4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct
*work
);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq
*s
)
35 trace_seq_puts(s
, "# compressed entry header\n");
36 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s
, "\tarray : 32 bits\n");
39 trace_seq_putc(s
, '\n');
40 trace_seq_printf(s
, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING
);
42 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND
);
44 trace_seq_printf(s
, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
47 return !trace_seq_has_overflowed(s
);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
67 * |reader| RING BUFFER
69 * +------+ +---+ +---+ +---+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
96 * +------------------------------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
104 * | New +---+ +---+ +---+
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
119 * A fast way to enable or disable all ring buffers is to
120 * call tracing_on or tracing_off. Turning off the ring buffers
121 * prevents all ring buffers from being recorded to.
122 * Turning this switch on, makes it OK to write to the
123 * ring buffer, if the ring buffer is enabled itself.
125 * There's three layers that must be on in order to write
126 * to the ring buffer.
128 * 1) This global flag must be set.
129 * 2) The ring buffer must be enabled for recording.
130 * 3) The per cpu buffer must be enabled for recording.
132 * In case of an anomaly, this global flag has a bit set that
133 * will permantly disable all ring buffers.
137 * Global flag to disable all recording to ring buffers
138 * This has two bits: ON, DISABLED
142 * 0 0 : ring buffers are off
143 * 1 0 : ring buffers are on
144 * X 1 : ring buffers are permanently disabled
148 RB_BUFFERS_ON_BIT
= 0,
149 RB_BUFFERS_DISABLED_BIT
= 1,
153 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
154 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
157 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF (1 << 20)
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
165 * tracing_off_permanent - permanently disable ring buffers
167 * This function, once called, will disable all ring buffers
170 void tracing_off_permanent(void)
172 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT 4U
177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
180 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
181 # define RB_FORCE_8BYTE_ALIGNMENT 0
182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
184 # define RB_FORCE_8BYTE_ALIGNMENT 1
185 # define RB_ARCH_ALIGNMENT 8U
188 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
190 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
191 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
194 RB_LEN_TIME_EXTEND
= 8,
195 RB_LEN_TIME_STAMP
= 16,
198 #define skip_time_extend(event) \
199 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
201 static inline int rb_null_event(struct ring_buffer_event
*event
)
203 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
206 static void rb_event_set_padding(struct ring_buffer_event
*event
)
208 /* padding has a NULL time_delta */
209 event
->type_len
= RINGBUF_TYPE_PADDING
;
210 event
->time_delta
= 0;
214 rb_event_data_length(struct ring_buffer_event
*event
)
219 length
= event
->type_len
* RB_ALIGNMENT
;
221 length
= event
->array
[0];
222 return length
+ RB_EVNT_HDR_SIZE
;
226 * Return the length of the given event. Will return
227 * the length of the time extend if the event is a
230 static inline unsigned
231 rb_event_length(struct ring_buffer_event
*event
)
233 switch (event
->type_len
) {
234 case RINGBUF_TYPE_PADDING
:
235 if (rb_null_event(event
))
238 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
240 case RINGBUF_TYPE_TIME_EXTEND
:
241 return RB_LEN_TIME_EXTEND
;
243 case RINGBUF_TYPE_TIME_STAMP
:
244 return RB_LEN_TIME_STAMP
;
246 case RINGBUF_TYPE_DATA
:
247 return rb_event_data_length(event
);
256 * Return total length of time extend and data,
257 * or just the event length for all other events.
259 static inline unsigned
260 rb_event_ts_length(struct ring_buffer_event
*event
)
264 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
265 /* time extends include the data event after it */
266 len
= RB_LEN_TIME_EXTEND
;
267 event
= skip_time_extend(event
);
269 return len
+ rb_event_length(event
);
273 * ring_buffer_event_length - return the length of the event
274 * @event: the event to get the length of
276 * Returns the size of the data load of a data event.
277 * If the event is something other than a data event, it
278 * returns the size of the event itself. With the exception
279 * of a TIME EXTEND, where it still returns the size of the
280 * data load of the data event after it.
282 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
286 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
287 event
= skip_time_extend(event
);
289 length
= rb_event_length(event
);
290 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
292 length
-= RB_EVNT_HDR_SIZE
;
293 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
294 length
-= sizeof(event
->array
[0]);
297 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
299 /* inline for ring buffer fast paths */
301 rb_event_data(struct ring_buffer_event
*event
)
303 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
304 event
= skip_time_extend(event
);
305 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
306 /* If length is in len field, then array[0] has the data */
308 return (void *)&event
->array
[0];
309 /* Otherwise length is in array[0] and array[1] has the data */
310 return (void *)&event
->array
[1];
314 * ring_buffer_event_data - return the data of the event
315 * @event: the event to get the data from
317 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
319 return rb_event_data(event
);
321 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
323 #define for_each_buffer_cpu(buffer, cpu) \
324 for_each_cpu(cpu, buffer->cpumask)
327 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
328 #define TS_DELTA_TEST (~TS_MASK)
330 /* Flag when events were overwritten */
331 #define RB_MISSED_EVENTS (1 << 31)
332 /* Missed count stored at end */
333 #define RB_MISSED_STORED (1 << 30)
335 struct buffer_data_page
{
336 u64 time_stamp
; /* page time stamp */
337 local_t commit
; /* write committed index */
338 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
342 * Note, the buffer_page list must be first. The buffer pages
343 * are allocated in cache lines, which means that each buffer
344 * page will be at the beginning of a cache line, and thus
345 * the least significant bits will be zero. We use this to
346 * add flags in the list struct pointers, to make the ring buffer
350 struct list_head list
; /* list of buffer pages */
351 local_t write
; /* index for next write */
352 unsigned read
; /* index for next read */
353 local_t entries
; /* entries on this page */
354 unsigned long real_end
; /* real end of data */
355 struct buffer_data_page
*page
; /* Actual data page */
359 * The buffer page counters, write and entries, must be reset
360 * atomically when crossing page boundaries. To synchronize this
361 * update, two counters are inserted into the number. One is
362 * the actual counter for the write position or count on the page.
364 * The other is a counter of updaters. Before an update happens
365 * the update partition of the counter is incremented. This will
366 * allow the updater to update the counter atomically.
368 * The counter is 20 bits, and the state data is 12.
370 #define RB_WRITE_MASK 0xfffff
371 #define RB_WRITE_INTCNT (1 << 20)
373 static void rb_init_page(struct buffer_data_page
*bpage
)
375 local_set(&bpage
->commit
, 0);
379 * ring_buffer_page_len - the size of data on the page.
380 * @page: The page to read
382 * Returns the amount of data on the page, including buffer page header.
384 size_t ring_buffer_page_len(void *page
)
386 return local_read(&((struct buffer_data_page
*)page
)->commit
)
391 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
394 static void free_buffer_page(struct buffer_page
*bpage
)
396 free_page((unsigned long)bpage
->page
);
401 * We need to fit the time_stamp delta into 27 bits.
403 static inline int test_time_stamp(u64 delta
)
405 if (delta
& TS_DELTA_TEST
)
410 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
412 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
413 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
415 int ring_buffer_print_page_header(struct trace_seq
*s
)
417 struct buffer_data_page field
;
419 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
420 "offset:0;\tsize:%u;\tsigned:%u;\n",
421 (unsigned int)sizeof(field
.time_stamp
),
422 (unsigned int)is_signed_type(u64
));
424 trace_seq_printf(s
, "\tfield: local_t commit;\t"
425 "offset:%u;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)offsetof(typeof(field
), commit
),
427 (unsigned int)sizeof(field
.commit
),
428 (unsigned int)is_signed_type(long));
430 trace_seq_printf(s
, "\tfield: int overwrite;\t"
431 "offset:%u;\tsize:%u;\tsigned:%u;\n",
432 (unsigned int)offsetof(typeof(field
), commit
),
434 (unsigned int)is_signed_type(long));
436 trace_seq_printf(s
, "\tfield: char data;\t"
437 "offset:%u;\tsize:%u;\tsigned:%u;\n",
438 (unsigned int)offsetof(typeof(field
), data
),
439 (unsigned int)BUF_PAGE_SIZE
,
440 (unsigned int)is_signed_type(char));
442 return !trace_seq_has_overflowed(s
);
446 struct irq_work work
;
447 wait_queue_head_t waiters
;
448 wait_queue_head_t full_waiters
;
449 bool waiters_pending
;
450 bool full_waiters_pending
;
455 * head_page == tail_page && head == tail then buffer is empty.
457 struct ring_buffer_per_cpu
{
459 atomic_t record_disabled
;
460 struct ring_buffer
*buffer
;
461 raw_spinlock_t reader_lock
; /* serialize readers */
462 arch_spinlock_t lock
;
463 struct lock_class_key lock_key
;
464 unsigned int nr_pages
;
465 struct list_head
*pages
;
466 struct buffer_page
*head_page
; /* read from head */
467 struct buffer_page
*tail_page
; /* write to tail */
468 struct buffer_page
*commit_page
; /* committed pages */
469 struct buffer_page
*reader_page
;
470 unsigned long lost_events
;
471 unsigned long last_overrun
;
472 local_t entries_bytes
;
475 local_t commit_overrun
;
476 local_t dropped_events
;
480 unsigned long read_bytes
;
483 /* ring buffer pages to update, > 0 to add, < 0 to remove */
484 int nr_pages_to_update
;
485 struct list_head new_pages
; /* new pages to add */
486 struct work_struct update_pages_work
;
487 struct completion update_done
;
489 struct rb_irq_work irq_work
;
495 atomic_t record_disabled
;
496 atomic_t resize_disabled
;
497 cpumask_var_t cpumask
;
499 struct lock_class_key
*reader_lock_key
;
503 struct ring_buffer_per_cpu
**buffers
;
505 #ifdef CONFIG_HOTPLUG_CPU
506 struct notifier_block cpu_notify
;
510 struct rb_irq_work irq_work
;
513 struct ring_buffer_iter
{
514 struct ring_buffer_per_cpu
*cpu_buffer
;
516 struct buffer_page
*head_page
;
517 struct buffer_page
*cache_reader_page
;
518 unsigned long cache_read
;
523 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
525 * Schedules a delayed work to wake up any task that is blocked on the
526 * ring buffer waiters queue.
528 static void rb_wake_up_waiters(struct irq_work
*work
)
530 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
532 wake_up_all(&rbwork
->waiters
);
533 if (rbwork
->wakeup_full
) {
534 rbwork
->wakeup_full
= false;
535 wake_up_all(&rbwork
->full_waiters
);
540 * ring_buffer_wait - wait for input to the ring buffer
541 * @buffer: buffer to wait on
542 * @cpu: the cpu buffer to wait on
543 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
545 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
546 * as data is added to any of the @buffer's cpu buffers. Otherwise
547 * it will wait for data to be added to a specific cpu buffer.
549 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
551 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
553 struct rb_irq_work
*work
;
557 * Depending on what the caller is waiting for, either any
558 * data in any cpu buffer, or a specific buffer, put the
559 * caller on the appropriate wait queue.
561 if (cpu
== RING_BUFFER_ALL_CPUS
) {
562 work
= &buffer
->irq_work
;
563 /* Full only makes sense on per cpu reads */
566 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
568 cpu_buffer
= buffer
->buffers
[cpu
];
569 work
= &cpu_buffer
->irq_work
;
575 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
577 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
580 * The events can happen in critical sections where
581 * checking a work queue can cause deadlocks.
582 * After adding a task to the queue, this flag is set
583 * only to notify events to try to wake up the queue
586 * We don't clear it even if the buffer is no longer
587 * empty. The flag only causes the next event to run
588 * irq_work to do the work queue wake up. The worse
589 * that can happen if we race with !trace_empty() is that
590 * an event will cause an irq_work to try to wake up
593 * There's no reason to protect this flag either, as
594 * the work queue and irq_work logic will do the necessary
595 * synchronization for the wake ups. The only thing
596 * that is necessary is that the wake up happens after
597 * a task has been queued. It's OK for spurious wake ups.
600 work
->full_waiters_pending
= true;
602 work
->waiters_pending
= true;
604 if (signal_pending(current
)) {
609 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
612 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
613 !ring_buffer_empty_cpu(buffer
, cpu
)) {
620 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
621 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
622 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
632 finish_wait(&work
->full_waiters
, &wait
);
634 finish_wait(&work
->waiters
, &wait
);
640 * ring_buffer_poll_wait - poll on buffer input
641 * @buffer: buffer to wait on
642 * @cpu: the cpu buffer to wait on
643 * @filp: the file descriptor
644 * @poll_table: The poll descriptor
646 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
647 * as data is added to any of the @buffer's cpu buffers. Otherwise
648 * it will wait for data to be added to a specific cpu buffer.
650 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
653 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
654 struct file
*filp
, poll_table
*poll_table
)
656 struct ring_buffer_per_cpu
*cpu_buffer
;
657 struct rb_irq_work
*work
;
659 if (cpu
== RING_BUFFER_ALL_CPUS
)
660 work
= &buffer
->irq_work
;
662 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
665 cpu_buffer
= buffer
->buffers
[cpu
];
666 work
= &cpu_buffer
->irq_work
;
669 poll_wait(filp
, &work
->waiters
, poll_table
);
670 work
->waiters_pending
= true;
672 * There's a tight race between setting the waiters_pending and
673 * checking if the ring buffer is empty. Once the waiters_pending bit
674 * is set, the next event will wake the task up, but we can get stuck
675 * if there's only a single event in.
