffer
1476 * apart from a regular buffer, so we can't separate them. We can, however,
1477 * tell an inode unlink buffer from the others, and so we can separate them out
1478 * from all the other buffers and move them to last.
1480 * Hence, 4 lists, in order from head to tail:
1481 * - buffer_list for all buffers except cancelled/inode unlink buffers
1482 * - item_list for all non-buffer items
1483 * - inode_buffer_list for inode unlink buffers
1484 * - cancel_list for the cancelled buffers
1486 * Note that we add objects to the tail of the lists so that first-to-last
1487 * ordering is preserved within the lists. Adding objects to the head of the
1488 * list means when we traverse from the head we walk them in last-to-first
1489 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1490 * but for all other items there may be specific ordering that we need to
1494 xlog_recover_reorder_trans(
1496 struct xlog_recover
*trans
,
1499 xlog_recover_item_t
*item
, *n
;
1501 LIST_HEAD(sort_list
);
1502 LIST_HEAD(cancel_list
);
1503 LIST_HEAD(buffer_list
);
1504 LIST_HEAD(inode_buffer_list
);
1505 LIST_HEAD(inode_list
);
1507 list_splice_init(&trans
->r_itemq
, &sort_list
);
1508 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1509 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1511 switch (ITEM_TYPE(item
)) {
1512 case XFS_LI_ICREATE
:
1513 list_move_tail(&item
->ri_list
, &buffer_list
);
1516 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1517 trace_xfs_log_recover_item_reorder_head(log
,
1519 list_move(&item
->ri_list
, &cancel_list
);
1522 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1523 list_move(&item
->ri_list
, &inode_buffer_list
);
1526 list_move_tail(&item
->ri_list
, &buffer_list
);
1530 case XFS_LI_QUOTAOFF
:
1533 trace_xfs_log_recover_item_reorder_tail(log
,
1535 list_move_tail(&item
->ri_list
, &inode_list
);
1539 "%s: unrecognized type of log operation",
1543 * return the remaining items back to the transaction
1544 * item list so they can be freed in caller.
1546 if (!list_empty(&sort_list
))
1547 list_splice_init(&sort_list
, &trans
->r_itemq
);
1553 ASSERT(list_empty(&sort_list
));
1554 if (!list_empty(&buffer_list
))
1555 list_splice(&buffer_list
, &trans
->r_itemq
);
1556 if (!list_empty(&inode_list
))
1557 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1558 if (!list_empty(&inode_buffer_list
))
1559 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1560 if (!list_empty(&cancel_list
))
1561 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1566 * Build up the table of buf cancel records so that we don't replay
1567 * cancelled data in the second pass. For buffer records that are
1568 * not cancel records, there is nothing to do here so we just return.
1570 * If we get a cancel record which is already in the table, this indicates
1571 * that the buffer was cancelled multiple times. In order to ensure
1572 * that during pass 2 we keep the record in the table until we reach its
1573 * last occurrence in the log, we keep a reference count in the cancel
1574 * record in the table to tell us how many times we expect to see this
1575 * record during the second pass.
1578 xlog_recover_buffer_pass1(
1580 struct xlog_recover_item
*item
)
1582 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1583 struct list_head
*bucket
;
1584 struct xfs_buf_cancel
*bcp
;
1587 * If this isn't a cancel buffer item, then just return.
1589 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1590 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1595 * Insert an xfs_buf_cancel record into the hash table of them.
1596 * If there is already an identical record, bump its reference count.
1598 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1599 list_for_each_entry(bcp
, bucket
, bc_list
) {
1600 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1601 bcp
->bc_len
== buf_f
->blf_len
) {
1603 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1608 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1609 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1610 bcp
->bc_len
= buf_f
->blf_len
;
1611 bcp
->bc_refcount
= 1;
1612 list_add_tail(&bcp
->bc_list
, bucket
);
1614 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1619 * Check to see whether the buffer being recovered has a corresponding
1620 * entry in the buffer cancel record table. If it is, return the cancel
1621 * buffer structure to the caller.
1623 STATIC
struct xfs_buf_cancel
*
1624 xlog_peek_buffer_cancelled(
1630 struct list_head
*bucket
;
1631 struct xfs_buf_cancel
*bcp
;
1633 if (!log
->l_buf_cancel_table
) {
1634 /* empty table means no cancelled buffers in the log */
1635 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1639 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1640 list_for_each_entry(bcp
, bucket
, bc_list
) {
1641 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1646 * We didn't find a corresponding entry in the table, so return 0 so
1647 * that the buffer is NOT cancelled.
1649 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1654 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1655 * otherwise return 0. If the buffer is actually a buffer cancel item
1656 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1657 * table and remove it from the table if this is the last reference.
1659 * We remove the cancel record from the table when we encounter its last
1660 * occurrence in the log so that if the same buffer is re-used again after its
1661 * last cancellation we actually replay the changes made at that point.
1664 xlog_check_buffer_cancelled(
1670 struct xfs_buf_cancel
*bcp
;
1672 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
1677 * We've go a match, so return 1 so that the recovery of this buffer
1678 * is cancelled. If this buffer is actually a buffer cancel log
1679 * item, then decrement the refcount on the one in the table and
1680 * remove it if this is the last reference.
1682 if (flags
& XFS_BLF_CANCEL
) {
1683 if (--bcp
->bc_refcount
== 0) {
1684 list_del(&bcp
->bc_list
);
1692 * Perform recovery for a buffer full of inodes. In these buffers, the only
1693 * data which should be recovered is that which corresponds to the
1694 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1695 * data for the inodes is always logged through the inodes themselves rather
1696 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1698 * The only time when buffers full of inodes are fully recovered is when the
1699 * buffer is full of newly allocated inodes. In this case the buffer will
1700 * not be marked as an inode buffer and so will be sent to
1701 * xlog_recover_do_reg_buffer() below during recovery.
1704 xlog_recover_do_inode_buffer(
1705 struct xfs_mount
*mp
,
1706 xlog_recover_item_t
*item
,
1708 xfs_buf_log_format_t
*buf_f
)
1714 int reg_buf_offset
= 0;
1715 int reg_buf_bytes
= 0;
1716 int next_unlinked_offset
;
1718 xfs_agino_t
*logged_nextp
;
1719 xfs_agino_t
*buffer_nextp
;
1721 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1724 * Post recovery validation only works properly on CRC enabled
1727 if (xfs_sb_version_hascrc(&mp
->m_sb
))
1728 bp
->b_ops
= &xfs_inode_buf_ops
;
1730 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
1731 for (i
= 0; i
< inodes_per_buf
; i
++) {
1732 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1733 offsetof(xfs_dinode_t
, di_next_unlinked
);
1735 while (next_unlinked_offset
>=
1736 (reg_buf_offset
+ reg_buf_bytes
)) {
1738 * The next di_next_unlinked field is beyond
1739 * the current logged region. Find the next
1740 * logged region that contains or is beyond
1741 * the current di_next_unlinked field.
1744 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1745 buf_f
->blf_map_size
, bit
);
1748 * If there are no more logged regions in the
1749 * buffer, then we're done.
1754 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1755 buf_f
->blf_map_size
, bit
);
1757 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1758 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1763 * If the current logged region starts after the current
1764 * di_next_unlinked field, then move on to the next
1765 * di_next_unlinked field.
1767 if (next_unlinked_offset
< reg_buf_offset
)
1770 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1771 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1772 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
1773 BBTOB(bp
->b_io_length
));
1776 * The current logged region contains a copy of the
1777 * current di_next_unlinked field. Extract its value
1778 * and copy it to the buffer copy.
1780 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1781 next_unlinked_offset
- reg_buf_offset
;
1782 if (unlikely(*logged_nextp
== 0)) {
1784 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1785 "Trying to replay bad (0) inode di_next_unlinked field.",
1787 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1788 XFS_ERRLEVEL_LOW
, mp
);
1789 return -EFSCORRUPTED
;
1792 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1793 next_unlinked_offset
);
1794 *buffer_nextp
= *logged_nextp
;
1797 * If necessary, recalculate the CRC in the on-disk inode. We
1798 * have to leave the inode in a consistent state for whoever
1801 xfs_dinode_calc_crc(mp
, (struct xfs_dinode
*)
1802 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
1810 * V5 filesystems know the age of the buffer on disk being recovered. We can
1811 * have newer objects on disk than we are replaying, and so for these cases we
1812 * don't want to replay the current change as that will make the buffer contents
1813 * temporarily invalid on disk.
1815 * The magic number might not match the buffer type we are going to recover
1816 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1817 * extract the LSN of the existing object in the buffer based on it's current
1818 * magic number. If we don't recognise the magic number in the buffer, then
1819 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1820 * so can recover the buffer.
1822 * Note: we cannot rely solely on magic number matches to determine that the
1823 * buffer has a valid LSN - we also need to verify that it belongs to this
1824 * filesystem, so we need to extract the object's LSN and compare it to that
1825 * which we read from the superblock. If the UUIDs don't match, then we've got a
1826 * stale metadata block from an old filesystem instance that we need to recover
1830 xlog_recover_get_buf_lsn(
1831 struct xfs_mount
*mp
,
1837 void *blk
= bp
->b_addr
;
1841 /* v4 filesystems always recover immediately */
1842 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
1843 goto recover_immediately
;
1845 magic32
= be32_to_cpu(*(__be32
*)blk
);
1847 case XFS_ABTB_CRC_MAGIC
:
1848 case XFS_ABTC_CRC_MAGIC
:
1849 case XFS_ABTB_MAGIC
:
1850 case XFS_ABTC_MAGIC
:
1851 case XFS_IBT_CRC_MAGIC
:
1852 case XFS_IBT_MAGIC
: {
1853 struct xfs_btree_block
*btb
= blk
;
1855 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
1856 uuid
= &btb
->bb_u
.s
.bb_uuid
;
1859 case XFS_BMAP_CRC_MAGIC
:
1860 case XFS_BMAP_MAGIC
: {
1861 struct xfs_btree_block
*btb
= blk
;
1863 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
1864 uuid
= &btb
->bb_u
.l
.bb_uuid
;
1868 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
1869 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
1871 case XFS_AGFL_MAGIC
:
1872 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
1873 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
1876 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
1877 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
1879 case XFS_SYMLINK_MAGIC
:
1880 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
1881 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
1883 case XFS_DIR3_BLOCK_MAGIC
:
1884 case XFS_DIR3_DATA_MAGIC
:
1885 case XFS_DIR3_FREE_MAGIC
:
1886 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
1887 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
1889 case XFS_ATTR3_RMT_MAGIC
:
1890 lsn
= be64_to_cpu(((struct xfs_attr3_rmt_hdr
*)blk
)->rm_lsn
);
1891 uuid
= &((struct xfs_attr3_rmt_hdr
*)blk
)->rm_uuid
;
1894 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
1895 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
1901 if (lsn
!= (xfs_lsn_t
)-1) {
1902 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
1903 goto recover_immediately
;
1907 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
1909 case XFS_DIR3_LEAF1_MAGIC
:
1910 case XFS_DIR3_LEAFN_MAGIC
:
1911 case XFS_DA3_NODE_MAGIC
:
1912 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
1913 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
1919 if (lsn
!= (xfs_lsn_t
)-1) {
1920 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
1921 goto recover_immediately
;
1926 * We do individual object checks on dquot and inode buffers as they
1927 * have their own individual LSN records. Also, we could have a stale
1928 * buffer here, so we have to at least recognise these buffer types.
1930 * A notd complexity here is inode unlinked list processing - it logs
1931 * the inode directly in the buffer, but we don't know which inodes have
1932 * been modified, and there is no global buffer LSN. Hence we need to
1933 * recover all inode buffer types immediately. This problem will be
1934 * fixed by logical logging of the unlinked list modifications.
1936 magic16
= be16_to_cpu(*(__be16
*)blk
);
1938 case XFS_DQUOT_MAGIC
:
1939 case XFS_DINODE_MAGIC
:
1940 goto recover_immediately
;
1945 /* unknown buffer contents, recover immediately */
1947 recover_immediately
:
1948 return (xfs_lsn_t
)-1;
1953 * Validate the recovered buffer is of the correct type and attach the
1954 * appropriate buffer operations to them for writeback. Magic numbers are in a
1956 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1957 * the first 32 bits of the buffer (most blocks),
1958 * inside a struct xfs_da_blkinfo at the start of the buffer.
1961 xlog_recover_validate_buf_type(
1962 struct xfs_mount
*mp
,
1964 xfs_buf_log_format_t
*buf_f
)
1966 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
1972 * We can only do post recovery validation on items on CRC enabled
1973 * fielsystems as we need to know when the buffer was written to be able
1974 * to determine if we should have replayed the item. If we replay old
1975 * metadata over a newer buffer, then it will enter a temporarily
1976 * inconsistent state resulting in verification failures. Hence for now
1977 * just avoid the verification stage for non-crc filesystems
1979 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
1982 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
1983 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
1984 magicda
= be16_to_cpu(info
->magic
);
1985 switch (xfs_blft_from_flags(buf_f
)) {
1986 case XFS_BLFT_BTREE_BUF
:
1988 case XFS_ABTB_CRC_MAGIC
:
1989 case XFS_ABTC_CRC_MAGIC
:
1990 case XFS_ABTB_MAGIC
:
1991 case XFS_ABTC_MAGIC
:
1992 bp
->b_ops
= &xfs_allocbt_buf_ops
;
1994 case XFS_IBT_CRC_MAGIC
:
1995 case XFS_FIBT_CRC_MAGIC
:
1997 case XFS_FIBT_MAGIC
:
1998 bp
->b_ops
= &xfs_inobt_buf_ops
;
2000 case XFS_BMAP_CRC_MAGIC
:
2001 case XFS_BMAP_MAGIC
:
2002 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2005 xfs_warn(mp
, "Bad btree block magic!");
2010 case XFS_BLFT_AGF_BUF
:
2011 if (magic32
!= XFS_AGF_MAGIC
) {
2012 xfs_warn(mp
, "Bad AGF block magic!");
2016 bp
->b_ops
= &xfs_agf_buf_ops
;
2018 case XFS_BLFT_AGFL_BUF
:
2019 if (magic32
!= XFS_AGFL_MAGIC
) {
2020 xfs_warn(mp
, "Bad AGFL block magic!");
2024 bp
->b_ops
= &xfs_agfl_buf_ops
;
2026 case XFS_BLFT_AGI_BUF
:
2027 if (magic32
!= XFS_AGI_MAGIC
) {
2028 xfs_warn(mp
, "Bad AGI block magic!");
2032 bp
->b_ops
= &xfs_agi_buf_ops
;
2034 case XFS_BLFT_UDQUOT_BUF
:
2035 case XFS_BLFT_PDQUOT_BUF
:
2036 case XFS_BLFT_GDQUOT_BUF
:
2037 #ifdef CONFIG_XFS_QUOTA
2038 if (magic16
!= XFS_DQUOT_MAGIC
) {
2039 xfs_warn(mp
, "Bad DQUOT block magic!");
2043 bp
->b_ops
= &xfs_dquot_buf_ops
;
2046 "Trying to recover dquots without QUOTA support built in!");
2050 case XFS_BLFT_DINO_BUF
:
2051 if (magic16
!= XFS_DINODE_MAGIC
) {
2052 xfs_warn(mp
, "Bad INODE block magic!");
2056 bp
->b_ops
= &xfs_inode_buf_ops
;
2058 case XFS_BLFT_SYMLINK_BUF
:
2059 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2060 xfs_warn(mp
, "Bad symlink block magic!");
2064 bp
->b_ops
= &xfs_symlink_buf_ops
;
2066 case XFS_BLFT_DIR_BLOCK_BUF
:
2067 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2068 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2069 xfs_warn(mp
, "Bad dir block magic!");
2073 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2075 case XFS_BLFT_DIR_DATA_BUF
:
2076 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2077 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2078 xfs_warn(mp
, "Bad dir data magic!");
2082 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2084 case XFS_BLFT_DIR_FREE_BUF
:
2085 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2086 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2087 xfs_warn(mp
, "Bad dir3 free magic!");
2091 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2093 case XFS_BLFT_DIR_LEAF1_BUF
:
2094 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2095 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2096 xfs_warn(mp
, "Bad dir leaf1 magic!");
2100 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2102 case XFS_BLFT_DIR_LEAFN_BUF
:
2103 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2104 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2105 xfs_warn(mp
, "Bad dir leafn magic!");
2109 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2111 case XFS_BLFT_DA_NODE_BUF
:
2112 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2113 magicda
!= XFS_DA3_NODE_MAGIC
) {
2114 xfs_warn(mp
, "Bad da node magic!");
2118 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2120 case XFS_BLFT_ATTR_LEAF_BUF
:
2121 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2122 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2123 xfs_warn(mp
, "Bad attr leaf magic!");
2127 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2129 case XFS_BLFT_ATTR_RMT_BUF
:
2130 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2131 xfs_warn(mp
, "Bad attr remote magic!");
2135 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2137 case XFS_BLFT_SB_BUF
:
2138 if (magic32
!= XFS_SB_MAGIC
) {
2139 xfs_warn(mp
, "Bad SB block magic!");
2143 bp
->b_ops
= &xfs_sb_buf_ops
;
2146 xfs_warn(mp
, "Unknown buffer type %d!",
2147 xfs_blft_from_flags(buf_f
));
2153 * Perform a 'normal' buffer recovery. Each logged region of the
2154 * buffer should be copied over the corresponding region in the
2155 * given buffer. The bitmap in the buf log format structure indicates
2156 * where to place the logged data.