677 * FIXME: Ideally, we need a memory barrier on the writer side as well,
678 * but adding a memory barrier to all events will cause too much of a
679 * performance hit in the fast path. We only need a memory barrier when
680 * the buffer goes from empty to having content. But as this race is
681 * extremely small, and it's not a problem if another event comes in, we
686 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
687 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
688 return POLLIN
| POLLRDNORM
;
692 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
693 #define RB_WARN_ON(b, cond) \
695 int _____ret = unlikely(cond); \
697 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
698 struct ring_buffer_per_cpu *__b = \
700 atomic_inc(&__b->buffer->record_disabled); \
702 atomic_inc(&b->record_disabled); \
708 /* Up this if you want to test the TIME_EXTENTS and normalization */
709 #define DEBUG_SHIFT 0
711 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
713 /* shift to debug/test normalization and TIME_EXTENTS */
714 return buffer
->clock() << DEBUG_SHIFT
;
717 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
721 preempt_disable_notrace();
722 time
= rb_time_stamp(buffer
);
723 preempt_enable_no_resched_notrace();
727 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
729 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
732 /* Just stupid testing the normalize function and deltas */
735 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
738 * Making the ring buffer lockless makes things tricky.
739 * Although writes only happen on the CPU that they are on,
740 * and they only need to worry about interrupts. Reads can
743 * The reader page is always off the ring buffer, but when the
744 * reader finishes with a page, it needs to swap its page with
745 * a new one from the buffer. The reader needs to take from
746 * the head (writes go to the tail). But if a writer is in overwrite
747 * mode and wraps, it must push the head page forward.
749 * Here lies the problem.
751 * The reader must be careful to replace only the head page, and
752 * not another one. As described at the top of the file in the
753 * ASCII art, the reader sets its old page to point to the next
754 * page after head. It then sets the page after head to point to
755 * the old reader page. But if the writer moves the head page
756 * during this operation, the reader could end up with the tail.
758 * We use cmpxchg to help prevent this race. We also do something
759 * special with the page before head. We set the LSB to 1.
761 * When the writer must push the page forward, it will clear the
762 * bit that points to the head page, move the head, and then set
763 * the bit that points to the new head page.
765 * We also don't want an interrupt coming in and moving the head
766 * page on another writer. Thus we use the second LSB to catch
769 * head->list->prev->next bit 1 bit 0
772 * Points to head page 0 1
775 * Note we can not trust the prev pointer of the head page, because:
777 * +----+ +-----+ +-----+
778 * | |------>| T |---X--->| N |
780 * +----+ +-----+ +-----+
783 * +----------| R |----------+ |
787 * Key: ---X--> HEAD flag set in pointer
792 * (see __rb_reserve_next() to see where this happens)
794 * What the above shows is that the reader just swapped out
795 * the reader page with a page in the buffer, but before it
796 * could make the new header point back to the new page added
797 * it was preempted by a writer. The writer moved forward onto
798 * the new page added by the reader and is about to move forward
801 * You can see, it is legitimate for the previous pointer of
802 * the head (or any page) not to point back to itself. But only
806 #define RB_PAGE_NORMAL 0UL
807 #define RB_PAGE_HEAD 1UL
808 #define RB_PAGE_UPDATE 2UL
811 #define RB_FLAG_MASK 3UL
813 /* PAGE_MOVED is not part of the mask */
814 #define RB_PAGE_MOVED 4UL
817 * rb_list_head - remove any bit
819 static struct list_head
*rb_list_head(struct list_head
*list
)
821 unsigned long val
= (unsigned long)list
;
823 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
827 * rb_is_head_page - test if the given page is the head page
829 * Because the reader may move the head_page pointer, we can
830 * not trust what the head page is (it may be pointing to
831 * the reader page). But if the next page is a header page,
832 * its flags will be non zero.
835 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
836 struct buffer_page
*page
, struct list_head
*list
)
840 val
= (unsigned long)list
->next
;
842 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
843 return RB_PAGE_MOVED
;
845 return val
& RB_FLAG_MASK
;
851 * The unique thing about the reader page, is that, if the
852 * writer is ever on it, the previous pointer never points
853 * back to the reader page.
855 static int rb_is_reader_page(struct buffer_page
*page
)
857 struct list_head
*list
= page
->list
.prev
;
859 return rb_list_head(list
->next
) != &page
->list
;
863 * rb_set_list_to_head - set a list_head to be pointing to head.
865 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
866 struct list_head
*list
)
870 ptr
= (unsigned long *)&list
->next
;
871 *ptr
|= RB_PAGE_HEAD
;
872 *ptr
&= ~RB_PAGE_UPDATE
;
876 * rb_head_page_activate - sets up head page
878 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
880 struct buffer_page
*head
;
882 head
= cpu_buffer
->head_page
;
887 * Set the previous list pointer to have the HEAD flag.
889 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
892 static void rb_list_head_clear(struct list_head
*list
)
894 unsigned long *ptr
= (unsigned long *)&list
->next
;
896 *ptr
&= ~RB_FLAG_MASK
;
900 * rb_head_page_dactivate - clears head page ptr (for free list)
903 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
905 struct list_head
*hd
;
907 /* Go through the whole list and clear any pointers found. */
908 rb_list_head_clear(cpu_buffer
->pages
);
910 list_for_each(hd
, cpu_buffer
->pages
)
911 rb_list_head_clear(hd
);
914 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
915 struct buffer_page
*head
,
916 struct buffer_page
*prev
,
917 int old_flag
, int new_flag
)
919 struct list_head
*list
;
920 unsigned long val
= (unsigned long)&head
->list
;
925 val
&= ~RB_FLAG_MASK
;
927 ret
= cmpxchg((unsigned long *)&list
->next
,
928 val
| old_flag
, val
| new_flag
);
930 /* check if the reader took the page */
931 if ((ret
& ~RB_FLAG_MASK
) != val
)
932 return RB_PAGE_MOVED
;
934 return ret
& RB_FLAG_MASK
;
937 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
938 struct buffer_page
*head
,
939 struct buffer_page
*prev
,
942 return rb_head_page_set(cpu_buffer
, head
, prev
,
943 old_flag
, RB_PAGE_UPDATE
);
946 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
947 struct buffer_page
*head
,
948 struct buffer_page
*prev
,
951 return rb_head_page_set(cpu_buffer
, head
, prev
,
952 old_flag
, RB_PAGE_HEAD
);
955 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
956 struct buffer_page
*head
,
957 struct buffer_page
*prev
,
960 return rb_head_page_set(cpu_buffer
, head
, prev
,
961 old_flag
, RB_PAGE_NORMAL
);
964 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
965 struct buffer_page
**bpage
)
967 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
969 *bpage
= list_entry(p
, struct buffer_page
, list
);
972 static struct buffer_page
*
973 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
975 struct buffer_page
*head
;
976 struct buffer_page
*page
;
977 struct list_head
*list
;
980 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
984 list
= cpu_buffer
->pages
;
985 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
988 page
= head
= cpu_buffer
->head_page
;
990 * It is possible that the writer moves the header behind
991 * where we started, and we miss in one loop.
992 * A second loop should grab the header, but we'll do
993 * three loops just because I'm paranoid.
995 for (i
= 0; i
< 3; i
++) {
997 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
998 cpu_buffer
->head_page
= page
;
1001 rb_inc_page(cpu_buffer
, &page
);
1002 } while (page
!= head
);
1005 RB_WARN_ON(cpu_buffer
, 1);
1010 static int rb_head_page_replace(struct buffer_page
*old
,
1011 struct buffer_page
*new)
1013 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
1017 val
= *ptr
& ~RB_FLAG_MASK
;
1018 val
|= RB_PAGE_HEAD
;
1020 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1026 * rb_tail_page_update - move the tail page forward
1028 * Returns 1 if moved tail page, 0 if someone else did.
1030 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1031 struct buffer_page
*tail_page
,
1032 struct buffer_page
*next_page
)
1034 struct buffer_page
*old_tail
;
1035 unsigned long old_entries
;
1036 unsigned long old_write
;
1040 * The tail page now needs to be moved forward.
1042 * We need to reset the tail page, but without messing
1043 * with possible erasing of data brought in by interrupts
1044 * that have moved the tail page and are currently on it.
1046 * We add a counter to the write field to denote this.
1048 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1049 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1052 * Just make sure we have seen our old_write and synchronize
1053 * with any interrupts that come in.
1058 * If the tail page is still the same as what we think
1059 * it is, then it is up to us to update the tail
1062 if (tail_page
== cpu_buffer
->tail_page
) {
1063 /* Zero the write counter */
1064 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1065 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1068 * This will only succeed if an interrupt did
1069 * not come in and change it. In which case, we
1070 * do not want to modify it.
1072 * We add (void) to let the compiler know that we do not care
1073 * about the return value of these functions. We use the
1074 * cmpxchg to only update if an interrupt did not already
1075 * do it for us. If the cmpxchg fails, we don't care.
1077 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1078 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1081 * No need to worry about races with clearing out the commit.
1082 * it only can increment when a commit takes place. But that
1083 * only happens in the outer most nested commit.
1085 local_set(&next_page
->page
->commit
, 0);
1087 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1088 tail_page
, next_page
);
1090 if (old_tail
== tail_page
)
1097 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1098 struct buffer_page
*bpage
)
1100 unsigned long val
= (unsigned long)bpage
;
1102 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1109 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1112 struct list_head
*list
)
1114 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1116 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1122 * rb_check_pages - integrity check of buffer pages
1123 * @cpu_buffer: CPU buffer with pages to test
1125 * As a safety measure we check to make sure the data pages have not
1128 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1130 struct list_head
*head
= cpu_buffer
->pages
;
1131 struct buffer_page
*bpage
, *tmp
;
1133 /* Reset the head page if it exists */
1134 if (cpu_buffer
->head_page
)
1135 rb_set_head_page(cpu_buffer
);
1137 rb_head_page_deactivate(cpu_buffer
);
1139 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1141 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1144 if (rb_check_list(cpu_buffer
, head
))
1147 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1148 if (RB_WARN_ON(cpu_buffer
,
1149 bpage
->list
.next
->prev
!= &bpage
->list
))
1151 if (RB_WARN_ON(cpu_buffer
,
1152 bpage
->list
.prev
->next
!= &bpage
->list
))
1154 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1158 rb_head_page_activate(cpu_buffer
);
1163 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1166 struct buffer_page
*bpage
, *tmp
;
1168 for (i
= 0; i
< nr_pages
; i
++) {
1171 * __GFP_NORETRY flag makes sure that the allocation fails
1172 * gracefully without invoking oom-killer and the system is
1175 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1176 GFP_KERNEL
| __GFP_NORETRY
,
1181 list_add(&bpage
->list
, pages
);
1183 page
= alloc_pages_node(cpu_to_node(cpu
),
1184 GFP_KERNEL
| __GFP_NORETRY
, 0);
1187 bpage
->page
= page_address(page
);
1188 rb_init_page(bpage
->page
);
1194 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1195 list_del_init(&bpage
->list
);
1196 free_buffer_page(bpage
);
1202 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1209 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1213 * The ring buffer page list is a circular list that does not
1214 * start and end with a list head. All page list items point to
1217 cpu_buffer
->pages
= pages
.next
;
1220 cpu_buffer
->nr_pages
= nr_pages
;
1222 rb_check_pages(cpu_buffer
);
1227 static struct ring_buffer_per_cpu
*
1228 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1230 struct ring_buffer_per_cpu
*cpu_buffer
;
1231 struct buffer_page
*bpage
;
1235 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1236 GFP_KERNEL
, cpu_to_node(cpu
));
1240 cpu_buffer
->cpu
= cpu
;
1241 cpu_buffer
->buffer
= buffer
;
1242 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1243 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1244 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1245 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1246 init_completion(&cpu_buffer
->update_done
);
1247 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1248 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1249 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1251 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1252 GFP_KERNEL
, cpu_to_node(cpu
));
1254 goto fail_free_buffer
;
1256 rb_check_bpage(cpu_buffer
, bpage
);
1258 cpu_buffer
->reader_page
= bpage
;
1259 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1261 goto fail_free_reader
;
1262 bpage
->page
= page_address(page
);
1263 rb_init_page(bpage
->page
);
1265 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1266 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1268 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1270 goto fail_free_reader
;
1272 cpu_buffer
->head_page
1273 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1274 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1276 rb_head_page_activate(cpu_buffer
);
1281 free_buffer_page(cpu_buffer
->reader_page
);
1288 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1290 struct list_head
*head
= cpu_buffer
->pages
;
1291 struct buffer_page
*bpage
, *tmp
;
1293 free_buffer_page(cpu_buffer
->reader_page
);
1295 rb_head_page_deactivate(cpu_buffer
);
1298 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1299 list_del_init(&bpage
->list
);
1300 free_buffer_page(bpage
);
1302 bpage
= list_entry(head
, struct buffer_page
, list
);
1303 free_buffer_page(bpage
);
1309 #ifdef CONFIG_HOTPLUG_CPU
1310 static int rb_cpu_notify(struct notifier_block
*self
,
1311 unsigned long action
, void *hcpu
);
1315 * __ring_buffer_alloc - allocate a new ring_buffer
1316 * @size: the size in bytes per cpu that is needed.
1317 * @flags: attributes to set for the ring buffer.
1319 * Currently the only flag that is available is the RB_FL_OVERWRITE
1320 * flag. This flag means that the buffer will overwrite old data
1321 * when the buffer wraps. If this flag is not set, the buffer will
1322 * drop data when the tail hits the head.
1324 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1325 struct lock_class_key
*key
)
1327 struct ring_buffer
*buffer
;
1331 /* keep it in its own cache line */
1332 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1337 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1338 goto fail_free_buffer
;
1340 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1341 buffer
->flags
= flags
;
1342 buffer
->clock
= trace_clock_local
;
1343 buffer
->reader_lock_key
= key
;
1345 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1346 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1348 /* need at least two pages */
1353 * In case of non-hotplug cpu, if the ring-buffer is allocated
1354 * in early initcall, it will not be notified of secondary cpus.