2159 xlog_recover_do_reg_buffer(
2160 struct xfs_mount
*mp
,
2161 xlog_recover_item_t
*item
,
2163 xfs_buf_log_format_t
*buf_f
)
2170 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2173 i
= 1; /* 0 is the buf format structure */
2175 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2176 buf_f
->blf_map_size
, bit
);
2179 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2180 buf_f
->blf_map_size
, bit
);
2182 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2183 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2184 ASSERT(BBTOB(bp
->b_io_length
) >=
2185 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2188 * The dirty regions logged in the buffer, even though
2189 * contiguous, may span multiple chunks. This is because the
2190 * dirty region may span a physical page boundary in a buffer
2191 * and hence be split into two separate vectors for writing into
2192 * the log. Hence we need to trim nbits back to the length of
2193 * the current region being copied out of the log.
2195 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2196 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2199 * Do a sanity check if this is a dquot buffer. Just checking
2200 * the first dquot in the buffer should do. XXXThis is
2201 * probably a good thing to do for other buf types also.
2204 if (buf_f
->blf_flags
&
2205 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2206 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2208 "XFS: NULL dquot in %s.", __func__
);
2211 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2213 "XFS: dquot too small (%d) in %s.",
2214 item
->ri_buf
[i
].i_len
, __func__
);
2217 error
= xfs_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2218 -1, 0, XFS_QMOPT_DOWARN
,
2219 "dquot_buf_recover");
2224 memcpy(xfs_buf_offset(bp
,
2225 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2226 item
->ri_buf
[i
].i_addr
, /* source */
2227 nbits
<<XFS_BLF_SHIFT
); /* length */
2233 /* Shouldn't be any more regions */
2234 ASSERT(i
== item
->ri_total
);
2236 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2240 * Perform a dquot buffer recovery.
2241 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2242 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2243 * Else, treat it as a regular buffer and do recovery.
2245 * Return false if the buffer was tossed and true if we recovered the buffer to
2246 * indicate to the caller if the buffer needs writing.
2249 xlog_recover_do_dquot_buffer(
2250 struct xfs_mount
*mp
,
2252 struct xlog_recover_item
*item
,
2254 struct xfs_buf_log_format
*buf_f
)
2258 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2261 * Filesystems are required to send in quota flags at mount time.
2267 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2268 type
|= XFS_DQ_USER
;
2269 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2270 type
|= XFS_DQ_PROJ
;
2271 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2272 type
|= XFS_DQ_GROUP
;
2274 * This type of quotas was turned off, so ignore this buffer
2276 if (log
->l_quotaoffs_flag
& type
)
2279 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2284 * This routine replays a modification made to a buffer at runtime.
2285 * There are actually two types of buffer, regular and inode, which
2286 * are handled differently. Inode buffers are handled differently
2287 * in that we only recover a specific set of data from them, namely
2288 * the inode di_next_unlinked fields. This is because all other inode
2289 * data is actually logged via inode records and any data we replay
2290 * here which overlaps that may be stale.
2292 * When meta-data buffers are freed at run time we log a buffer item
2293 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2294 * of the buffer in the log should not be replayed at recovery time.
2295 * This is so that if the blocks covered by the buffer are reused for
2296 * file data before we crash we don't end up replaying old, freed
2297 * meta-data into a user's file.
2299 * To handle the cancellation of buffer log items, we make two passes
2300 * over the log during recovery. During the first we build a table of
2301 * those buffers which have been cancelled, and during the second we
2302 * only replay those buffers which do not have corresponding cancel
2303 * records in the table. See xlog_recover_buffer_pass[1,2] above
2304 * for more details on the implementation of the table of cancel records.
2307 xlog_recover_buffer_pass2(
2309 struct list_head
*buffer_list
,
2310 struct xlog_recover_item
*item
,
2311 xfs_lsn_t current_lsn
)
2313 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2314 xfs_mount_t
*mp
= log
->l_mp
;
2321 * In this pass we only want to recover all the buffers which have
2322 * not been cancelled and are not cancellation buffers themselves.
2324 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2325 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2326 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2330 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2333 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2334 buf_flags
|= XBF_UNMAPPED
;
2336 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2340 error
= bp
->b_error
;
2342 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2347 * Recover the buffer only if we get an LSN from it and it's less than
2348 * the lsn of the transaction we are replaying.
2350 * Note that we have to be extremely careful of readahead here.
2351 * Readahead does not attach verfiers to the buffers so if we don't
2352 * actually do any replay after readahead because of the LSN we found
2353 * in the buffer if more recent than that current transaction then we
2354 * need to attach the verifier directly. Failure to do so can lead to
2355 * future recovery actions (e.g. EFI and unlinked list recovery) can
2356 * operate on the buffers and they won't get the verifier attached. This
2357 * can lead to blocks on disk having the correct content but a stale
2360 * It is safe to assume these clean buffers are currently up to date.
2361 * If the buffer is dirtied by a later transaction being replayed, then
2362 * the verifier will be reset to match whatever recover turns that
2365 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2366 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2367 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2371 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2372 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2375 } else if (buf_f
->blf_flags
&
2376 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2379 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2383 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2387 * Perform delayed write on the buffer. Asynchronous writes will be
2388 * slower when taking into account all the buffers to be flushed.
2390 * Also make sure that only inode buffers with good sizes stay in
2391 * the buffer cache. The kernel moves inodes in buffers of 1 block
2392 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2393 * buffers in the log can be a different size if the log was generated
2394 * by an older kernel using unclustered inode buffers or a newer kernel
2395 * running with a different inode cluster size. Regardless, if the
2396 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2397 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2398 * the buffer out of the buffer cache so that the buffer won't
2399 * overlap with future reads of those inodes.
2401 if (XFS_DINODE_MAGIC
==
2402 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2403 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2404 (__uint32_t
)log
->l_mp
->m_inode_cluster_size
))) {
2406 error
= xfs_bwrite(bp
);
2408 ASSERT(bp
->b_target
->bt_mount
== mp
);
2409 bp
->b_iodone
= xlog_recover_iodone
;
2410 xfs_buf_delwri_queue(bp
, buffer_list
);
2419 * Inode fork owner changes
2421 * If we have been told that we have to reparent the inode fork, it's because an
2422 * extent swap operation on a CRC enabled filesystem has been done and we are
2423 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2426 * The complexity here is that we don't have an inode context to work with, so
2427 * after we've replayed the inode we need to instantiate one. This is where the
2430 * We are in the middle of log recovery, so we can't run transactions. That
2431 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2432 * that will result in the corresponding iput() running the inode through
2433 * xfs_inactive(). If we've just replayed an inode core that changes the link
2434 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2435 * transactions (bad!).
2437 * So, to avoid this, we instantiate an inode directly from the inode core we've
2438 * just recovered. We have the buffer still locked, and all we really need to
2439 * instantiate is the inode core and the forks being modified. We can do this
2440 * manually, then run the inode btree owner change, and then tear down the
2441 * xfs_inode without having to run any transactions at all.
2443 * Also, because we don't have a transaction context available here but need to
2444 * gather all the buffers we modify for writeback so we pass the buffer_list
2445 * instead for the operation to use.
2449 xfs_recover_inode_owner_change(
2450 struct xfs_mount
*mp
,
2451 struct xfs_dinode
*dip
,
2452 struct xfs_inode_log_format
*in_f
,
2453 struct list_head
*buffer_list
)
2455 struct xfs_inode
*ip
;
2458 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2460 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2464 /* instantiate the inode */
2465 xfs_dinode_from_disk(&ip
->i_d
, dip
);
2466 ASSERT(ip
->i_d
.di_version
>= 3);
2468 error
= xfs_iformat_fork(ip
, dip
);
2473 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2474 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2475 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2476 ip
->i_ino
, buffer_list
);
2481 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2482 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2483 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2484 ip
->i_ino
, buffer_list
);
2495 xlog_recover_inode_pass2(
2497 struct list_head
*buffer_list
,
2498 struct xlog_recover_item
*item
,
2499 xfs_lsn_t current_lsn
)
2501 xfs_inode_log_format_t
*in_f
;
2502 xfs_mount_t
*mp
= log
->l_mp
;
2511 xfs_icdinode_t
*dicp
;
2515 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2516 in_f
= item
->ri_buf
[0].i_addr
;
2518 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2520 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2526 * Inode buffers can be freed, look out for it,
2527 * and do not replay the inode.
2529 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2530 in_f
->ilf_len
, 0)) {
2532 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2535 trace_xfs_log_recover_inode_recover(log
, in_f
);
2537 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
2538 &xfs_inode_buf_ops
);
2543 error
= bp
->b_error
;
2545 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2548 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2549 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2552 * Make sure the place we're flushing out to really looks
2555 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2557 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2558 __func__
, dip
, bp
, in_f
->ilf_ino
);
2559 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2560 XFS_ERRLEVEL_LOW
, mp
);
2561 error
= -EFSCORRUPTED
;
2564 dicp
= item
->ri_buf
[1].i_addr
;
2565 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2567 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2568 __func__
, item
, in_f
->ilf_ino
);
2569 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2570 XFS_ERRLEVEL_LOW
, mp
);
2571 error
= -EFSCORRUPTED
;
2576 * If the inode has an LSN in it, recover the inode only if it's less
2577 * than the lsn of the transaction we are replaying. Note: we still
2578 * need to replay an owner change even though the inode is more recent
2579 * than the transaction as there is no guarantee that all the btree
2580 * blocks are more recent than this transaction, too.