1355 * In that off case, we need to allocate for all possible cpus.
1357 #ifdef CONFIG_HOTPLUG_CPU
1358 cpu_notifier_register_begin();
1359 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1361 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1363 buffer
->cpus
= nr_cpu_ids
;
1365 bsize
= sizeof(void *) * nr_cpu_ids
;
1366 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1368 if (!buffer
->buffers
)
1369 goto fail_free_cpumask
;
1371 for_each_buffer_cpu(buffer
, cpu
) {
1372 buffer
->buffers
[cpu
] =
1373 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1374 if (!buffer
->buffers
[cpu
])
1375 goto fail_free_buffers
;
1378 #ifdef CONFIG_HOTPLUG_CPU
1379 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1380 buffer
->cpu_notify
.priority
= 0;
1381 __register_cpu_notifier(&buffer
->cpu_notify
);
1382 cpu_notifier_register_done();
1385 mutex_init(&buffer
->mutex
);
1390 for_each_buffer_cpu(buffer
, cpu
) {
1391 if (buffer
->buffers
[cpu
])
1392 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1394 kfree(buffer
->buffers
);
1397 free_cpumask_var(buffer
->cpumask
);
1398 #ifdef CONFIG_HOTPLUG_CPU
1399 cpu_notifier_register_done();
1406 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1409 * ring_buffer_free - free a ring buffer.
1410 * @buffer: the buffer to free.
1413 ring_buffer_free(struct ring_buffer
*buffer
)
1417 #ifdef CONFIG_HOTPLUG_CPU
1418 cpu_notifier_register_begin();
1419 __unregister_cpu_notifier(&buffer
->cpu_notify
);
1422 for_each_buffer_cpu(buffer
, cpu
)
1423 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1425 #ifdef CONFIG_HOTPLUG_CPU
1426 cpu_notifier_register_done();
1429 kfree(buffer
->buffers
);
1430 free_cpumask_var(buffer
->cpumask
);
1434 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1436 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1439 buffer
->clock
= clock
;
1442 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1444 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1446 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1449 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1451 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1455 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1457 struct list_head
*tail_page
, *to_remove
, *next_page
;
1458 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1459 struct buffer_page
*last_page
, *first_page
;
1460 unsigned int nr_removed
;
1461 unsigned long head_bit
;
1466 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1467 atomic_inc(&cpu_buffer
->record_disabled
);
1469 * We don't race with the readers since we have acquired the reader
1470 * lock. We also don't race with writers after disabling recording.
1471 * This makes it easy to figure out the first and the last page to be
1472 * removed from the list. We unlink all the pages in between including
1473 * the first and last pages. This is done in a busy loop so that we
1474 * lose the least number of traces.
1475 * The pages are freed after we restart recording and unlock readers.
1477 tail_page
= &cpu_buffer
->tail_page
->list
;
1480 * tail page might be on reader page, we remove the next page
1481 * from the ring buffer
1483 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1484 tail_page
= rb_list_head(tail_page
->next
);
1485 to_remove
= tail_page
;
1487 /* start of pages to remove */
1488 first_page
= list_entry(rb_list_head(to_remove
->next
),
1489 struct buffer_page
, list
);
1491 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1492 to_remove
= rb_list_head(to_remove
)->next
;
1493 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1496 next_page
= rb_list_head(to_remove
)->next
;
1499 * Now we remove all pages between tail_page and next_page.
1500 * Make sure that we have head_bit value preserved for the
1503 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1505 next_page
= rb_list_head(next_page
);
1506 next_page
->prev
= tail_page
;
1508 /* make sure pages points to a valid page in the ring buffer */
1509 cpu_buffer
->pages
= next_page
;
1511 /* update head page */
1513 cpu_buffer
->head_page
= list_entry(next_page
,
1514 struct buffer_page
, list
);
1517 * change read pointer to make sure any read iterators reset
1520 cpu_buffer
->read
= 0;
1522 /* pages are removed, resume tracing and then free the pages */
1523 atomic_dec(&cpu_buffer
->record_disabled
);
1524 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1526 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1528 /* last buffer page to remove */
1529 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1531 tmp_iter_page
= first_page
;
1534 to_remove_page
= tmp_iter_page
;
1535 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1537 /* update the counters */
1538 page_entries
= rb_page_entries(to_remove_page
);
1541 * If something was added to this page, it was full
1542 * since it is not the tail page. So we deduct the
1543 * bytes consumed in ring buffer from here.
1544 * Increment overrun to account for the lost events.
1546 local_add(page_entries
, &cpu_buffer
->overrun
);
1547 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1551 * We have already removed references to this list item, just
1552 * free up the buffer_page and its page
1554 free_buffer_page(to_remove_page
);
1557 } while (to_remove_page
!= last_page
);
1559 RB_WARN_ON(cpu_buffer
, nr_removed
);
1561 return nr_removed
== 0;
1565 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1567 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1568 int retries
, success
;
1570 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1572 * We are holding the reader lock, so the reader page won't be swapped
1573 * in the ring buffer. Now we are racing with the writer trying to
1574 * move head page and the tail page.
1575 * We are going to adapt the reader page update process where:
1576 * 1. We first splice the start and end of list of new pages between
1577 * the head page and its previous page.
1578 * 2. We cmpxchg the prev_page->next to point from head page to the
1579 * start of new pages list.
1580 * 3. Finally, we update the head->prev to the end of new list.
1582 * We will try this process 10 times, to make sure that we don't keep
1588 struct list_head
*head_page
, *prev_page
, *r
;
1589 struct list_head
*last_page
, *first_page
;
1590 struct list_head
*head_page_with_bit
;
1592 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1595 prev_page
= head_page
->prev
;
1597 first_page
= pages
->next
;
1598 last_page
= pages
->prev
;
1600 head_page_with_bit
= (struct list_head
*)
1601 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1603 last_page
->next
= head_page_with_bit
;
1604 first_page
->prev
= prev_page
;
1606 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1608 if (r
== head_page_with_bit
) {
1610 * yay, we replaced the page pointer to our new list,
1611 * now, we just have to update to head page's prev
1612 * pointer to point to end of list
1614 head_page
->prev
= last_page
;
1621 INIT_LIST_HEAD(pages
);
1623 * If we weren't successful in adding in new pages, warn and stop
1626 RB_WARN_ON(cpu_buffer
, !success
);
1627 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1629 /* free pages if they weren't inserted */
1631 struct buffer_page
*bpage
, *tmp
;
1632 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1634 list_del_init(&bpage
->list
);
1635 free_buffer_page(bpage
);
1641 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1645 if (cpu_buffer
->nr_pages_to_update
> 0)
1646 success
= rb_insert_pages(cpu_buffer
);
1648 success
= rb_remove_pages(cpu_buffer
,
1649 -cpu_buffer
->nr_pages_to_update
);
1652 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1655 static void update_pages_handler(struct work_struct
*work
)
1657 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1658 struct ring_buffer_per_cpu
, update_pages_work
);
1659 rb_update_pages(cpu_buffer
);
1660 complete(&cpu_buffer
->update_done
);
1664 * ring_buffer_resize - resize the ring buffer
1665 * @buffer: the buffer to resize.
1666 * @size: the new size.
1667 * @cpu_id: the cpu buffer to resize
1669 * Minimum size is 2 * BUF_PAGE_SIZE.
1671 * Returns 0 on success and < 0 on failure.
1673 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1676 struct ring_buffer_per_cpu
*cpu_buffer
;
1681 * Always succeed at resizing a non-existent buffer:
1686 /* Make sure the requested buffer exists */
1687 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1688 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1691 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1692 size
*= BUF_PAGE_SIZE
;
1694 /* we need a minimum of two pages */
1695 if (size
< BUF_PAGE_SIZE
* 2)
1696 size
= BUF_PAGE_SIZE
* 2;
1698 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1701 * Don't succeed if resizing is disabled, as a reader might be
1702 * manipulating the ring buffer and is expecting a sane state while
1705 if (atomic_read(&buffer
->resize_disabled
))
1708 /* prevent another thread from changing buffer sizes */
1709 mutex_lock(&buffer
->mutex
);
1711 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1712 /* calculate the pages to update */
1713 for_each_buffer_cpu(buffer
, cpu
) {
1714 cpu_buffer
= buffer
->buffers
[cpu
];
1716 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1717 cpu_buffer
->nr_pages
;
1719 * nothing more to do for removing pages or no update
1721 if (cpu_buffer
->nr_pages_to_update
<= 0)
1724 * to add pages, make sure all new pages can be
1725 * allocated without receiving ENOMEM
1727 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1728 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1729 &cpu_buffer
->new_pages
, cpu
)) {
1730 /* not enough memory for new pages */
1738 * Fire off all the required work handlers
1739 * We can't schedule on offline CPUs, but it's not necessary
1740 * since we can change their buffer sizes without any race.
1742 for_each_buffer_cpu(buffer
, cpu
) {
1743 cpu_buffer
= buffer
->buffers
[cpu
];
1744 if (!cpu_buffer
->nr_pages_to_update
)
1747 /* Can't run something on an offline CPU. */
1748 if (!cpu_online(cpu
)) {
1749 rb_update_pages(cpu_buffer
);
1750 cpu_buffer
->nr_pages_to_update
= 0;
1752 schedule_work_on(cpu
,
1753 &cpu_buffer
->update_pages_work
);
1757 /* wait for all the updates to complete */
1758 for_each_buffer_cpu(buffer
, cpu
) {
1759 cpu_buffer
= buffer
->buffers
[cpu
];
1760 if (!cpu_buffer
->nr_pages_to_update
)
1763 if (cpu_online(cpu
))
1764 wait_for_completion(&cpu_buffer
->update_done
);
1765 cpu_buffer
->nr_pages_to_update
= 0;
1770 /* Make sure this CPU has been intitialized */
1771 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1774 cpu_buffer
= buffer
->buffers
[cpu_id
];
1776 if (nr_pages
== cpu_buffer
->nr_pages
)
1779 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1780 cpu_buffer
->nr_pages
;
1782 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1783 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1784 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1785 &cpu_buffer
->new_pages
, cpu_id
)) {
1792 /* Can't run something on an offline CPU. */
1793 if (!cpu_online(cpu_id
))
1794 rb_update_pages(cpu_buffer
);
1796 schedule_work_on(cpu_id
,
1797 &cpu_buffer
->update_pages_work
);
1798 wait_for_completion(&cpu_buffer
->update_done
);
1801 cpu_buffer
->nr_pages_to_update
= 0;
1807 * The ring buffer resize can happen with the ring buffer
1808 * enabled, so that the update disturbs the tracing as little
1809 * as possible. But if the buffer is disabled, we do not need
1810 * to worry about that, and we can take the time to verify
1811 * that the buffer is not corrupt.
1813 if (atomic_read(&buffer
->record_disabled
)) {
1814 atomic_inc(&buffer
->record_disabled
);
1816 * Even though the buffer was disabled, we must make sure
1817 * that it is truly disabled before calling rb_check_pages.
1818 * There could have been a race between checking
1819 * record_disable and incrementing it.
1821 synchronize_sched();
1822 for_each_buffer_cpu(buffer
, cpu
) {
1823 cpu_buffer
= buffer
->buffers
[cpu
];
1824 rb_check_pages(cpu_buffer
);
1826 atomic_dec(&buffer
->record_disabled
);
1829 mutex_unlock(&buffer
->mutex
);
1833 for_each_buffer_cpu(buffer
, cpu
) {
1834 struct buffer_page
*bpage
, *tmp
;
1836 cpu_buffer
= buffer
->buffers
[cpu
];
1837 cpu_buffer
->nr_pages_to_update
= 0;
1839 if (list_empty(&cpu_buffer
->new_pages
))
1842 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1844 list_del_init(&bpage
->list
);
1845 free_buffer_page(bpage
);
1848 mutex_unlock(&buffer
->mutex
);
1851 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1853 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1855 mutex_lock(&buffer
->mutex
);
1857 buffer
->flags
|= RB_FL_OVERWRITE
;
1859 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1860 mutex_unlock(&buffer
->mutex
);
1862 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1864 static inline void *
1865 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1867 return bpage
->data
+ index
;
1870 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1872 return bpage
->page
->data
+ index
;
1875 static inline struct ring_buffer_event
*
1876 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1878 return __rb_page_index(cpu_buffer
->reader_page
,
1879 cpu_buffer
->reader_page
->read
);
1882 static inline struct ring_buffer_event
*
1883 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1885 return __rb_page_index(iter
->head_page
, iter
->head
);
1888 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1890 return local_read(&bpage
->page
->commit
);
1893 /* Size is determined by what has been committed */
1894 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1896 return rb_page_commit(bpage
);
1899 static inline unsigned
1900 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1902 return rb_page_commit(cpu_buffer
->commit_page
);
1905 static inline unsigned
1906 rb_event_index(struct ring_buffer_event
*event
)
1908 unsigned long addr
= (unsigned long)event
;
1910 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1914 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1915 struct ring_buffer_event
*event
)
1917 unsigned long addr
= (unsigned long)event
;
1918 unsigned long index
;
1920 index
= rb_event_index(event
);
1923 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1924 rb_commit_index(cpu_buffer
) == index
;
1928 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1930 unsigned long max_count
;
1933 * We only race with interrupts and NMIs on this CPU.
1934 * If we own the commit event, then we can commit
1935 * all others that interrupted us, since the interruptions
1936 * are in stack format (they finish before they come
1937 * back to us). This allows us to do a simple loop to
1938 * assign the commit to the tail.