2582 if (dip
->di_version
>= 3) {
2583 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
2585 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2586 trace_xfs_log_recover_inode_skip(log
, in_f
);
2588 goto out_owner_change
;
2593 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2594 * are transactional and if ordering is necessary we can determine that
2595 * more accurately by the LSN field in the V3 inode core. Don't trust
2596 * the inode versions we might be changing them here - use the
2597 * superblock flag to determine whether we need to look at di_flushiter
2598 * to skip replay when the on disk inode is newer than the log one
2600 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
2601 dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2603 * Deal with the wrap case, DI_MAX_FLUSH is less
2604 * than smaller numbers
2606 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2607 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2610 trace_xfs_log_recover_inode_skip(log
, in_f
);
2616 /* Take the opportunity to reset the flush iteration count */
2617 dicp
->di_flushiter
= 0;
2619 if (unlikely(S_ISREG(dicp
->di_mode
))) {
2620 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2621 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2622 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2623 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2625 "%s: Bad regular inode log record, rec ptr 0x%p, "
2626 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2627 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2628 error
= -EFSCORRUPTED
;
2631 } else if (unlikely(S_ISDIR(dicp
->di_mode
))) {
2632 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2633 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2634 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2635 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2636 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2638 "%s: Bad dir inode log record, rec ptr 0x%p, "
2639 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2640 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2641 error
= -EFSCORRUPTED
;
2645 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2646 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2647 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2649 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2650 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2651 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2652 dicp
->di_nextents
+ dicp
->di_anextents
,
2654 error
= -EFSCORRUPTED
;
2657 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2658 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2659 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2661 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2662 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2663 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2664 error
= -EFSCORRUPTED
;
2667 isize
= xfs_icdinode_size(dicp
->di_version
);
2668 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
2669 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2670 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2672 "%s: Bad inode log record length %d, rec ptr 0x%p",
2673 __func__
, item
->ri_buf
[1].i_len
, item
);
2674 error
= -EFSCORRUPTED
;
2678 /* The core is in in-core format */
2679 xfs_dinode_to_disk(dip
, dicp
);
2681 /* the rest is in on-disk format */
2682 if (item
->ri_buf
[1].i_len
> isize
) {
2683 memcpy((char *)dip
+ isize
,
2684 item
->ri_buf
[1].i_addr
+ isize
,
2685 item
->ri_buf
[1].i_len
- isize
);
2688 fields
= in_f
->ilf_fields
;
2689 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2691 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2694 memcpy(XFS_DFORK_DPTR(dip
),
2695 &in_f
->ilf_u
.ilfu_uuid
,
2700 if (in_f
->ilf_size
== 2)
2701 goto out_owner_change
;
2702 len
= item
->ri_buf
[2].i_len
;
2703 src
= item
->ri_buf
[2].i_addr
;
2704 ASSERT(in_f
->ilf_size
<= 4);
2705 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2706 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2707 (len
== in_f
->ilf_dsize
));
2709 switch (fields
& XFS_ILOG_DFORK
) {
2710 case XFS_ILOG_DDATA
:
2712 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2715 case XFS_ILOG_DBROOT
:
2716 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2717 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2718 XFS_DFORK_DSIZE(dip
, mp
));
2723 * There are no data fork flags set.
2725 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2730 * If we logged any attribute data, recover it. There may or
2731 * may not have been any other non-core data logged in this
2734 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2735 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2740 len
= item
->ri_buf
[attr_index
].i_len
;
2741 src
= item
->ri_buf
[attr_index
].i_addr
;
2742 ASSERT(len
== in_f
->ilf_asize
);
2744 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2745 case XFS_ILOG_ADATA
:
2747 dest
= XFS_DFORK_APTR(dip
);
2748 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2749 memcpy(dest
, src
, len
);
2752 case XFS_ILOG_ABROOT
:
2753 dest
= XFS_DFORK_APTR(dip
);
2754 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2755 len
, (xfs_bmdr_block_t
*)dest
,
2756 XFS_DFORK_ASIZE(dip
, mp
));
2760 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2768 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
2769 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
2771 /* re-generate the checksum. */
2772 xfs_dinode_calc_crc(log
->l_mp
, dip
);
2774 ASSERT(bp
->b_target
->bt_mount
== mp
);
2775 bp
->b_iodone
= xlog_recover_iodone
;
2776 xfs_buf_delwri_queue(bp
, buffer_list
);
2787 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2788 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2792 xlog_recover_quotaoff_pass1(
2794 struct xlog_recover_item
*item
)
2796 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2800 * The logitem format's flag tells us if this was user quotaoff,
2801 * group/project quotaoff or both.
2803 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2804 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2805 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2806 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2807 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2808 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2814 * Recover a dquot record
2817 xlog_recover_dquot_pass2(
2819 struct list_head
*buffer_list
,
2820 struct xlog_recover_item
*item
,
2821 xfs_lsn_t current_lsn
)
2823 xfs_mount_t
*mp
= log
->l_mp
;
2825 struct xfs_disk_dquot
*ddq
, *recddq
;
2827 xfs_dq_logformat_t
*dq_f
;
2832 * Filesystems are required to send in quota flags at mount time.
2834 if (mp
->m_qflags
== 0)
2837 recddq
= item
->ri_buf
[1].i_addr
;
2838 if (recddq
== NULL
) {
2839 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2842 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2843 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2844 item
->ri_buf
[1].i_len
, __func__
);
2849 * This type of quotas was turned off, so ignore this record.
2851 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2853 if (log
->l_quotaoffs_flag
& type
)
2857 * At this point we know that quota was _not_ turned off.
2858 * Since the mount flags are not indicating to us otherwise, this
2859 * must mean that quota is on, and the dquot needs to be replayed.
2860 * Remember that we may not have fully recovered the superblock yet,
2861 * so we can't do the usual trick of looking at the SB quota bits.
2863 * The other possibility, of course, is that the quota subsystem was
2864 * removed since the last mount - ENOSYS.
2866 dq_f
= item
->ri_buf
[0].i_addr
;
2868 error
= xfs_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2869 "xlog_recover_dquot_pass2 (log copy)");
2872 ASSERT(dq_f
->qlf_len
== 1);
2875 * At this point we are assuming that the dquots have been allocated
2876 * and hence the buffer has valid dquots stamped in it. It should,
2877 * therefore, pass verifier validation. If the dquot is bad, then the
2878 * we'll return an error here, so we don't need to specifically check
2879 * the dquot in the buffer after the verifier has run.
2881 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
2882 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
2883 &xfs_dquot_buf_ops
);
2888 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2891 * If the dquot has an LSN in it, recover the dquot only if it's less
2892 * than the lsn of the transaction we are replaying.
2894 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2895 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
2896 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
2898 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2903 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2904 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
2905 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
2909 ASSERT(dq_f
->qlf_size
== 2);
2910 ASSERT(bp
->b_target
->bt_mount
== mp
);
2911 bp
->b_iodone
= xlog_recover_iodone
;
2912 xfs_buf_delwri_queue(bp
, buffer_list
);
2920 * This routine is called to create an in-core extent free intent
2921 * item from the efi format structure which was logged on disk.
2922 * It allocates an in-core efi, copies the extents from the format
2923 * structure into it, and adds the efi to the AIL with the given
2927 xlog_recover_efi_pass2(
2929 struct xlog_recover_item
*item
,
2933 xfs_mount_t
*mp
= log
->l_mp
;
2934 xfs_efi_log_item_t
*efip
;
2935 xfs_efi_log_format_t
*efi_formatp
;
2937 efi_formatp
= item
->ri_buf
[0].i_addr
;
2939 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2940 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2941 &(efip
->efi_format
)))) {
2942 xfs_efi_item_free(efip
);
2945 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2947 spin_lock(&log
->l_ailp
->xa_lock
);
2949 * xfs_trans_ail_update() drops the AIL lock.