1941 max_count
= cpu_buffer
->nr_pages
* 100;
1943 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1944 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1946 if (RB_WARN_ON(cpu_buffer
,
1947 rb_is_reader_page(cpu_buffer
->tail_page
)))
1949 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1950 rb_page_write(cpu_buffer
->commit_page
));
1951 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1952 cpu_buffer
->write_stamp
=
1953 cpu_buffer
->commit_page
->page
->time_stamp
;
1954 /* add barrier to keep gcc from optimizing too much */
1957 while (rb_commit_index(cpu_buffer
) !=
1958 rb_page_write(cpu_buffer
->commit_page
)) {
1960 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1961 rb_page_write(cpu_buffer
->commit_page
));
1962 RB_WARN_ON(cpu_buffer
,
1963 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1968 /* again, keep gcc from optimizing */
1972 * If an interrupt came in just after the first while loop
1973 * and pushed the tail page forward, we will be left with
1974 * a dangling commit that will never go forward.
1976 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1980 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1982 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1983 cpu_buffer
->reader_page
->read
= 0;
1986 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1988 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1991 * The iterator could be on the reader page (it starts there).
1992 * But the head could have moved, since the reader was
1993 * found. Check for this case and assign the iterator
1994 * to the head page instead of next.
1996 if (iter
->head_page
== cpu_buffer
->reader_page
)
1997 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1999 rb_inc_page(cpu_buffer
, &iter
->head_page
);
2001 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2005 /* Slow path, do not inline */
2006 static noinline
struct ring_buffer_event
*
2007 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
2009 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2011 /* Not the first event on the page? */
2012 if (rb_event_index(event
)) {
2013 event
->time_delta
= delta
& TS_MASK
;
2014 event
->array
[0] = delta
>> TS_SHIFT
;
2016 /* nope, just zero it */
2017 event
->time_delta
= 0;
2018 event
->array
[0] = 0;
2021 return skip_time_extend(event
);
2025 * rb_update_event - update event type and data
2026 * @event: the event to update
2027 * @type: the type of event
2028 * @length: the size of the event field in the ring buffer
2030 * Update the type and data fields of the event. The length
2031 * is the actual size that is written to the ring buffer,
2032 * and with this, we can determine what to place into the
2036 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2037 struct ring_buffer_event
*event
, unsigned length
,
2038 int add_timestamp
, u64 delta
)
2040 /* Only a commit updates the timestamp */
2041 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2045 * If we need to add a timestamp, then we
2046 * add it to the start of the resevered space.
2048 if (unlikely(add_timestamp
)) {
2049 event
= rb_add_time_stamp(event
, delta
);
2050 length
-= RB_LEN_TIME_EXTEND
;
2054 event
->time_delta
= delta
;
2055 length
-= RB_EVNT_HDR_SIZE
;
2056 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2057 event
->type_len
= 0;
2058 event
->array
[0] = length
;
2060 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2064 * rb_handle_head_page - writer hit the head page
2066 * Returns: +1 to retry page
2071 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
2072 struct buffer_page
*tail_page
,
2073 struct buffer_page
*next_page
)
2075 struct buffer_page
*new_head
;
2080 entries
= rb_page_entries(next_page
);
2083 * The hard part is here. We need to move the head
2084 * forward, and protect against both readers on
2085 * other CPUs and writers coming in via interrupts.
2087 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2091 * type can be one of four:
2092 * NORMAL - an interrupt already moved it for us
2093 * HEAD - we are the first to get here.
2094 * UPDATE - we are the interrupt interrupting
2096 * MOVED - a reader on another CPU moved the next
2097 * pointer to its reader page. Give up
2104 * We changed the head to UPDATE, thus
2105 * it is our responsibility to update
2108 local_add(entries
, &cpu_buffer
->overrun
);
2109 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2112 * The entries will be zeroed out when we move the
2116 /* still more to do */
2119 case RB_PAGE_UPDATE
:
2121 * This is an interrupt that interrupt the
2122 * previous update. Still more to do.
2125 case RB_PAGE_NORMAL
:
2127 * An interrupt came in before the update
2128 * and processed this for us.
2129 * Nothing left to do.
2134 * The reader is on another CPU and just did
2135 * a swap with our next_page.
2140 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2145 * Now that we are here, the old head pointer is
2146 * set to UPDATE. This will keep the reader from
2147 * swapping the head page with the reader page.
2148 * The reader (on another CPU) will spin till
2151 * We just need to protect against interrupts
2152 * doing the job. We will set the next pointer
2153 * to HEAD. After that, we set the old pointer
2154 * to NORMAL, but only if it was HEAD before.
2155 * otherwise we are an interrupt, and only
2156 * want the outer most commit to reset it.
2158 new_head
= next_page
;
2159 rb_inc_page(cpu_buffer
, &new_head
);
2161 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2165 * Valid returns are:
2166 * HEAD - an interrupt came in and already set it.
2167 * NORMAL - One of two things:
2168 * 1) We really set it.
2169 * 2) A bunch of interrupts came in and moved
2170 * the page forward again.
2174 case RB_PAGE_NORMAL
:
2178 RB_WARN_ON(cpu_buffer
, 1);
2183 * It is possible that an interrupt came in,
2184 * set the head up, then more interrupts came in
2185 * and moved it again. When we get back here,
2186 * the page would have been set to NORMAL but we
2187 * just set it back to HEAD.
2189 * How do you detect this? Well, if that happened
2190 * the tail page would have moved.
2192 if (ret
== RB_PAGE_NORMAL
) {
2194 * If the tail had moved passed next, then we need
2195 * to reset the pointer.
2197 if (cpu_buffer
->tail_page
!= tail_page
&&
2198 cpu_buffer
->tail_page
!= next_page
)
2199 rb_head_page_set_normal(cpu_buffer
, new_head
,
2205 * If this was the outer most commit (the one that
2206 * changed the original pointer from HEAD to UPDATE),
2207 * then it is up to us to reset it to NORMAL.
2209 if (type
== RB_PAGE_HEAD
) {
2210 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2213 if (RB_WARN_ON(cpu_buffer
,
2214 ret
!= RB_PAGE_UPDATE
))
2221 static unsigned rb_calculate_event_length(unsigned length
)
2223 struct ring_buffer_event event
; /* Used only for sizeof array */
2225 /* zero length can cause confusions */
2229 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2230 length
+= sizeof(event
.array
[0]);
2232 length
+= RB_EVNT_HDR_SIZE
;
2233 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2239 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2240 struct buffer_page
*tail_page
,
2241 unsigned long tail
, unsigned long length
)
2243 struct ring_buffer_event
*event
;
2246 * Only the event that crossed the page boundary
2247 * must fill the old tail_page with padding.
2249 if (tail
>= BUF_PAGE_SIZE
) {
2251 * If the page was filled, then we still need
2252 * to update the real_end. Reset it to zero
2253 * and the reader will ignore it.
2255 if (tail
== BUF_PAGE_SIZE
)
2256 tail_page
->real_end
= 0;
2258 local_sub(length
, &tail_page
->write
);
2262 event
= __rb_page_index(tail_page
, tail
);
2263 kmemcheck_annotate_bitfield(event
, bitfield
);
2265 /* account for padding bytes */
2266 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2269 * Save the original length to the meta data.
2270 * This will be used by the reader to add lost event
2273 tail_page
->real_end
= tail
;
2276 * If this event is bigger than the minimum size, then
2277 * we need to be careful that we don't subtract the
2278 * write counter enough to allow another writer to slip
2280 * We put in a discarded commit instead, to make sure
2281 * that this space is not used again.
2283 * If we are less than the minimum size, we don't need to
2286 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2287 /* No room for any events */
2289 /* Mark the rest of the page with padding */
2290 rb_event_set_padding(event
);
2292 /* Set the write back to the previous setting */
2293 local_sub(length
, &tail_page
->write
);
2297 /* Put in a discarded event */
2298 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2299 event
->type_len
= RINGBUF_TYPE_PADDING
;
2300 /* time delta must be non zero */
2301 event
->time_delta
= 1;
2303 /* Set write to end of buffer */
2304 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2305 local_sub(length
, &tail_page
->write
);
2309 * This is the slow path, force gcc not to inline it.
2311 static noinline
struct ring_buffer_event
*
2312 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2313 unsigned long length
, unsigned long tail
,
2314 struct buffer_page
*tail_page
, u64 ts
)
2316 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2317 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2318 struct buffer_page
*next_page
;
2321 next_page
= tail_page
;
2323 rb_inc_page(cpu_buffer
, &next_page
);
2326 * If for some reason, we had an interrupt storm that made
2327 * it all the way around the buffer, bail, and warn
2330 if (unlikely(next_page
== commit_page
)) {
2331 local_inc(&cpu_buffer
->commit_overrun
);
2336 * This is where the fun begins!
2338 * We are fighting against races between a reader that
2339 * could be on another CPU trying to swap its reader
2340 * page with the buffer head.
2342 * We are also fighting against interrupts coming in and
2343 * moving the head or tail on us as well.
2345 * If the next page is the head page then we have filled
2346 * the buffer, unless the commit page is still on the
2349 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2352 * If the commit is not on the reader page, then
2353 * move the header page.
2355 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2357 * If we are not in overwrite mode,
2358 * this is easy, just stop here.
2360 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2361 local_inc(&cpu_buffer
->dropped_events
);
2365 ret
= rb_handle_head_page(cpu_buffer
,
2374 * We need to be careful here too. The
2375 * commit page could still be on the reader
2376 * page. We could have a small buffer, and
2377 * have filled up the buffer with events
2378 * from interrupts and such, and wrapped.
2380 * Note, if the tail page is also the on the
2381 * reader_page, we let it move out.
2383 if (unlikely((cpu_buffer
->commit_page
!=
2384 cpu_buffer
->tail_page
) &&
2385 (cpu_buffer
->commit_page
==
2386 cpu_buffer
->reader_page
))) {
2387 local_inc(&cpu_buffer
->commit_overrun
);
2393 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2396 * Nested commits always have zero deltas, so
2397 * just reread the time stamp
2399 ts
= rb_time_stamp(buffer
);
2400 next_page
->page
->time_stamp
= ts
;
2405 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2407 /* fail and let the caller try again */
2408 return ERR_PTR(-EAGAIN
);
2412 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2417 static struct ring_buffer_event
*
2418 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2419 unsigned long length
, u64 ts
,
2420 u64 delta
, int add_timestamp
)
2422 struct buffer_page
*tail_page
;
2423 struct ring_buffer_event
*event
;
2424 unsigned long tail
, write
;
2427 * If the time delta since the last event is too big to
2428 * hold in the time field of the event, then we append a
2429 * TIME EXTEND event ahead of the data event.
2431 if (unlikely(add_timestamp
))
2432 length
+= RB_LEN_TIME_EXTEND
;
2434 tail_page
= cpu_buffer
->tail_page
;
2435 write
= local_add_return(length
, &tail_page
->write
);
2437 /* set write to only the index of the write */
2438 write
&= RB_WRITE_MASK
;
2439 tail
= write
- length
;
2442 * If this is the first commit on the page, then it has the same
2443 * timestamp as the page itself.
2448 /* See if we shot pass the end of this buffer page */
2449 if (unlikely(write
> BUF_PAGE_SIZE
))
2450 return rb_move_tail(cpu_buffer
, length
, tail
,
2453 /* We reserved something on the buffer */
2455 event
= __rb_page_index(tail_page
, tail
);
2456 kmemcheck_annotate_bitfield(event
, bitfield
);
2457 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2459 local_inc(&tail_page
->entries
);
2462 * If this is the first commit on the page, then update
2466 tail_page
->page
->time_stamp
= ts
;
2468 /* account for these added bytes */
2469 local_add(length
, &cpu_buffer
->entries_bytes
);
2475 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2476 struct ring_buffer_event
*event
)
2478 unsigned long new_index
, old_index
;
2479 struct buffer_page
*bpage
;
2480 unsigned long index
;
2483 new_index
= rb_event_index(event
);
2484 old_index
= new_index
+ rb_event_ts_length(event
);
2485 addr
= (unsigned long)event
;
2488 bpage
= cpu_buffer
->tail_page
;
2490 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2491 unsigned long write_mask
=
2492 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2493 unsigned long event_length
= rb_event_length(event
);
2495 * This is on the tail page. It is possible that
2496 * a write could come in and move the tail page
2497 * and write to the next page. That is fine
2498 * because we just shorten what is on this page.
2500 old_index
+= write_mask
;
2501 new_index
+= write_mask
;
2502 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2503 if (index
== old_index
) {
2504 /* update counters */
2505 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2510 /* could not discard */
2514 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2516 local_inc(&cpu_buffer
->committing
);
2517 local_inc(&cpu_buffer
->commits
);
2520 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2522 unsigned long commits
;
2524 if (RB_WARN_ON(cpu_buffer
,
2525 !local_read(&cpu_buffer
->committing
)))
2529 commits
= local_read(&cpu_buffer
->commits
);
2530 /* synchronize with interrupts */
2532 if (local_read(&cpu_buffer
->committing
) == 1)
2533 rb_set_commit_to_write(cpu_buffer
);
2535 local_dec(&cpu_buffer
->committing
);
2537 /* synchronize with interrupts */
2541 * Need to account for interrupts coming in between the
2542 * updating of the commit page and the clearing of the
2543 * committing counter.
2545 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2546 !local_read(&cpu_buffer
->committing
)) {
2547 local_inc(&cpu_buffer
->committing
);
2552 static struct ring_buffer_event
*
2553 rb_reserve_next_event(struct ring_buffer
*buffer
,
2554 struct ring_buffer_per_cpu
*cpu_buffer
,
2555 unsigned long length
)
2557 struct ring_buffer_event
*event
;
2563 rb_start_commit(cpu_buffer
);
2565 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2567 * Due to the ability to swap a cpu buffer from a buffer
2568 * it is possible it was swapped before we committed.
2569 * (committing stops a swap). We check for it here and
2570 * if it happened, we have to fail the write.
2573 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2574 local_dec(&cpu_buffer
->committing
);
2575 local_dec(&cpu_buffer
->commits
);
2580 length
= rb_calculate_event_length(length
);
2586 * We allow for interrupts to reenter here and do a trace.
2587 * If one does, it will cause this original code to loop
2588 * back here. Even with heavy interrupts happening, this
2589 * should only happen a few times in a row. If this happens
2590 * 1000 times in a row, there must be either an interrupt
2591 * storm or we have something buggy.
2594 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2597 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2598 diff
= ts
- cpu_buffer
->write_stamp
;
2600 /* make sure this diff is calculated here */
2603 /* Did the write stamp get updated already? */
2604 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2606 if (unlikely(test_time_stamp(delta
))) {
2607 int local_clock_stable
= 1;
2608 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2609 local_clock_stable
= sched_clock_stable();
2611 WARN_ONCE(delta
> (1ULL << 59),
2612 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2613 (unsigned long long)delta
,
2614 (unsigned long long)ts
,
2615 (unsigned long long)cpu_buffer
->write_stamp
,
2616 local_clock_stable
? "" :
2617 "If you just came from a suspend/resume,\n"
2618 "please switch to the trace global clock:\n"
2619 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2624 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2625 delta
, add_timestamp
);
2626 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2635 rb_end_commit(cpu_buffer
);
2639 #ifdef CONFIG_TRACING
2642 * The lock and unlock are done within a preempt disable section.
2643 * The current_context per_cpu variable can only be modified
2644 * by the current task between lock and unlock. But it can
2645 * be modified more than once via an interrupt. To pass this
2646 * information from the lock to the unlock without having to
2647 * access the 'in_interrupt()' functions again (which do show
2648 * a bit of overhead in something as critical as function tracing,
2649 * we use a bitmask trick.
2651 * bit 0 = NMI context
2652 * bit 1 = IRQ context
2653 * bit 2 = SoftIRQ context
2654 * bit 3 = normal context.
2656 * This works because this is the order of contexts that can
2657 * preempt other contexts. A SoftIRQ never preempts an IRQ
2660 * When the context is determined, the corresponding bit is
2661 * checked and set (if it was set, then a recursion of that context
2664 * On unlock, we need to clear this bit. To do so, just subtract
2665 * 1 from the current_context and AND it to itself.
2669 * 101 & 100 = 100 (clearing bit zero)
2672 * 1010 & 1001 = 1000 (clearing bit 1)
2674 * The least significant bit can be cleared this way, and it
2675 * just so happens that it is the same bit corresponding to
2676 * the current context.
2678 static DEFINE_PER_CPU(unsigned int, current_context
);
2680 static __always_inline
int trace_recursive_lock(void)
2682 unsigned int val
= this_cpu_read(current_context
);
2685 if (in_interrupt()) {
2695 if (unlikely(val
& (1 << bit
)))
2699 this_cpu_write(current_context
, val
);
2704 static __always_inline
void trace_recursive_unlock(void)
2706 unsigned int val
= this_cpu_read(current_context
);
2709 val
&= this_cpu_read(current_context
);
2710 this_cpu_write(current_context
, val
);
2715 #define trace_recursive_lock() (0)
2716 #define trace_recursive_unlock() do { } while (0)
2721 * ring_buffer_lock_reserve - reserve a part of the buffer
2722 * @buffer: the ring buffer to reserve from
2723 * @length: the length of the data to reserve (excluding event header)
2725 * Returns a reseverd event on the ring buffer to copy directly to.
2726 * The user of this interface will need to get the body to write into
2727 * and can use the ring_buffer_event_data() interface.
2729 * The length is the length of the data needed, not the event length
2730 * which also includes the event header.
2732 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2733 * If NULL is returned, then nothing has been allocated or locked.
2735 struct ring_buffer_event
*
2736 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2738 struct ring_buffer_per_cpu
*cpu_buffer
;
2739 struct ring_buffer_event
*event
;
2742 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2745 /* If we are tracing schedule, we don't want to recurse */
2746 preempt_disable_notrace();
2748 if (atomic_read(&buffer
->record_disabled
))
2751 if (trace_recursive_lock())
2754 cpu
= raw_smp_processor_id();
2756 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2759 cpu_buffer
= buffer
->buffers
[cpu
];
2761 if (atomic_read(&cpu_buffer
->record_disabled
))
2764 if (length
> BUF_MAX_DATA_SIZE
)
2767 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2774 trace_recursive_unlock();
2777 preempt_enable_notrace();
2780 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2783 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2784 struct ring_buffer_event
*event
)
2789 * The event first in the commit queue updates the
2792 if (rb_event_is_commit(cpu_buffer
, event
)) {
2794 * A commit event that is first on a page
2795 * updates the write timestamp with the page stamp
2797 if (!rb_event_index(event
))
2798 cpu_buffer
->write_stamp
=
2799 cpu_buffer
->commit_page
->page
->time_stamp
;
2800 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2801 delta
= event
->array
[0];
2803 delta
+= event
->time_delta
;
2804 cpu_buffer
->write_stamp
+= delta
;
2806 cpu_buffer
->write_stamp
+= event
->time_delta
;
2810 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2811 struct ring_buffer_event
*event
)
2813 local_inc(&cpu_buffer
->entries
);
2814 rb_update_write_stamp(cpu_buffer
, event
);
2815 rb_end_commit(cpu_buffer
);
2818 static __always_inline
void
2819 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2823 if (buffer
->irq_work
.waiters_pending
) {
2824 buffer
->irq_work
.waiters_pending
= false;
2825 /* irq_work_queue() supplies it's own memory barriers */
2826 irq_work_queue(&buffer
->irq_work
.work
);
2829 if (cpu_buffer
->irq_work
.waiters_pending
) {
2830 cpu_buffer
->irq_work
.waiters_pending
= false;
2831 /* irq_work_queue() supplies it's own memory barriers */
2832 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2835 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2837 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2838 cpu_buffer
->irq_work
.wakeup_full
= true;
2839 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2840 /* irq_work_queue() supplies it's own memory barriers */
2841 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2846 * ring_buffer_unlock_commit - commit a reserved
2847 * @buffer: The buffer to commit to
2848 * @event: The event pointer to commit.
2850 * This commits the data to the ring buffer, and releases any locks held.
2852 * Must be paired with ring_buffer_lock_reserve.
2854 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2855 struct ring_buffer_event
*event
)
2857 struct ring_buffer_per_cpu
*cpu_buffer
;
2858 int cpu
= raw_smp_processor_id();
2860 cpu_buffer
= buffer
->buffers
[cpu
];
2862 rb_commit(cpu_buffer
, event
);
2864 rb_wakeups(buffer
, cpu_buffer
);
2866 trace_recursive_unlock();
2868 preempt_enable_notrace();
2872 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2874 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2876 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2877 event
= skip_time_extend(event
);
2879 /* array[0] holds the actual length for the discarded event */
2880 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2881 event
->type_len
= RINGBUF_TYPE_PADDING
;
2882 /* time delta must be non zero */
2883 if (!event
->time_delta
)
2884 event
->time_delta
= 1;
2888 * Decrement the entries to the page that an event is on.
2889 * The event does not even need to exist, only the pointer
2890 * to the page it is on. This may only be called before the commit
2894 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2895 struct ring_buffer_event
*event
)
2897 unsigned long addr
= (unsigned long)event
;
2898 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2899 struct buffer_page
*start
;
2903 /* Do the likely case first */
2904 if (likely(bpage
->page
== (void *)addr
)) {
2905 local_dec(&bpage
->entries
);
2910 * Because the commit page may be on the reader page we
2911 * start with the next page and check the end loop there.
2913 rb_inc_page(cpu_buffer
, &bpage
);
2916 if (bpage
->page
== (void *)addr
) {
2917 local_dec(&bpage
->entries
);
2920 rb_inc_page(cpu_buffer
, &bpage
);
2921 } while (bpage
!= start
);
2923 /* commit not part of this buffer?? */
2924 RB_WARN_ON(cpu_buffer
, 1);
2928 * ring_buffer_commit_discard - discard an event that has not been committed
2929 * @buffer: the ring buffer
2930 * @event: non committed event to discard
2932 * Sometimes an event that is in the ring buffer needs to be ignored.
2933 * This function lets the user discard an event in the ring buffer
2934 * and then that event will not be read later.
2936 * This function only works if it is called before the the item has been
2937 * committed. It will try to free the event from the ring buffer
2938 * if another event has not been added behind it.
2940 * If another event has been added behind it, it will set the event
2941 * up as discarded, and perform the commit.
2943 * If this function is called, do not call ring_buffer_unlock_commit on
2946 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2947 struct ring_buffer_event
*event
)
2949 struct ring_buffer_per_cpu
*cpu_buffer
;
2952 /* The event is discarded regardless */
2953 rb_event_discard(event
);
2955 cpu
= smp_processor_id();
2956 cpu_buffer
= buffer
->buffers
[cpu
];
2959 * This must only be called if the event has not been
2960 * committed yet. Thus we can assume that preemption
2961 * is still disabled.
2963 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2965 rb_decrement_entry(cpu_buffer
, event
);
2966 if (rb_try_to_discard(cpu_buffer
, event
))
2970 * The commit is still visible by the reader, so we
2971 * must still update the timestamp.
2973 rb_update_write_stamp(cpu_buffer
, event
);
2975 rb_end_commit(cpu_buffer
);
2977 trace_recursive_unlock();
2979 preempt_enable_notrace();
2982 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2985 * ring_buffer_write - write data to the buffer without reserving
2986 * @buffer: The ring buffer to write to.
2987 * @length: The length of the data being written (excluding the event header)
2988 * @data: The data to write to the buffer.
2990 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2991 * one function. If you already have the data to write to the buffer, it
2992 * may be easier to simply call this function.
2994 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2995 * and not the length of the event which would hold the header.
2997 int ring_buffer_write(struct ring_buffer
*buffer
,
2998 unsigned long length
,
3001 struct ring_buffer_per_cpu
*cpu_buffer
;
3002 struct ring_buffer_event
*event
;
3007 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3010 preempt_disable_notrace();
3012 if (atomic_read(&buffer
->record_disabled
))
3015 cpu
= raw_smp_processor_id();
3017 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3020 cpu_buffer
= buffer
->buffers
[cpu
];
3022 if (atomic_read(&cpu_buffer
->record_disabled
))
3025 if (length
> BUF_MAX_DATA_SIZE
)
3028 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3032 body
= rb_event_data(event
);
3034 memcpy(body
, data
, length
);
3036 rb_commit(cpu_buffer
, event
);
3038 rb_wakeups(buffer
, cpu_buffer
);
3042 preempt_enable_notrace();
3046 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3048 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3050 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3051 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3052 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3054 /* In case of error, head will be NULL */
3055 if (unlikely(!head
))
3058 return reader
->read
== rb_page_commit(reader
) &&
3059 (commit
== reader
||
3061 head
->read
== rb_page_commit(commit
)));
3065 * ring_buffer_record_disable - stop all writes into the buffer
3066 * @buffer: The ring buffer to stop writes to.
3068 * This prevents all writes to the buffer. Any attempt to write
3069 * to the buffer after this will fail and return NULL.
3071 * The caller should call synchronize_sched() after this.
3073 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3075 atomic_inc(&buffer
->record_disabled
);
3077 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3080 * ring_buffer_record_enable - enable writes to the buffer
3081 * @buffer: The ring buffer to enable writes
3083 * Note, multiple disables will need the same number of enables
3084 * to truly enable the writing (much like preempt_disable).
3086 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3088 atomic_dec(&buffer
->record_disabled
);
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3093 * ring_buffer_record_off - stop all writes into the buffer
3094 * @buffer: The ring buffer to stop writes to.
3096 * This prevents all writes to the buffer. Any attempt to write
3097 * to the buffer after this will fail and return NULL.
3099 * This is different than ring_buffer_record_disable() as
3100 * it works like an on/off switch, where as the disable() version
3101 * must be paired with a enable().
3103 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3106 unsigned int new_rd
;
3109 rd
= atomic_read(&buffer
->record_disabled
);
3110 new_rd
= rd
| RB_BUFFER_OFF
;
3111 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3113 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3116 * ring_buffer_record_on - restart writes into the buffer
3117 * @buffer: The ring buffer to start writes to.
3119 * This enables all writes to the buffer that was disabled by
3120 * ring_buffer_record_off().
3122 * This is different than ring_buffer_record_enable() as
3123 * it works like an on/off switch, where as the enable() version
3124 * must be paired with a disable().
3126 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3129 unsigned int new_rd
;
3132 rd
= atomic_read(&buffer
->record_disabled
);
3133 new_rd
= rd
& ~RB_BUFFER_OFF
;
3134 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3136 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3139 * ring_buffer_record_is_on - return true if the ring buffer can write
3140 * @buffer: The ring buffer to see if write is enabled
3142 * Returns true if the ring buffer is in a state that it accepts writes.
3144 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3146 return !atomic_read(&buffer
->record_disabled
);
3150 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3151 * @buffer: The ring buffer to stop writes to.
3152 * @cpu: The CPU buffer to stop
3154 * This prevents all writes to the buffer. Any attempt to write
3155 * to the buffer after this will fail and return NULL.
3157 * The caller should call synchronize_sched() after this.