2951 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2957 * This routine is called when an efd format structure is found in
2958 * a committed transaction in the log. It's purpose is to cancel
2959 * the corresponding efi if it was still in the log. To do this
2960 * it searches the AIL for the efi with an id equal to that in the
2961 * efd format structure. If we find it, we remove the efi from the
2965 xlog_recover_efd_pass2(
2967 struct xlog_recover_item
*item
)
2969 xfs_efd_log_format_t
*efd_formatp
;
2970 xfs_efi_log_item_t
*efip
= NULL
;
2971 xfs_log_item_t
*lip
;
2973 struct xfs_ail_cursor cur
;
2974 struct xfs_ail
*ailp
= log
->l_ailp
;
2976 efd_formatp
= item
->ri_buf
[0].i_addr
;
2977 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2978 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2979 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2980 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2981 efi_id
= efd_formatp
->efd_efi_id
;
2984 * Search for the efi with the id in the efd format structure
2987 spin_lock(&ailp
->xa_lock
);
2988 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2989 while (lip
!= NULL
) {
2990 if (lip
->li_type
== XFS_LI_EFI
) {
2991 efip
= (xfs_efi_log_item_t
*)lip
;
2992 if (efip
->efi_format
.efi_id
== efi_id
) {
2994 * xfs_trans_ail_delete() drops the
2997 xfs_trans_ail_delete(ailp
, lip
,
2998 SHUTDOWN_CORRUPT_INCORE
);
2999 xfs_efi_item_free(efip
);
3000 spin_lock(&ailp
->xa_lock
);
3004 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3006 xfs_trans_ail_cursor_done(&cur
);
3007 spin_unlock(&ailp
->xa_lock
);
3013 * This routine is called when an inode create format structure is found in a
3014 * committed transaction in the log. It's purpose is to initialise the inodes
3015 * being allocated on disk. This requires us to get inode cluster buffers that
3016 * match the range to be intialised, stamped with inode templates and written
3017 * by delayed write so that subsequent modifications will hit the cached buffer
3018 * and only need writing out at the end of recovery.
3021 xlog_recover_do_icreate_pass2(
3023 struct list_head
*buffer_list
,
3024 xlog_recover_item_t
*item
)
3026 struct xfs_mount
*mp
= log
->l_mp
;
3027 struct xfs_icreate_log
*icl
;
3028 xfs_agnumber_t agno
;
3029 xfs_agblock_t agbno
;
3032 xfs_agblock_t length
;
3034 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3035 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3036 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3040 if (icl
->icl_size
!= 1) {
3041 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3045 agno
= be32_to_cpu(icl
->icl_ag
);
3046 if (agno
>= mp
->m_sb
.sb_agcount
) {
3047 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3050 agbno
= be32_to_cpu(icl
->icl_agbno
);
3051 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3052 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3055 isize
= be32_to_cpu(icl
->icl_isize
);
3056 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3057 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3060 count
= be32_to_cpu(icl
->icl_count
);
3062 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3065 length
= be32_to_cpu(icl
->icl_length
);
3066 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3067 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3071 /* existing allocation is fixed value */
3072 ASSERT(count
== mp
->m_ialloc_inos
);
3073 ASSERT(length
== mp
->m_ialloc_blks
);
3074 if (count
!= mp
->m_ialloc_inos
||
3075 length
!= mp
->m_ialloc_blks
) {
3076 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count 2");
3081 * Inode buffers can be freed. Do not replay the inode initialisation as
3082 * we could be overwriting something written after this inode buffer was
3085 * XXX: we need to iterate all buffers and only init those that are not
3086 * cancelled. I think that a more fine grained factoring of
3087 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3090 if (xlog_check_buffer_cancelled(log
,
3091 XFS_AGB_TO_DADDR(mp
, agno
, agbno
), length
, 0))
3094 xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, agno
, agbno
, length
,
3095 be32_to_cpu(icl
->icl_gen
));
3100 xlog_recover_buffer_ra_pass2(
3102 struct xlog_recover_item
*item
)
3104 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3105 struct xfs_mount
*mp
= log
->l_mp
;
3107 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3108 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3112 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3113 buf_f
->blf_len
, NULL
);
3117 xlog_recover_inode_ra_pass2(
3119 struct xlog_recover_item
*item
)
3121 struct xfs_inode_log_format ilf_buf
;
3122 struct xfs_inode_log_format
*ilfp
;
3123 struct xfs_mount
*mp
= log
->l_mp
;
3126 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3127 ilfp
= item
->ri_buf
[0].i_addr
;
3130 memset(ilfp
, 0, sizeof(*ilfp
));
3131 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3136 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3139 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
3140 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
3144 xlog_recover_dquot_ra_pass2(
3146 struct xlog_recover_item
*item
)
3148 struct xfs_mount
*mp
= log
->l_mp
;
3149 struct xfs_disk_dquot
*recddq
;
3150 struct xfs_dq_logformat
*dq_f
;
3154 if (mp
->m_qflags
== 0)
3157 recddq
= item
->ri_buf
[1].i_addr
;
3160 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
3163 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3165 if (log
->l_quotaoffs_flag
& type
)
3168 dq_f
= item
->ri_buf
[0].i_addr
;
3170 ASSERT(dq_f
->qlf_len
== 1);
3172 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3173 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), NULL
);
3177 xlog_recover_ra_pass2(
3179 struct xlog_recover_item
*item
)
3181 switch (ITEM_TYPE(item
)) {
3183 xlog_recover_buffer_ra_pass2(log
, item
);
3186 xlog_recover_inode_ra_pass2(log
, item
);
3189 xlog_recover_dquot_ra_pass2(log
, item
);
3193 case XFS_LI_QUOTAOFF
:
3200 xlog_recover_commit_pass1(
3202 struct xlog_recover
*trans
,
3203 struct xlog_recover_item
*item
)
3205 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
3207 switch (ITEM_TYPE(item
)) {
3209 return xlog_recover_buffer_pass1(log
, item
);
3210 case XFS_LI_QUOTAOFF
:
3211 return xlog_recover_quotaoff_pass1(log
, item
);
3216 case XFS_LI_ICREATE
:
3217 /* nothing to do in pass 1 */
3220 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3221 __func__
, ITEM_TYPE(item
));
3228 xlog_recover_commit_pass2(
3230 struct xlog_recover
*trans
,
3231 struct list_head
*buffer_list
,
3232 struct xlog_recover_item
*item
)
3234 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
3236 switch (ITEM_TYPE(item
)) {
3238 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
3241 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
3244 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
3246 return xlog_recover_efd_pass2(log
, item
);
3248 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
3250 case XFS_LI_ICREATE
:
3251 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
3252 case XFS_LI_QUOTAOFF
:
3253 /* nothing to do in pass2 */
3256 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3257 __func__
, ITEM_TYPE(item
));
3264 xlog_recover_items_pass2(
3266 struct xlog_recover
*trans
,
3267 struct list_head
*buffer_list
,
3268 struct list_head
*item_list
)
3270 struct xlog_recover_item
*item
;
3273 list_for_each_entry(item
, item_list
, ri_list
) {
3274 error
= xlog_recover_commit_pass2(log
, trans
,
3284 * Perform the transaction.
3286 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3287 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3290 xlog_recover_commit_trans(
3292 struct xlog_recover
*trans
,
3297 int items_queued
= 0;
3298 struct xlog_recover_item
*item
;
3299 struct xlog_recover_item
*next
;
3300 LIST_HEAD (buffer_list
);
3301 LIST_HEAD (ra_list
);
3302 LIST_HEAD (done_list
);
3304 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3306 hlist_del(&trans
->r_list
);
3308 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
3312 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
3314 case XLOG_RECOVER_PASS1
:
3315 error
= xlog_recover_commit_pass1(log
, trans
, item
);
3317 case XLOG_RECOVER_PASS2
:
3318 xlog_recover_ra_pass2(log
, item
);
3319 list_move_tail(&item
->ri_list
, &ra_list
);
3321 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
3322 error
= xlog_recover_items_pass2(log
, trans
,
3323 &buffer_list
, &ra_list
);
3324 list_splice_tail_init(&ra_list
, &done_list
);
3338 if (!list_empty(&ra_list
)) {
3340 error
= xlog_recover_items_pass2(log
, trans
,
3341 &buffer_list
, &ra_list
);
3342 list_splice_tail_init(&ra_list
, &done_list
);
3345 if (!list_empty(&done_list
))
3346 list_splice_init(&done_list
, &trans
->r_itemq
);
3348 error2
= xfs_buf_delwri_submit(&buffer_list
);
3349 return error
? error
: error2
;
3353 xlog_recover_add_item(
3354 struct list_head
*head
)
3356 xlog_recover_item_t
*item
;
3358 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
3359 INIT_LIST_HEAD(&item
->ri_list
);
3360 list_add_tail(&item
->ri_list
, head
);
3364 xlog_recover_add_to_cont_trans(
3366 struct xlog_recover
*trans
,
3370 xlog_recover_item_t
*item
;
3371 xfs_caddr_t ptr
, old_ptr
;
3374 if (list_empty(&trans
->r_itemq
)) {
3375 /* finish copying rest of trans header */
3376 xlog_recover_add_item(&trans
->r_itemq
);
3377 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
3378 sizeof(xfs_trans_header_t
) - len
;
3379 memcpy(ptr
, dp
, len
);
3382 /* take the tail entry */
3383 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3385 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
3386 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
3388 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, KM_SLEEP
);
3389 memcpy(&ptr
[old_len
], dp
, len
);
3390 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
3391 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
3392 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
3397 * The next region to add is the start of a new region. It could be
3398 * a whole region or it could be the first part of a new region. Because
3399 * of this, the assumption here is that the type and size fields of all
3400 * format structures fit into the first 32 bits of the structure.