3159 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3161 struct ring_buffer_per_cpu
*cpu_buffer
;
3163 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3166 cpu_buffer
= buffer
->buffers
[cpu
];
3167 atomic_inc(&cpu_buffer
->record_disabled
);
3169 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3172 * ring_buffer_record_enable_cpu - enable writes to the buffer
3173 * @buffer: The ring buffer to enable writes
3174 * @cpu: The CPU to enable.
3176 * Note, multiple disables will need the same number of enables
3177 * to truly enable the writing (much like preempt_disable).
3179 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3181 struct ring_buffer_per_cpu
*cpu_buffer
;
3183 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3186 cpu_buffer
= buffer
->buffers
[cpu
];
3187 atomic_dec(&cpu_buffer
->record_disabled
);
3189 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3192 * The total entries in the ring buffer is the running counter
3193 * of entries entered into the ring buffer, minus the sum of
3194 * the entries read from the ring buffer and the number of
3195 * entries that were overwritten.
3197 static inline unsigned long
3198 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3200 return local_read(&cpu_buffer
->entries
) -
3201 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3205 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3206 * @buffer: The ring buffer
3207 * @cpu: The per CPU buffer to read from.
3209 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3211 unsigned long flags
;
3212 struct ring_buffer_per_cpu
*cpu_buffer
;
3213 struct buffer_page
*bpage
;
3216 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3219 cpu_buffer
= buffer
->buffers
[cpu
];
3220 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3222 * if the tail is on reader_page, oldest time stamp is on the reader
3225 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3226 bpage
= cpu_buffer
->reader_page
;
3228 bpage
= rb_set_head_page(cpu_buffer
);
3230 ret
= bpage
->page
->time_stamp
;
3231 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3235 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3238 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3239 * @buffer: The ring buffer
3240 * @cpu: The per CPU buffer to read from.
3242 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3244 struct ring_buffer_per_cpu
*cpu_buffer
;
3247 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3250 cpu_buffer
= buffer
->buffers
[cpu
];
3251 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3255 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3258 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3259 * @buffer: The ring buffer
3260 * @cpu: The per CPU buffer to get the entries from.
3262 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3264 struct ring_buffer_per_cpu
*cpu_buffer
;
3266 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3269 cpu_buffer
= buffer
->buffers
[cpu
];
3271 return rb_num_of_entries(cpu_buffer
);
3273 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3276 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3277 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3278 * @buffer: The ring buffer
3279 * @cpu: The per CPU buffer to get the number of overruns from
3281 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3283 struct ring_buffer_per_cpu
*cpu_buffer
;
3286 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3289 cpu_buffer
= buffer
->buffers
[cpu
];
3290 ret
= local_read(&cpu_buffer
->overrun
);
3294 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3297 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3298 * commits failing due to the buffer wrapping around while there are uncommitted
3299 * events, such as during an interrupt storm.
3300 * @buffer: The ring buffer
3301 * @cpu: The per CPU buffer to get the number of overruns from
3304 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3306 struct ring_buffer_per_cpu
*cpu_buffer
;
3309 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3312 cpu_buffer
= buffer
->buffers
[cpu
];
3313 ret
= local_read(&cpu_buffer
->commit_overrun
);
3317 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3320 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3321 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3322 * @buffer: The ring buffer
3323 * @cpu: The per CPU buffer to get the number of overruns from
3326 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3328 struct ring_buffer_per_cpu
*cpu_buffer
;
3331 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3334 cpu_buffer
= buffer
->buffers
[cpu
];
3335 ret
= local_read(&cpu_buffer
->dropped_events
);
3339 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3342 * ring_buffer_read_events_cpu - get the number of events successfully read
3343 * @buffer: The ring buffer
3344 * @cpu: The per CPU buffer to get the number of events read
3347 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3349 struct ring_buffer_per_cpu
*cpu_buffer
;
3351 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3354 cpu_buffer
= buffer
->buffers
[cpu
];
3355 return cpu_buffer
->read
;
3357 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3360 * ring_buffer_entries - get the number of entries in a buffer
3361 * @buffer: The ring buffer
3363 * Returns the total number of entries in the ring buffer
3366 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3368 struct ring_buffer_per_cpu
*cpu_buffer
;
3369 unsigned long entries
= 0;
3372 /* if you care about this being correct, lock the buffer */
3373 for_each_buffer_cpu(buffer
, cpu
) {
3374 cpu_buffer
= buffer
->buffers
[cpu
];
3375 entries
+= rb_num_of_entries(cpu_buffer
);
3380 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3383 * ring_buffer_overruns - get the number of overruns in buffer
3384 * @buffer: The ring buffer
3386 * Returns the total number of overruns in the ring buffer
3389 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3391 struct ring_buffer_per_cpu
*cpu_buffer
;
3392 unsigned long overruns
= 0;
3395 /* if you care about this being correct, lock the buffer */
3396 for_each_buffer_cpu(buffer
, cpu
) {
3397 cpu_buffer
= buffer
->buffers
[cpu
];
3398 overruns
+= local_read(&cpu_buffer
->overrun
);
3403 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3405 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3407 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3409 /* Iterator usage is expected to have record disabled */
3410 iter
->head_page
= cpu_buffer
->reader_page
;
3411 iter
->head
= cpu_buffer
->reader_page
->read
;
3413 iter
->cache_reader_page
= iter
->head_page
;
3414 iter
->cache_read
= cpu_buffer
->read
;
3417 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3419 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3423 * ring_buffer_iter_reset - reset an iterator
3424 * @iter: The iterator to reset
3426 * Resets the iterator, so that it will start from the beginning
3429 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3431 struct ring_buffer_per_cpu
*cpu_buffer
;
3432 unsigned long flags
;
3437 cpu_buffer
= iter
->cpu_buffer
;
3439 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3440 rb_iter_reset(iter
);
3441 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3443 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3446 * ring_buffer_iter_empty - check if an iterator has no more to read
3447 * @iter: The iterator to check
3449 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3451 struct ring_buffer_per_cpu
*cpu_buffer
;
3453 cpu_buffer
= iter
->cpu_buffer
;
3455 return iter
->head_page
== cpu_buffer
->commit_page
&&
3456 iter
->head
== rb_commit_index(cpu_buffer
);
3458 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3461 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3462 struct ring_buffer_event
*event
)
3466 switch (event
->type_len
) {
3467 case RINGBUF_TYPE_PADDING
:
3470 case RINGBUF_TYPE_TIME_EXTEND
:
3471 delta
= event
->array
[0];
3473 delta
+= event
->time_delta
;
3474 cpu_buffer
->read_stamp
+= delta
;
3477 case RINGBUF_TYPE_TIME_STAMP
:
3478 /* FIXME: not implemented */
3481 case RINGBUF_TYPE_DATA
:
3482 cpu_buffer
->read_stamp
+= event
->time_delta
;
3492 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3493 struct ring_buffer_event
*event
)
3497 switch (event
->type_len
) {
3498 case RINGBUF_TYPE_PADDING
:
3501 case RINGBUF_TYPE_TIME_EXTEND
:
3502 delta
= event
->array
[0];
3504 delta
+= event
->time_delta
;
3505 iter
->read_stamp
+= delta
;
3508 case RINGBUF_TYPE_TIME_STAMP
:
3509 /* FIXME: not implemented */
3512 case RINGBUF_TYPE_DATA
:
3513 iter
->read_stamp
+= event
->time_delta
;
3522 static struct buffer_page
*
3523 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3525 struct buffer_page
*reader
= NULL
;
3526 unsigned long overwrite
;
3527 unsigned long flags
;
3531 local_irq_save(flags
);
3532 arch_spin_lock(&cpu_buffer
->lock
);
3536 * This should normally only loop twice. But because the
3537 * start of the reader inserts an empty page, it causes
3538 * a case where we will loop three times. There should be no
3539 * reason to loop four times (that I know of).
3541 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3546 reader
= cpu_buffer
->reader_page
;
3548 /* If there's more to read, return this page */
3549 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3552 /* Never should we have an index greater than the size */
3553 if (RB_WARN_ON(cpu_buffer
,
3554 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3557 /* check if we caught up to the tail */
3559 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3562 /* Don't bother swapping if the ring buffer is empty */
3563 if (rb_num_of_entries(cpu_buffer
) == 0)
3567 * Reset the reader page to size zero.
3569 local_set(&cpu_buffer
->reader_page
->write
, 0);
3570 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3571 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3572 cpu_buffer
->reader_page
->real_end
= 0;
3576 * Splice the empty reader page into the list around the head.
3578 reader
= rb_set_head_page(cpu_buffer
);
3581 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3582 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3585 * cpu_buffer->pages just needs to point to the buffer, it
3586 * has no specific buffer page to point to. Lets move it out
3587 * of our way so we don't accidentally swap it.
3589 cpu_buffer
->pages
= reader
->list
.prev
;
3591 /* The reader page will be pointing to the new head */
3592 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3595 * We want to make sure we read the overruns after we set up our
3596 * pointers to the next object. The writer side does a
3597 * cmpxchg to cross pages which acts as the mb on the writer
3598 * side. Note, the reader will constantly fail the swap
3599 * while the writer is updating the pointers, so this
3600 * guarantees that the overwrite recorded here is the one we
3601 * want to compare with the last_overrun.
3604 overwrite
= local_read(&(cpu_buffer
->overrun
));
3607 * Here's the tricky part.
3609 * We need to move the pointer past the header page.
3610 * But we can only do that if a writer is not currently
3611 * moving it. The page before the header page has the
3612 * flag bit '1' set if it is pointing to the page we want.
3613 * but if the writer is in the process of moving it
3614 * than it will be '2' or already moved '0'.
3617 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3620 * If we did not convert it, then we must try again.
3626 * Yeah! We succeeded in replacing the page.
3628 * Now make the new head point back to the reader page.
3630 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3631 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3633 /* Finally update the reader page to the new head */
3634 cpu_buffer
->reader_page
= reader
;
3635 rb_reset_reader_page(cpu_buffer
);
3637 if (overwrite
!= cpu_buffer
->last_overrun
) {
3638 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3639 cpu_buffer
->last_overrun
= overwrite
;
3645 arch_spin_unlock(&cpu_buffer
->lock
);
3646 local_irq_restore(flags
);
3651 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3653 struct ring_buffer_event
*event
;
3654 struct buffer_page
*reader
;
3657 reader
= rb_get_reader_page(cpu_buffer
);
3659 /* This function should not be called when buffer is empty */
3660 if (RB_WARN_ON(cpu_buffer
, !reader
))
3663 event
= rb_reader_event(cpu_buffer
);
3665 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3668 rb_update_read_stamp(cpu_buffer
, event
);
3670 length
= rb_event_length(event
);
3671 cpu_buffer
->reader_page
->read
+= length
;
3674 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3676 struct ring_buffer_per_cpu
*cpu_buffer
;
3677 struct ring_buffer_event
*event
;
3680 cpu_buffer
= iter
->cpu_buffer
;
3683 * Check if we are at the end of the buffer.
3685 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3686 /* discarded commits can make the page empty */
3687 if (iter
->head_page
== cpu_buffer
->commit_page
)
3693 event
= rb_iter_head_event(iter
);
3695 length
= rb_event_length(event
);
3698 * This should not be called to advance the header if we are
3699 * at the tail of the buffer.
3701 if (RB_WARN_ON(cpu_buffer
,
3702 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3703 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3706 rb_update_iter_read_stamp(iter
, event
);
3708 iter
->head
+= length
;
3710 /* check for end of page padding */
3711 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3712 (iter
->head_page
!= cpu_buffer
->commit_page
))
3716 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3718 return cpu_buffer
->lost_events
;
3721 static struct ring_buffer_event
*
3722 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3723 unsigned long *lost_events
)
3725 struct ring_buffer_event
*event
;
3726 struct buffer_page
*reader
;
3731 * We repeat when a time extend is encountered.
3732 * Since the time extend is always attached to a data event,
3733 * we should never loop more than once.
3734 * (We never hit the following condition more than twice).
3736 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3739 reader
= rb_get_reader_page(cpu_buffer
);
3743 event
= rb_reader_event(cpu_buffer
);
3745 switch (event
->type_len
) {
3746 case RINGBUF_TYPE_PADDING
:
3747 if (rb_null_event(event
))
3748 RB_WARN_ON(cpu_buffer
, 1);
3750 * Because the writer could be discarding every
3751 * event it creates (which would probably be bad)
3752 * if we were to go back to "again" then we may never
3753 * catch up, and will trigger the warn on, or lock
3754 * the box. Return the padding, and we will release
3755 * the current locks, and try again.
3759 case RINGBUF_TYPE_TIME_EXTEND
:
3760 /* Internal data, OK to advance */
3761 rb_advance_reader(cpu_buffer
);
3764 case RINGBUF_TYPE_TIME_STAMP
:
3765 /* FIXME: not implemented */
3766 rb_advance_reader(cpu_buffer
);
3769 case RINGBUF_TYPE_DATA
:
3771 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3772 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3773 cpu_buffer
->cpu
, ts
);
3776 *lost_events
= rb_lost_events(cpu_buffer
);
3785 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3787 static struct ring_buffer_event
*
3788 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3790 struct ring_buffer
*buffer
;
3791 struct ring_buffer_per_cpu
*cpu_buffer
;
3792 struct ring_buffer_event
*event
;
3795 cpu_buffer
= iter
->cpu_buffer
;
3796 buffer
= cpu_buffer
->buffer
;
3799 * Check if someone performed a consuming read to
3800 * the buffer. A consuming read invalidates the iterator
3801 * and we need to reset the iterator in this case.
3803 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3804 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3805 rb_iter_reset(iter
);
3808 if (ring_buffer_iter_empty(iter
))
3812 * We repeat when a time extend is encountered or we hit
3813 * the end of the page. Since the time extend is always attached
3814 * to a data event, we should never loop more than three times.
3815 * Once for going to next page, once on time extend, and
3816 * finally once to get the event.
3817 * (We never hit the following condition more than thrice).
3819 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3822 if (rb_per_cpu_empty(cpu_buffer
))
3825 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3830 event
= rb_iter_head_event(iter
);
3832 switch (event
->type_len
) {
3833 case RINGBUF_TYPE_PADDING
:
3834 if (rb_null_event(event
)) {
3838 rb_advance_iter(iter
);
3841 case RINGBUF_TYPE_TIME_EXTEND
:
3842 /* Internal data, OK to advance */
3843 rb_advance_iter(iter
);
3846 case RINGBUF_TYPE_TIME_STAMP
:
3847 /* FIXME: not implemented */
3848 rb_advance_iter(iter
);
3851 case RINGBUF_TYPE_DATA
:
3853 *ts
= iter
->read_stamp
+ event
->time_delta
;
3854 ring_buffer_normalize_time_stamp(buffer
,
3855 cpu_buffer
->cpu
, ts
);
3865 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3867 static inline int rb_ok_to_lock(void)
3870 * If an NMI die dumps out the content of the ring buffer
3871 * do not grab locks. We also permanently disable the ring
3872 * buffer too. A one time deal is all you get from reading
3873 * the ring buffer from an NMI.
3875 if (likely(!in_nmi()))
3878 tracing_off_permanent();
3883 * ring_buffer_peek - peek at the next event to be read
3884 * @buffer: The ring buffer to read
3885 * @cpu: The cpu to peak at
3886 * @ts: The timestamp counter of this event.
3887 * @lost_events: a variable to store if events were lost (may be NULL)
3889 * This will return the event that will be read next, but does
3890 * not consume the data.
3892 struct ring_buffer_event
*
3893 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3894 unsigned long *lost_events
)
3896 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3897 struct ring_buffer_event
*event
;
3898 unsigned long flags
;
3901 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3904 dolock
= rb_ok_to_lock();
3906 local_irq_save(flags
);
3908 raw_spin_lock(&cpu_buffer
->reader_lock
);
3909 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3910 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3911 rb_advance_reader(cpu_buffer
);
3913 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3914 local_irq_restore(flags
);
3916 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3923 * ring_buffer_iter_peek - peek at the next event to be read
3924 * @iter: The ring buffer iterator
3925 * @ts: The timestamp counter of this event.
3927 * This will return the event that will be read next, but does
3928 * not increment the iterator.
3930 struct ring_buffer_event
*
3931 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3933 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3934 struct ring_buffer_event
*event
;
3935 unsigned long flags
;
3938 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3939 event
= rb_iter_peek(iter
, ts
);
3940 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3942 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3949 * ring_buffer_consume - return an event and consume it
3950 * @buffer: The ring buffer to get the next event from
3951 * @cpu: the cpu to read the buffer from
3952 * @ts: a variable to store the timestamp (may be NULL)
3953 * @lost_events: a variable to store if events were lost (may be NULL)
3955 * Returns the next event in the ring buffer, and that event is consumed.
3956 * Meaning, that sequential reads will keep returning a different event,
3957 * and eventually empty the ring buffer if the producer is slower.
3959 struct ring_buffer_event
*
3960 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3961 unsigned long *lost_events
)
3963 struct ring_buffer_per_cpu
*cpu_buffer
;
3964 struct ring_buffer_event
*event
= NULL
;
3965 unsigned long flags
;
3968 dolock
= rb_ok_to_lock();
3971 /* might be called in atomic */
3974 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3977 cpu_buffer
= buffer
->buffers
[cpu
];
3978 local_irq_save(flags
);
3980 raw_spin_lock(&cpu_buffer
->reader_lock
);
3982 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3984 cpu_buffer
->lost_events
= 0;
3985 rb_advance_reader(cpu_buffer
);
3989 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3990 local_irq_restore(flags
);
3995 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4000 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4003 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4004 * @buffer: The ring buffer to read from
4005 * @cpu: The cpu buffer to iterate over
4007 * This performs the initial preparations necessary to iterate
4008 * through the buffer. Memory is allocated, buffer recording
4009 * is disabled, and the iterator pointer is returned to the caller.
4011 * Disabling buffer recordng prevents the reading from being
4012 * corrupted. This is not a consuming read, so a producer is not
4015 * After a sequence of ring_buffer_read_prepare calls, the user is
4016 * expected to make at least one call to ring_buffer_read_prepare_sync.
4017 * Afterwards, ring_buffer_read_start is invoked to get things going
4020 * This overall must be paired with ring_buffer_read_finish.
4022 struct ring_buffer_iter
*
4023 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
4025 struct ring_buffer_per_cpu
*cpu_buffer
;
4026 struct ring_buffer_iter
*iter
;
4028 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4031 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
4035 cpu_buffer
= buffer
->buffers
[cpu
];
4037 iter
->cpu_buffer
= cpu_buffer
;
4039 atomic_inc(&buffer
->resize_disabled
);
4040 atomic_inc(&cpu_buffer
->record_disabled
);
4044 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4047 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4049 * All previously invoked ring_buffer_read_prepare calls to prepare
4050 * iterators will be synchronized. Afterwards, read_buffer_read_start
4051 * calls on those iterators are allowed.
4054 ring_buffer_read_prepare_sync(void)
4056 synchronize_sched();
4058 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4061 * ring_buffer_read_start - start a non consuming read of the buffer
4062 * @iter: The iterator returned by ring_buffer_read_prepare
4064 * This finalizes the startup of an iteration through the buffer.
4065 * The iterator comes from a call to ring_buffer_read_prepare and
4066 * an intervening ring_buffer_read_prepare_sync must have been
4069 * Must be paired with ring_buffer_read_finish.
4072 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4074 struct ring_buffer_per_cpu
*cpu_buffer
;
4075 unsigned long flags
;
4080 cpu_buffer
= iter
->cpu_buffer
;
4082 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4083 arch_spin_lock(&cpu_buffer
->lock
);
4084 rb_iter_reset(iter
);
4085 arch_spin_unlock(&cpu_buffer
->lock
);
4086 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4088 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4091 * ring_buffer_read_finish - finish reading the iterator of the buffer
4092 * @iter: The iterator retrieved by ring_buffer_start
4094 * This re-enables the recording to the buffer, and frees the
4098 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4100 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4101 unsigned long flags
;
4104 * Ring buffer is disabled from recording, here's a good place
4105 * to check the integrity of the ring buffer.
4106 * Must prevent readers from trying to read, as the check
4107 * clears the HEAD page and readers require it.
4109 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4110 rb_check_pages(cpu_buffer
);
4111 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4113 atomic_dec(&cpu_buffer
->record_disabled
);
4114 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4117 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4120 * ring_buffer_read - read the next item in the ring buffer by the iterator
4121 * @iter: The ring buffer iterator
4122 * @ts: The time stamp of the event read.
4124 * This reads the next event in the ring buffer and increments the iterator.
4126 struct ring_buffer_event
*
4127 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4129 struct ring_buffer_event
*event
;
4130 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4131 unsigned long flags
;
4133 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4135 event
= rb_iter_peek(iter
, ts
);
4139 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4142 rb_advance_iter(iter
);
4144 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4148 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4151 * ring_buffer_size - return the size of the ring buffer (in bytes)
4152 * @buffer: The ring buffer.
4154 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4157 * Earlier, this method returned
4158 * BUF_PAGE_SIZE * buffer->nr_pages
4159 * Since the nr_pages field is now removed, we have converted this to
4160 * return the per cpu buffer value.
4162 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4165 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4167 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4170 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4172 rb_head_page_deactivate(cpu_buffer
);
4174 cpu_buffer
->head_page
4175 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4176 local_set(&cpu_buffer
->head_page
->write
, 0);
4177 local_set(&cpu_buffer
->head_page
->entries
, 0);
4178 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4180 cpu_buffer
->head_page
->read
= 0;
4182 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4183 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4185 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4186 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4187 local_set(&cpu_buffer
->reader_page
->write
, 0);
4188 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4189 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4190 cpu_buffer
->reader_page
->read
= 0;
4192 local_set(&cpu_buffer
->entries_bytes
, 0);
4193 local_set(&cpu_buffer
->overrun
, 0);
4194 local_set(&cpu_buffer
->commit_overrun
, 0);
4195 local_set(&cpu_buffer
->dropped_events
, 0);
4196 local_set(&cpu_buffer
->entries
, 0);
4197 local_set(&cpu_buffer
->committing
, 0);
4198 local_set(&cpu_buffer
->commits
, 0);
4199 cpu_buffer
->read
= 0;
4200 cpu_buffer
->read_bytes
= 0;
4202 cpu_buffer
->write_stamp
= 0;
4203 cpu_buffer
->read_stamp
= 0;
4205 cpu_buffer
->lost_events
= 0;
4206 cpu_buffer
->last_overrun
= 0;
4208 rb_head_page_activate(cpu_buffer
);
4212 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4213 * @buffer: The ring buffer to reset a per cpu buffer of
4214 * @cpu: The CPU buffer to be reset
4216 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4218 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4219 unsigned long flags
;
4221 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4224 atomic_inc(&buffer
->resize_disabled
);
4225 atomic_inc(&cpu_buffer
->record_disabled
);
4227 /* Make sure all commits have finished */
4228 synchronize_sched();
4230 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4232 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4235 arch_spin_lock(&cpu_buffer
->lock
);
4237 rb_reset_cpu(cpu_buffer
);
4239 arch_spin_unlock(&cpu_buffer
->lock
);
4242 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4244 atomic_dec(&cpu_buffer
->record_disabled
);
4245 atomic_dec(&buffer
->resize_disabled
);
4247 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4250 * ring_buffer_reset - reset a ring buffer
4251 * @buffer: The ring buffer to reset all cpu buffers
4253 void ring_buffer_reset(struct ring_buffer
*buffer
)
4257 for_each_buffer_cpu(buffer
, cpu
)
4258 ring_buffer_reset_cpu(buffer
, cpu
);
4260 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4263 * rind_buffer_empty - is the ring buffer empty?
4264 * @buffer: The ring buffer to test
4266 int ring_buffer_empty(struct ring_buffer
*buffer
)
4268 struct ring_buffer_per_cpu
*cpu_buffer
;
4269 unsigned long flags
;
4274 dolock
= rb_ok_to_lock();
4276 /* yes this is racy, but if you don't like the race, lock the buffer */
4277 for_each_buffer_cpu(buffer
, cpu
) {
4278 cpu_buffer
= buffer
->buffers
[cpu
];
4279 local_irq_save(flags
);
4281 raw_spin_lock(&cpu_buffer
->reader_lock
);
4282 ret
= rb_per_cpu_empty(cpu_buffer
);
4284 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4285 local_irq_restore(flags
);
4293 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4296 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4297 * @buffer: The ring buffer
4298 * @cpu: The CPU buffer to test
4300 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4302 struct ring_buffer_per_cpu
*cpu_buffer
;
4303 unsigned long flags
;
4307 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4310 dolock
= rb_ok_to_lock();
4312 cpu_buffer
= buffer
->buffers
[cpu
];
4313 local_irq_save(flags
);
4315 raw_spin_lock(&cpu_buffer
->reader_lock
);
4316 ret
= rb_per_cpu_empty(cpu_buffer
);
4318 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4319 local_irq_restore(flags
);
4323 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4325 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4327 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4328 * @buffer_a: One buffer to swap with
4329 * @buffer_b: The other buffer to swap with
4331 * This function is useful for tracers that want to take a "snapshot"
4332 * of a CPU buffer and has another back up buffer lying around.
4333 * it is expected that the tracer handles the cpu buffer not being
4334 * used at the moment.
4336 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4337 struct ring_buffer
*buffer_b
, int cpu
)
4339 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4340 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4343 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4344 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4347 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4348 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4350 /* At least make sure the two buffers are somewhat the same */
4351 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4356 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
4359 if (atomic_read(&buffer_a
->record_disabled
))
4362 if (atomic_read(&buffer_b
->record_disabled
))
4365 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4368 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4372 * We can't do a synchronize_sched here because this
4373 * function can be called in atomic context.
4374 * Normally this will be called from the same CPU as cpu.
4375 * If not it's up to the caller to protect this.
4377 atomic_inc(&cpu_buffer_a
->record_disabled
);
4378 atomic_inc(&cpu_buffer_b
->record_disabled
);
4381 if (local_read(&cpu_buffer_a
->committing
))
4383 if (local_read(&cpu_buffer_b
->committing
))
4386 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4387 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4389 cpu_buffer_b
->buffer
= buffer_a
;
4390 cpu_buffer_a
->buffer
= buffer_b
;
4395 atomic_dec(&cpu_buffer_a
->record_disabled
);
4396 atomic_dec(&cpu_buffer_b
->record_disabled
);
4400 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4401 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4404 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4405 * @buffer: the buffer to allocate for.
4406 * @cpu: the cpu buffer to allocate.
4408 * This function is used in conjunction with ring_buffer_read_page.
4409 * When reading a full page from the ring buffer, these functions
4410 * can be used to speed up the process. The calling function should
4411 * allocate a few pages first with this function. Then when it
4412 * needs to get pages from the ring buffer, it passes the result
4413 * of this function into ring_buffer_read_page, which will swap
4414 * the page that was allocated, with the read page of the buffer.
4417 * The page allocated, or NULL on error.