3402 * This works because all regions must be 32 bit aligned. Therefore, we
3403 * either have both fields or we have neither field. In the case we have
3404 * neither field, the data part of the region is zero length. We only have
3405 * a log_op_header and can throw away the header since a new one will appear
3406 * later. If we have at least 4 bytes, then we can determine how many regions
3407 * will appear in the current log item.
3410 xlog_recover_add_to_trans(
3412 struct xlog_recover
*trans
,
3416 xfs_inode_log_format_t
*in_f
; /* any will do */
3417 xlog_recover_item_t
*item
;
3422 if (list_empty(&trans
->r_itemq
)) {
3423 /* we need to catch log corruptions here */
3424 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
3425 xfs_warn(log
->l_mp
, "%s: bad header magic number",
3430 if (len
== sizeof(xfs_trans_header_t
))
3431 xlog_recover_add_item(&trans
->r_itemq
);
3432 memcpy(&trans
->r_theader
, dp
, len
);
3436 ptr
= kmem_alloc(len
, KM_SLEEP
);
3437 memcpy(ptr
, dp
, len
);
3438 in_f
= (xfs_inode_log_format_t
*)ptr
;
3440 /* take the tail entry */
3441 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3442 if (item
->ri_total
!= 0 &&
3443 item
->ri_total
== item
->ri_cnt
) {
3444 /* tail item is in use, get a new one */
3445 xlog_recover_add_item(&trans
->r_itemq
);
3446 item
= list_entry(trans
->r_itemq
.prev
,
3447 xlog_recover_item_t
, ri_list
);
3450 if (item
->ri_total
== 0) { /* first region to be added */
3451 if (in_f
->ilf_size
== 0 ||
3452 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
3454 "bad number of regions (%d) in inode log format",
3461 item
->ri_total
= in_f
->ilf_size
;
3463 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
3466 ASSERT(item
->ri_total
> item
->ri_cnt
);
3467 /* Description region is ri_buf[0] */
3468 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
3469 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
3471 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
3476 * Free up any resources allocated by the transaction
3478 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3481 xlog_recover_free_trans(
3482 struct xlog_recover
*trans
)
3484 xlog_recover_item_t
*item
, *n
;
3487 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
3488 /* Free the regions in the item. */
3489 list_del(&item
->ri_list
);
3490 for (i
= 0; i
< item
->ri_cnt
; i
++)
3491 kmem_free(item
->ri_buf
[i
].i_addr
);
3492 /* Free the item itself */
3493 kmem_free(item
->ri_buf
);
3496 /* Free the transaction recover structure */
3501 * On error or completion, trans is freed.
3504 xlog_recovery_process_trans(
3506 struct xlog_recover
*trans
,
3513 bool freeit
= false;
3515 /* mask off ophdr transaction container flags */
3516 flags
&= ~XLOG_END_TRANS
;
3517 if (flags
& XLOG_WAS_CONT_TRANS
)
3518 flags
&= ~XLOG_CONTINUE_TRANS
;
3521 * Callees must not free the trans structure. We'll decide if we need to
3522 * free it or not based on the operation being done and it's result.
3525 /* expected flag values */
3527 case XLOG_CONTINUE_TRANS
:
3528 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
3530 case XLOG_WAS_CONT_TRANS
:
3531 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
3533 case XLOG_COMMIT_TRANS
:
3534 error
= xlog_recover_commit_trans(log
, trans
, pass
);
3535 /* success or fail, we are now done with this transaction. */
3539 /* unexpected flag values */
3540 case XLOG_UNMOUNT_TRANS
:
3541 /* just skip trans */
3542 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
3545 case XLOG_START_TRANS
:
3547 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
3552 if (error
|| freeit
)
3553 xlog_recover_free_trans(trans
);
3558 * Lookup the transaction recovery structure associated with the ID in the
3559 * current ophdr. If the transaction doesn't exist and the start flag is set in
3560 * the ophdr, then allocate a new transaction for future ID matches to find.
3561 * Either way, return what we found during the lookup - an existing transaction
3564 STATIC
struct xlog_recover
*
3565 xlog_recover_ophdr_to_trans(
3566 struct hlist_head rhash
[],
3567 struct xlog_rec_header
*rhead
,
3568 struct xlog_op_header
*ohead
)
3570 struct xlog_recover
*trans
;
3572 struct hlist_head
*rhp
;
3574 tid
= be32_to_cpu(ohead
->oh_tid
);
3575 rhp
= &rhash
[XLOG_RHASH(tid
)];
3576 hlist_for_each_entry(trans
, rhp
, r_list
) {
3577 if (trans
->r_log_tid
== tid
)
3582 * skip over non-start transaction headers - we could be
3583 * processing slack space before the next transaction starts
3585 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
3588 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
3591 * This is a new transaction so allocate a new recovery container to
3592 * hold the recovery ops that will follow.
3594 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
3595 trans
->r_log_tid
= tid
;
3596 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
3597 INIT_LIST_HEAD(&trans
->r_itemq
);
3598 INIT_HLIST_NODE(&trans
->r_list
);
3599 hlist_add_head(&trans
->r_list
, rhp
);
3602 * Nothing more to do for this ophdr. Items to be added to this new
3603 * transaction will be in subsequent ophdr containers.
3609 xlog_recover_process_ophdr(
3611 struct hlist_head rhash
[],
3612 struct xlog_rec_header
*rhead
,
3613 struct xlog_op_header
*ohead
,
3618 struct xlog_recover
*trans
;
3621 /* Do we understand who wrote this op? */
3622 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
3623 ohead
->oh_clientid
!= XFS_LOG
) {
3624 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
3625 __func__
, ohead
->oh_clientid
);
3631 * Check the ophdr contains all the data it is supposed to contain.
3633 len
= be32_to_cpu(ohead
->oh_len
);
3634 if (dp
+ len
> end
) {
3635 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
3640 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
3642 /* nothing to do, so skip over this ophdr */
3646 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
3647 ohead
->oh_flags
, pass
);
3651 * There are two valid states of the r_state field. 0 indicates that the
3652 * transaction structure is in a normal state. We have either seen the
3653 * start of the transaction or the last operation we added was not a partial
3654 * operation. If the last operation we added to the transaction was a
3655 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3657 * NOTE: skip LRs with 0 data length.
3660 xlog_recover_process_data(
3662 struct hlist_head rhash
[],
3663 struct xlog_rec_header
*rhead
,
3667 struct xlog_op_header
*ohead
;
3672 end
= dp
+ be32_to_cpu(rhead
->h_len
);
3673 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
3675 /* check the log format matches our own - else we can't recover */
3676 if (xlog_header_check_recover(log
->l_mp
, rhead
))
3679 while ((dp
< end
) && num_logops
) {
3681 ohead
= (struct xlog_op_header
*)dp
;
3682 dp
+= sizeof(*ohead
);
3685 /* errors will abort recovery */
3686 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
3691 dp
+= be32_to_cpu(ohead
->oh_len
);
3698 * Process an extent free intent item that was recovered from
3699 * the log. We need to free the extents that it describes.
3702 xlog_recover_process_efi(
3704 xfs_efi_log_item_t
*efip
)
3706 xfs_efd_log_item_t
*efdp
;
3711 xfs_fsblock_t startblock_fsb
;
3713 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
3716 * First check the validity of the extents described by the
3717 * EFI. If any are bad, then assume that all are bad and
3718 * just toss the EFI.
3720 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3721 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3722 startblock_fsb
= XFS_BB_TO_FSB(mp
,
3723 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
3724 if ((startblock_fsb
== 0) ||
3725 (extp
->ext_len
== 0) ||
3726 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
3727 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
3729 * This will pull the EFI from the AIL and
3730 * free the memory associated with it.
3732 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
3733 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
3738 tp
= xfs_trans_alloc(mp
, 0);
3739 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
3742 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
3744 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
3745 extp
= &(efip
->efi_format
.efi_extents
[i
]);
3746 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
3749 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
3753 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
3754 error
= xfs_trans_commit(tp
, 0);
3758 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3763 * When this is called, all of the EFIs which did not have
3764 * corresponding EFDs should be in the AIL. What we do now
3765 * is free the extents associated with each one.
3767 * Since we process the EFIs in normal transactions, they
3768 * will be removed at some point after the commit. This prevents
3769 * us from just walking down the list processing each one.
3770 * We'll use a flag in the EFI to skip those that we've already
3771 * processed and use the AIL iteration mechanism's generation
3772 * count to try to speed this up at least a bit.
3774 * When we start, we know that the EFIs are the only things in
3775 * the AIL. As we process them, however, other items are added
3776 * to the AIL. Since everything added to the AIL must come after
3777 * everything already in the AIL, we stop processing as soon as
3778 * we see something other than an EFI in the AIL.
3781 xlog_recover_process_efis(
3784 xfs_log_item_t
*lip
;
3785 xfs_efi_log_item_t
*efip
;
3787 struct xfs_ail_cursor cur
;
3788 struct xfs_ail
*ailp
;
3791 spin_lock(&ailp
->xa_lock
);
3792 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3793 while (lip
!= NULL
) {
3795 * We're done when we see something other than an EFI.
3796 * There should be no EFIs left in the AIL now.
3798 if (lip
->li_type
!= XFS_LI_EFI
) {
3800 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3801 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3807 * Skip EFIs that we've already processed.
3809 efip
= (xfs_efi_log_item_t
*)lip
;
3810 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
3811 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3815 spin_unlock(&ailp
->xa_lock
);
3816 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3817 spin_lock(&ailp
->xa_lock
);
3820 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3823 xfs_trans_ail_cursor_done(&cur
);
3824 spin_unlock(&ailp
->xa_lock
);
3829 * This routine performs a transaction to null out a bad inode pointer
3830 * in an agi unlinked inode hash bucket.
3833 xlog_recover_clear_agi_bucket(
3835 xfs_agnumber_t agno
,
3844 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3845 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_clearagi
, 0, 0);
3849 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3853 agi
= XFS_BUF_TO_AGI(agibp
);
3854 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3855 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3856 (sizeof(xfs_agino_t
) * bucket
);
3857 xfs_trans_log_buf(tp
, agibp
, offset
,
3858 (offset
+ sizeof(xfs_agino_t
) - 1));
3860 error
= xfs_trans_commit(tp
, 0);
3866 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3868 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3873 xlog_recover_process_one_iunlink(
3874 struct xfs_mount
*mp
,
3875 xfs_agnumber_t agno
,
3879 struct xfs_buf
*ibp
;
3880 struct xfs_dinode
*dip
;
3881 struct xfs_inode
*ip
;
3885 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3886 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3891 * Get the on disk inode to find the next inode in the bucket.
3893 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
3897 ASSERT(ip
->i_d
.di_nlink
== 0);
3898 ASSERT(ip
->i_d
.di_mode
!= 0);
3900 /* setup for the next pass */
3901 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3905 * Prevent any DMAPI event from being sent when the reference on
3906 * the inode is dropped.
3908 ip
->i_d
.di_dmevmask
= 0;
3917 * We can't read in the inode this bucket points to, or this inode
3918 * is messed up. Just ditch this bucket of inodes. We will lose
3919 * some inodes and space, but at least we won't hang.
3921 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3922 * clear the inode pointer in the bucket.
3924 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3929 * xlog_iunlink_recover
3931 * This is called during recovery to process any inodes which
3932 * we unlinked but not freed when the system crashed. These
3933 * inodes will be on the lists in the AGI blocks. What we do
3934 * here is scan all the AGIs and fully truncate and free any
3935 * inodes found on the lists. Each inode is removed from the
3936 * lists when it has been fully truncated and is freed. The
3937 * freeing of the inode and its removal from the list must be
3941 xlog_recover_process_iunlinks(
3945 xfs_agnumber_t agno
;
3956 * Prevent any DMAPI event from being sent while in this function.
3958 mp_dmevmask
= mp
->m_dmevmask
;
3961 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3963 * Find the agi for this ag.
3965 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3968 * AGI is b0rked. Don't process it.
3970 * We should probably mark the filesystem as corrupt
3971 * after we've recovered all the ag's we can....
3976 * Unlock the buffer so that it can be acquired in the normal
3977 * course of the transaction to truncate and free each inode.
3978 * Because we are not racing with anyone else here for the AGI
3979 * buffer, we don't even need to hold it locked to read the
3980 * initial unlinked bucket entries out of the buffer. We keep
3981 * buffer reference though, so that it stays pinned in memory
3982 * while we need the buffer.
3984 agi
= XFS_BUF_TO_AGI(agibp
);
3985 xfs_buf_unlock(agibp
);
3987 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3988 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3989 while (agino
!= NULLAGINO
) {
3990 agino
= xlog_recover_process_one_iunlink(mp
,
3991 agno
, agino
, bucket
);
3994 xfs_buf_rele(agibp
);
3997 mp
->m_dmevmask
= mp_dmevmask
;
4001 * Upack the log buffer data and crc check it. If the check fails, issue a
4002 * warning if and only if the CRC in the header is non-zero. This makes the
4003 * check an advisory warning, and the zero CRC check will prevent failure
4004 * warnings from being emitted when upgrading the kernel from one that does not
4005 * add CRCs by default.
4007 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4008 * corruption failure
4011 xlog_unpack_data_crc(
4012 struct xlog_rec_header
*rhead
,
4018 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
4019 if (crc
!= rhead
->h_crc
) {
4020 if (rhead
->h_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
4021 xfs_alert(log
->l_mp
,
4022 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4023 le32_to_cpu(rhead
->h_crc
),
4025 xfs_hex_dump(dp
, 32);
4029 * If we've detected a log record corruption, then we can't
4030 * recover past this point. Abort recovery if we are enforcing
4031 * CRC protection by punting an error back up the stack.
4033 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
4034 return -EFSCORRUPTED
;
4042 struct xlog_rec_header
*rhead
,
4049 error
= xlog_unpack_data_crc(rhead
, dp
, log
);
4053 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
4054 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
4055 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
4059 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4060 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
4061 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
4062 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4063 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4064 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
4073 xlog_valid_rec_header(
4075 struct xlog_rec_header
*rhead
,
4080 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
4081 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4082 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4083 return -EFSCORRUPTED
;
4086 (!rhead
->h_version
||
4087 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
4088 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
4089 __func__
, be32_to_cpu(rhead
->h_version
));
4093 /* LR body must have data or it wouldn't have been written */
4094 hlen
= be32_to_cpu(rhead
->h_len
);
4095 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
4096 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4097 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4098 return -EFSCORRUPTED
;
4100 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
4101 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4102 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4103 return -EFSCORRUPTED
;
4109 * Read the log from tail to head and process the log records found.
4110 * Handle the two cases where the tail and head are in the same cycle
4111 * and where the active portion of the log wraps around the end of
4112 * the physical log separately. The pass parameter is passed through
4113 * to the routines called to process the data and is not looked at
4117 xlog_do_recovery_pass(
4119 xfs_daddr_t head_blk
,
4120 xfs_daddr_t tail_blk
,
4123 xlog_rec_header_t
*rhead
;
4126 xfs_buf_t
*hbp
, *dbp
;
4127 int error
= 0, h_size
;
4128 int bblks
, split_bblks
;
4129 int hblks
, split_hblks
, wrapped_hblks
;
4130 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
4132 ASSERT(head_blk
!= tail_blk
);
4135 * Read the header of the tail block and get the iclog buffer size from
4136 * h_size. Use this to tell how many sectors make up the log header.
4138 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4140 * When using variable length iclogs, read first sector of
4141 * iclog header and extract the header size from it. Get a
4142 * new hbp that is the correct size.
4144 hbp
= xlog_get_bp(log
, 1);
4148 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
4152 rhead
= (xlog_rec_header_t
*)offset
;
4153 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
4156 h_size
= be32_to_cpu(rhead
->h_size
);
4157 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
4158 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
4159 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
4160 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
4163 hbp
= xlog_get_bp(log
, hblks
);
4168 ASSERT(log
->l_sectBBsize
== 1);
4170 hbp
= xlog_get_bp(log
, 1);
4171 h_size
= XLOG_BIG_RECORD_BSIZE
;
4176 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
4182 memset(rhash
, 0, sizeof(rhash
));
4184 if (tail_blk
> head_blk
) {
4186 * Perform recovery around the end of the physical log.
4187 * When the head is not on the same cycle number as the tail,
4188 * we can't do a sequential recovery.
4190 while (blk_no
< log
->l_logBBsize
) {
4192 * Check for header wrapping around physical end-of-log
4194 offset
= hbp
->b_addr
;
4197 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
4198 /* Read header in one read */
4199 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
4204 /* This LR is split across physical log end */
4205 if (blk_no
!= log
->l_logBBsize
) {
4206 /* some data before physical log end */
4207 ASSERT(blk_no
<= INT_MAX
);
4208 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
4209 ASSERT(split_hblks
> 0);
4210 error
= xlog_bread(log
, blk_no
,
4218 * Note: this black magic still works with
4219 * large sector sizes (non-512) only because:
4220 * - we increased the buffer size originally
4221 * by 1 sector giving us enough extra space
4222 * for the second read;
4223 * - the log start is guaranteed to be sector
4225 * - we read the log end (LR header start)
4226 * _first_, then the log start (LR header end)
4227 * - order is important.
4229 wrapped_hblks
= hblks
- split_hblks
;
4230 error
= xlog_bread_offset(log
, 0,
4232 offset
+ BBTOB(split_hblks
));
4236 rhead
= (xlog_rec_header_t
*)offset
;
4237 error
= xlog_valid_rec_header(log
, rhead
,
4238 split_hblks
? blk_no
: 0);
4242 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4245 /* Read in data for log record */
4246 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
4247 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
4252 /* This log record is split across the
4253 * physical end of log */
4254 offset
= dbp
->b_addr
;
4256 if (blk_no
!= log
->l_logBBsize
) {
4257 /* some data is before the physical
4259 ASSERT(!wrapped_hblks
);
4260 ASSERT(blk_no
<= INT_MAX
);
4262 log
->l_logBBsize
- (int)blk_no
;
4263 ASSERT(split_bblks
> 0);
4264 error
= xlog_bread(log
, blk_no
,
4272 * Note: this black magic still works with
4273 * large sector sizes (non-512) only because:
4274 * - we increased the buffer size originally
4275 * by 1 sector giving us enough extra space
4276 * for the second read;
4277 * - the log start is guaranteed to be sector
4279 * - we read the log end (LR header start)
4280 * _first_, then the log start (LR header end)
4281 * - order is important.
4283 error
= xlog_bread_offset(log
, 0,
4284 bblks
- split_bblks
, dbp
,
4285 offset
+ BBTOB(split_bblks
));
4290 error
= xlog_unpack_data(rhead
, offset
, log
);
4294 error
= xlog_recover_process_data(log
, rhash
,
4295 rhead
, offset
, pass
);
4301 ASSERT(blk_no
>= log
->l_logBBsize
);
4302 blk_no
-= log
->l_logBBsize
;
4305 /* read first part of physical log */
4306 while (blk_no
< head_blk
) {
4307 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
4311 rhead
= (xlog_rec_header_t
*)offset
;
4312 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
4316 /* blocks in data section */
4317 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4318 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
4323 error
= xlog_unpack_data(rhead
, offset
, log
);
4327 error
= xlog_recover_process_data(log
, rhash
,
4328 rhead
, offset
, pass
);
4331 blk_no
+= bblks
+ hblks
;
4342 * Do the recovery of the log. We actually do this in two phases.
4343 * The two passes are necessary in order to implement the function
4344 * of cancelling a record written into the log. The first pass
4345 * determines those things which have been cancelled, and the
4346 * second pass replays log items normally except for those which
4347 * have been cancelled. The handling of the replay and cancellations
4348 * takes place in the log item type specific routines.
4350 * The table of items which have cancel records in the log is allocated
4351 * and freed at this level, since only here do we know when all of
4352 * the log recovery has been completed.
4355 xlog_do_log_recovery(
4357 xfs_daddr_t head_blk
,
4358 xfs_daddr_t tail_blk
)
4362 ASSERT(head_blk
!= tail_blk
);
4365 * First do a pass to find all of the cancelled buf log items.
4366 * Store them in the buf_cancel_table for use in the second pass.
4368 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
4369 sizeof(struct list_head
),
4371 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4372 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
4374 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4375 XLOG_RECOVER_PASS1
);
4377 kmem_free(log
->l_buf_cancel_table
);
4378 log
->l_buf_cancel_table
= NULL
;
4382 * Then do a second pass to actually recover the items in the log.
4383 * When it is complete free the table of buf cancel items.
4385 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4386 XLOG_RECOVER_PASS2
);
4391 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4392 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
4396 kmem_free(log
->l_buf_cancel_table
);
4397 log
->l_buf_cancel_table
= NULL
;
4403 * Do the actual recovery
4408 xfs_daddr_t head_blk
,
4409 xfs_daddr_t tail_blk
)
4416 * First replay the images in the log.
4418 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
4423 * If IO errors happened during recovery, bail out.
4425 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
4430 * We now update the tail_lsn since much of the recovery has completed
4431 * and there may be space available to use. If there were no extent
4432 * or iunlinks, we can free up the entire log and set the tail_lsn to
4433 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4434 * lsn of the last known good LR on disk. If there are extent frees
4435 * or iunlinks they will have some entries in the AIL; so we look at
4436 * the AIL to determine how to set the tail_lsn.
4438 xlog_assign_tail_lsn(log
->l_mp
);
4441 * Now that we've finished replaying all buffer and inode
4442 * updates, re-read in the superblock and reverify it.
4444 bp
= xfs_getsb(log
->l_mp
, 0);
4446 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
4448 XFS_BUF_UNASYNC(bp
);
4449 bp
->b_ops
= &xfs_sb_buf_ops
;
4451 error
= xfs_buf_submit_wait(bp
);
4453 if (!XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
4454 xfs_buf_ioerror_alert(bp
, __func__
);
4461 /* Convert superblock from on-disk format */
4462 sbp
= &log
->l_mp
->m_sb
;
4463 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
4464 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
4465 ASSERT(xfs_sb_good_version(sbp
));
4468 /* We've re-read the superblock so re-initialize per-cpu counters */
4469 xfs_icsb_reinit_counters(log
->l_mp
);
4471 xlog_recover_check_summary(log
);
4473 /* Normal transactions can now occur */
4474 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
4479 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4481 * Return error or zero.
4487 xfs_daddr_t head_blk
, tail_blk
;
4490 /* find the tail of the log */
4491 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
4494 if (tail_blk
!= head_blk
) {
4495 /* There used to be a comment here:
4497 * disallow recovery on read-only mounts. note -- mount
4498 * checks for ENOSPC and turns it into an intelligent
4500 * ...but this is no longer true. Now, unless you specify
4501 * NORECOVERY (in which case this function would never be
4502 * called), we just go ahead and recover. We do this all
4503 * under the vfs layer, so we can get away with it unless
4504 * the device itself is read-only, in which case we fail.
4506 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
4511 * Version 5 superblock log feature mask validation. We know the
4512 * log is dirty so check if there are any unknown log features
4513 * in what we need to recover. If there are unknown features
4514 * (e.g. unsupported transactions, then simply reject the
4515 * attempt at recovery before touching anything.
4517 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
4518 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
4519 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
4521 "Superblock has unknown incompatible log features (0x%x) enabled.\n"
4522 "The log can not be fully and/or safely recovered by this kernel.\n"
4523 "Please recover the log on a kernel that supports the unknown features.",
4524 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
4525 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
4530 * Delay log recovery if the debug hook is set. This is debug
4531 * instrumention to coordinate simulation of I/O failures with
4534 if (xfs_globals
.log_recovery_delay
) {
4535 xfs_notice(log
->l_mp
,
4536 "Delaying log recovery for %d seconds.",
4537 xfs_globals
.log_recovery_delay
);
4538 msleep(xfs_globals
.log_recovery_delay
* 1000);
4541 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
4542 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
4545 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
4546 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
4552 * In the first part of recovery we replay inodes and buffers and build
4553 * up the list of extent free items which need to be processed. Here
4554 * we process the extent free items and clean up the on disk unlinked
4555 * inode lists. This is separated from the first part of recovery so
4556 * that the root and real-time bitmap inodes can be read in from disk in
4557 * between the two stages. This is necessary so that we can free space
4558 * in the real-time portion of the file system.
4561 xlog_recover_finish(
4565 * Now we're ready to do the transactions needed for the
4566 * rest of recovery. Start with completing all the extent
4567 * free intent records and then process the unlinked inode
4568 * lists. At this point, we essentially run in normal mode
4569 * except that we're still performing recovery actions
4570 * rather than accepting new requests.
4572 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
4574 error
= xlog_recover_process_efis(log
);
4576 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
4580 * Sync the log to get all the EFIs out of the AIL.
4581 * This isn't absolutely necessary, but it helps in
4582 * case the unlink transactions would have problems
4583 * pushing the EFIs out of the way.
4585 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
4587 xlog_recover_process_iunlinks(log
);
4589 xlog_recover_check_summary(log
);
4591 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
4592 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
4594 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
4596 xfs_info(log
->l_mp
, "Ending clean mount");
4604 * Read all of the agf and agi counters and check that they
4605 * are consistent with the superblock counters.
4608 xlog_recover_check_summary(
4615 xfs_agnumber_t agno
;
4616 __uint64_t freeblks
;
4626 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4627 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
4629 xfs_alert(mp
, "%s agf read failed agno %d error %d",
4630 __func__
, agno
, error
);
4632 agfp
= XFS_BUF_TO_AGF(agfbp
);
4633 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
4634 be32_to_cpu(agfp
->agf_flcount
);
4635 xfs_buf_relse(agfbp
);
4638 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
4640 xfs_alert(mp
, "%s agi read failed agno %d error %d",
4641 __func__
, agno
, error
);
4643 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
4645 itotal
+= be32_to_cpu(agi
->agi_count
);
4646 ifree
+= be32_to_cpu(agi
->agi_freecount
);
4647 xfs_buf_relse(agibp
);