4419 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4421 struct buffer_data_page
*bpage
;
4424 page
= alloc_pages_node(cpu_to_node(cpu
),
4425 GFP_KERNEL
| __GFP_NORETRY
, 0);
4429 bpage
= page_address(page
);
4431 rb_init_page(bpage
);
4435 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4438 * ring_buffer_free_read_page - free an allocated read page
4439 * @buffer: the buffer the page was allocate for
4440 * @data: the page to free
4442 * Free a page allocated from ring_buffer_alloc_read_page.
4444 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4446 free_page((unsigned long)data
);
4448 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4451 * ring_buffer_read_page - extract a page from the ring buffer
4452 * @buffer: buffer to extract from
4453 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4454 * @len: amount to extract
4455 * @cpu: the cpu of the buffer to extract
4456 * @full: should the extraction only happen when the page is full.
4458 * This function will pull out a page from the ring buffer and consume it.
4459 * @data_page must be the address of the variable that was returned
4460 * from ring_buffer_alloc_read_page. This is because the page might be used
4461 * to swap with a page in the ring buffer.
4464 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4467 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4469 * process_page(rpage, ret);
4471 * When @full is set, the function will not return true unless
4472 * the writer is off the reader page.
4474 * Note: it is up to the calling functions to handle sleeps and wakeups.
4475 * The ring buffer can be used anywhere in the kernel and can not
4476 * blindly call wake_up. The layer that uses the ring buffer must be
4477 * responsible for that.
4480 * >=0 if data has been transferred, returns the offset of consumed data.
4481 * <0 if no data has been transferred.
4483 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4484 void **data_page
, size_t len
, int cpu
, int full
)
4486 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4487 struct ring_buffer_event
*event
;
4488 struct buffer_data_page
*bpage
;
4489 struct buffer_page
*reader
;
4490 unsigned long missed_events
;
4491 unsigned long flags
;
4492 unsigned int commit
;
4497 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4501 * If len is not big enough to hold the page header, then
4502 * we can not copy anything.
4504 if (len
<= BUF_PAGE_HDR_SIZE
)
4507 len
-= BUF_PAGE_HDR_SIZE
;
4516 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4518 reader
= rb_get_reader_page(cpu_buffer
);
4522 event
= rb_reader_event(cpu_buffer
);
4524 read
= reader
->read
;
4525 commit
= rb_page_commit(reader
);
4527 /* Check if any events were dropped */
4528 missed_events
= cpu_buffer
->lost_events
;
4531 * If this page has been partially read or
4532 * if len is not big enough to read the rest of the page or
4533 * a writer is still on the page, then
4534 * we must copy the data from the page to the buffer.
4535 * Otherwise, we can simply swap the page with the one passed in.
4537 if (read
|| (len
< (commit
- read
)) ||
4538 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4539 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4540 unsigned int rpos
= read
;
4541 unsigned int pos
= 0;
4547 if (len
> (commit
- read
))
4548 len
= (commit
- read
);
4550 /* Always keep the time extend and data together */
4551 size
= rb_event_ts_length(event
);
4556 /* save the current timestamp, since the user will need it */
4557 save_timestamp
= cpu_buffer
->read_stamp
;
4559 /* Need to copy one event at a time */
4561 /* We need the size of one event, because
4562 * rb_advance_reader only advances by one event,
4563 * whereas rb_event_ts_length may include the size of
4564 * one or two events.
4565 * We have already ensured there's enough space if this
4566 * is a time extend. */
4567 size
= rb_event_length(event
);
4568 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4572 rb_advance_reader(cpu_buffer
);
4573 rpos
= reader
->read
;
4579 event
= rb_reader_event(cpu_buffer
);
4580 /* Always keep the time extend and data together */
4581 size
= rb_event_ts_length(event
);
4582 } while (len
>= size
);
4585 local_set(&bpage
->commit
, pos
);
4586 bpage
->time_stamp
= save_timestamp
;
4588 /* we copied everything to the beginning */
4591 /* update the entry counter */
4592 cpu_buffer
->read
+= rb_page_entries(reader
);
4593 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4595 /* swap the pages */
4596 rb_init_page(bpage
);
4597 bpage
= reader
->page
;
4598 reader
->page
= *data_page
;
4599 local_set(&reader
->write
, 0);
4600 local_set(&reader
->entries
, 0);
4605 * Use the real_end for the data size,
4606 * This gives us a chance to store the lost events
4609 if (reader
->real_end
)
4610 local_set(&bpage
->commit
, reader
->real_end
);
4614 cpu_buffer
->lost_events
= 0;
4616 commit
= local_read(&bpage
->commit
);
4618 * Set a flag in the commit field if we lost events
4620 if (missed_events
) {
4621 /* If there is room at the end of the page to save the
4622 * missed events, then record it there.
4624 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4625 memcpy(&bpage
->data
[commit
], &missed_events
,
4626 sizeof(missed_events
));
4627 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4628 commit
+= sizeof(missed_events
);
4630 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4634 * This page may be off to user land. Zero it out here.
4636 if (commit
< BUF_PAGE_SIZE
)
4637 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4640 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4645 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4647 #ifdef CONFIG_HOTPLUG_CPU
4648 static int rb_cpu_notify(struct notifier_block
*self
,
4649 unsigned long action
, void *hcpu
)
4651 struct ring_buffer
*buffer
=
4652 container_of(self
, struct ring_buffer
, cpu_notify
);
4653 long cpu
= (long)hcpu
;
4654 int cpu_i
, nr_pages_same
;
4655 unsigned int nr_pages
;
4658 case CPU_UP_PREPARE
:
4659 case CPU_UP_PREPARE_FROZEN
:
4660 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4665 /* check if all cpu sizes are same */
4666 for_each_buffer_cpu(buffer
, cpu_i
) {
4667 /* fill in the size from first enabled cpu */
4669 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4670 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4675 /* allocate minimum pages, user can later expand it */
4678 buffer
->buffers
[cpu
] =
4679 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4680 if (!buffer
->buffers
[cpu
]) {
4681 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4686 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4688 case CPU_DOWN_PREPARE
:
4689 case CPU_DOWN_PREPARE_FROZEN
:
4692 * If we were to free the buffer, then the user would
4693 * lose any trace that was in the buffer.
4703 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4705 * This is a basic integrity check of the ring buffer.
4706 * Late in the boot cycle this test will run when configured in.
4707 * It will kick off a thread per CPU that will go into a loop
4708 * writing to the per cpu ring buffer various sizes of data.
4709 * Some of the data will be large items, some small.
4711 * Another thread is created that goes into a spin, sending out
4712 * IPIs to the other CPUs to also write into the ring buffer.
4713 * this is to test the nesting ability of the buffer.
4715 * Basic stats are recorded and reported. If something in the
4716 * ring buffer should happen that's not expected, a big warning
4717 * is displayed and all ring buffers are disabled.
4719 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4721 struct rb_test_data
{
4722 struct ring_buffer
*buffer
;
4723 unsigned long events
;
4724 unsigned long bytes_written
;
4725 unsigned long bytes_alloc
;
4726 unsigned long bytes_dropped
;
4727 unsigned long events_nested
;
4728 unsigned long bytes_written_nested
;
4729 unsigned long bytes_alloc_nested
;
4730 unsigned long bytes_dropped_nested
;
4731 int min_size_nested
;
4732 int max_size_nested
;
4739 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4742 #define RB_TEST_BUFFER_SIZE 1048576
4744 static char rb_string
[] __initdata
=
4745 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4746 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4747 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4749 static bool rb_test_started __initdata
;
4756 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4758 struct ring_buffer_event
*event
;
4759 struct rb_item
*item
;
4766 /* Have nested writes different that what is written */
4767 cnt
= data
->cnt
+ (nested
? 27 : 0);
4769 /* Multiply cnt by ~e, to make some unique increment */
4770 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4772 len
= size
+ sizeof(struct rb_item
);
4774 started
= rb_test_started
;
4775 /* read rb_test_started before checking buffer enabled */
4778 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4780 /* Ignore dropped events before test starts. */
4783 data
->bytes_dropped
+= len
;
4785 data
->bytes_dropped_nested
+= len
;
4790 event_len
= ring_buffer_event_length(event
);
4792 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4795 item
= ring_buffer_event_data(event
);
4797 memcpy(item
->str
, rb_string
, size
);
4800 data
->bytes_alloc_nested
+= event_len
;
4801 data
->bytes_written_nested
+= len
;
4802 data
->events_nested
++;
4803 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4804 data
->min_size_nested
= len
;
4805 if (len
> data
->max_size_nested
)
4806 data
->max_size_nested
= len
;
4808 data
->bytes_alloc
+= event_len
;
4809 data
->bytes_written
+= len
;
4811 if (!data
->min_size
|| len
< data
->min_size
)
4812 data
->max_size
= len
;
4813 if (len
> data
->max_size
)
4814 data
->max_size
= len
;
4818 ring_buffer_unlock_commit(data
->buffer
, event
);
4823 static __init
int rb_test(void *arg
)
4825 struct rb_test_data
*data
= arg
;
4827 while (!kthread_should_stop()) {
4828 rb_write_something(data
, false);
4831 set_current_state(TASK_INTERRUPTIBLE
);
4832 /* Now sleep between a min of 100-300us and a max of 1ms */
4833 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4839 static __init
void rb_ipi(void *ignore
)
4841 struct rb_test_data
*data
;
4842 int cpu
= smp_processor_id();
4844 data
= &rb_data
[cpu
];
4845 rb_write_something(data
, true);
4848 static __init
int rb_hammer_test(void *arg
)
4850 while (!kthread_should_stop()) {
4852 /* Send an IPI to all cpus to write data! */
4853 smp_call_function(rb_ipi
, NULL
, 1);
4854 /* No sleep, but for non preempt, let others run */
4861 static __init
int test_ringbuffer(void)
4863 struct task_struct
*rb_hammer
;
4864 struct ring_buffer
*buffer
;
4868 pr_info("Running ring buffer tests...\n");
4870 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4871 if (WARN_ON(!buffer
))
4874 /* Disable buffer so that threads can't write to it yet */
4875 ring_buffer_record_off(buffer
);
4877 for_each_online_cpu(cpu
) {
4878 rb_data
[cpu
].buffer
= buffer
;
4879 rb_data
[cpu
].cpu
= cpu
;
4880 rb_data
[cpu
].cnt
= cpu
;
4881 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4882 "rbtester/%d", cpu
);
4883 if (WARN_ON(!rb_threads
[cpu
])) {
4884 pr_cont("FAILED\n");
4889 kthread_bind(rb_threads
[cpu
], cpu
);
4890 wake_up_process(rb_threads
[cpu
]);
4893 /* Now create the rb hammer! */
4894 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4895 if (WARN_ON(!rb_hammer
)) {
4896 pr_cont("FAILED\n");
4901 ring_buffer_record_on(buffer
);
4903 * Show buffer is enabled before setting rb_test_started.
4904 * Yes there's a small race window where events could be
4905 * dropped and the thread wont catch it. But when a ring
4906 * buffer gets enabled, there will always be some kind of
4907 * delay before other CPUs see it. Thus, we don't care about
4908 * those dropped events. We care about events dropped after
4909 * the threads see that the buffer is active.
4912 rb_test_started
= true;
4914 set_current_state(TASK_INTERRUPTIBLE
);
4915 /* Just run for 10 seconds */;
4916 schedule_timeout(10 * HZ
);
4918 kthread_stop(rb_hammer
);
4921 for_each_online_cpu(cpu
) {
4922 if (!rb_threads
[cpu
])
4924 kthread_stop(rb_threads
[cpu
]);
4927 ring_buffer_free(buffer
);
4932 pr_info("finished\n");
4933 for_each_online_cpu(cpu
) {
4934 struct ring_buffer_event
*event
;
4935 struct rb_test_data
*data
= &rb_data
[cpu
];
4936 struct rb_item
*item
;
4937 unsigned long total_events
;
4938 unsigned long total_dropped
;
4939 unsigned long total_written
;
4940 unsigned long total_alloc
;
4941 unsigned long total_read
= 0;
4942 unsigned long total_size
= 0;
4943 unsigned long total_len
= 0;
4944 unsigned long total_lost
= 0;
4947 int small_event_size
;
4951 total_events
= data
->events
+ data
->events_nested
;
4952 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4953 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4954 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4956 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4957 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4959 pr_info("CPU %d:\n", cpu
);
4960 pr_info(" events: %ld\n", total_events
);
4961 pr_info(" dropped bytes: %ld\n", total_dropped
);
4962 pr_info(" alloced bytes: %ld\n", total_alloc
);
4963 pr_info(" written bytes: %ld\n", total_written
);
4964 pr_info(" biggest event: %d\n", big_event_size
);
4965 pr_info(" smallest event: %d\n", small_event_size
);
4967 if (RB_WARN_ON(buffer
, total_dropped
))
4972 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4974 item
= ring_buffer_event_data(event
);
4975 total_len
+= ring_buffer_event_length(event
);
4976 total_size
+= item
->size
+ sizeof(struct rb_item
);
4977 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4978 pr_info("FAILED!\n");
4979 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4980 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4981 RB_WARN_ON(buffer
, 1);
4992 pr_info(" read events: %ld\n", total_read
);
4993 pr_info(" lost events: %ld\n", total_lost
);
4994 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4995 pr_info(" recorded len bytes: %ld\n", total_len
);
4996 pr_info(" recorded size bytes: %ld\n", total_size
);
4998 pr_info(" With dropped events, record len and size may not match\n"
4999 " alloced and written from above\n");
5001 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
5002 total_size
!= total_written
))
5005 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5011 pr_info("Ring buffer PASSED!\n");
5013 ring_buffer_free(buffer
);
5017 late_initcall(test_ringbuffer
);
5018 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */