ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / mm / hugetlb.c
blobc41b2a0ee2736e4f7df74c440ceb90bd5fcceecb
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
38 int hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 __initdata LIST_HEAD(huge_boot_pages);
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
55 DEFINE_SPINLOCK(hugetlb_lock);
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68 spin_unlock(&spool->lock);
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 struct hugepage_subpool *spool;
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
89 return spool;
92 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
103 int ret = 0;
105 if (!spool)
106 return 0;
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
114 spin_unlock(&spool->lock);
116 return ret;
119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
122 if (!spool)
123 return;
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 return HUGETLBFS_SB(inode->i_sb)->spool;
137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 return subpool_inode(file_inode(vma->vm_file));
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
149 struct file_region {
150 struct list_head link;
151 long from;
152 long to;
155 static long region_add(struct resv_map *resv, long f, long t)
157 struct list_head *head = &resv->regions;
158 struct file_region *rg, *nrg, *trg;
160 spin_lock(&resv->lock);
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
188 nrg->from = f;
189 nrg->to = t;
190 spin_unlock(&resv->lock);
191 return 0;
194 static long region_chg(struct resv_map *resv, long f, long t)
196 struct list_head *head = &resv->regions;
197 struct file_region *rg, *nrg = NULL;
198 long chg = 0;
200 retry:
201 spin_lock(&resv->lock);
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
238 goto out;
240 /* We overlap with this area, if it extends further than
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
247 chg -= rg->to - rg->from;
250 out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255 out_nrg:
256 spin_unlock(&resv->lock);
257 return chg;
260 static long region_truncate(struct resv_map *resv, long end)
262 struct list_head *head = &resv->regions;
263 struct file_region *rg, *trg;
264 long chg = 0;
266 spin_lock(&resv->lock);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
272 goto out;
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
290 out:
291 spin_unlock(&resv->lock);
292 return chg;
295 static long region_count(struct resv_map *resv, long f, long t)
297 struct list_head *head = &resv->regions;
298 struct file_region *rg;
299 long chg = 0;
301 spin_lock(&resv->lock);
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
304 long seg_from;
305 long seg_to;
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
315 chg += seg_to - seg_from;
317 spin_unlock(&resv->lock);
319 return chg;
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 struct hstate *hstate;
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
350 hstate = hstate_vma(vma);
352 return 1UL << huge_page_shift(hstate);
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 return vma_kernel_pagesize(vma);
367 #endif
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
374 #define HPAGE_RESV_OWNER (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 return (unsigned long)vma->vm_private_data;
402 static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
405 vma->vm_private_data = (void *)value;
408 struct resv_map *resv_map_alloc(void)
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
414 kref_init(&resv_map->refs);
415 spin_lock_init(&resv_map->lock);
416 INIT_LIST_HEAD(&resv_map->regions);
418 return resv_map;
421 void resv_map_release(struct kref *ref)
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425 /* Clear out any active regions before we release the map. */
426 region_truncate(resv_map, 0);
427 kfree(resv_map);
430 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 return inode->i_mapping->private_data;
435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
442 return inode_resv_map(inode);
444 } else {
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
453 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
462 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
471 return (get_vma_private_data(vma) & flag) != 0;
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
478 if (!(vma->vm_flags & VM_MAYSHARE))
479 vma->vm_private_data = (void *)0;
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 if (vma->vm_flags & VM_NORESERVE) {
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
501 /* Shared mappings always use reserves */
502 if (vma->vm_flags & VM_MAYSHARE)
503 return 1;
506 * Only the process that called mmap() has reserves for
507 * private mappings.
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
512 return 0;
515 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 int nid = page_to_nid(page);
518 list_move(&page->lru, &h->hugepage_freelists[nid]);
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 struct page *page;
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
534 if (&h->hugepage_freelists[nid] == &page->lru)
535 return NULL;
536 list_move(&page->lru, &h->hugepage_activelist);
537 set_page_refcounted(page);
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
554 unsigned long address, int avoid_reserve,
555 long chg)
557 struct page *page = NULL;
558 struct mempolicy *mpol;
559 nodemask_t *nodemask;
560 struct zonelist *zonelist;
561 struct zone *zone;
562 struct zoneref *z;
563 unsigned int cpuset_mems_cookie;
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
570 if (!vma_has_reserves(vma, chg) &&
571 h->free_huge_pages - h->resv_huge_pages == 0)
572 goto err;
574 /* If reserves cannot be used, ensure enough pages are in the pool */
575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576 goto err;
578 retry_cpuset:
579 cpuset_mems_cookie = read_mems_allowed_begin();
580 zonelist = huge_zonelist(vma, address,
581 htlb_alloc_mask(h), &mpol, &nodemask);
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
585 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
593 SetPagePrivate(page);
594 h->resv_huge_pages--;
595 break;
600 mpol_cond_put(mpol);
601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602 goto retry_cpuset;
603 return page;
605 err:
606 return NULL;
610 * common helper functions for hstate_next_node_to_{alloc|free}.
611 * We may have allocated or freed a huge page based on a different
612 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
613 * be outside of *nodes_allowed. Ensure that we use an allowed
614 * node for alloc or free.
616 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
618 nid = next_node(nid, *nodes_allowed);
619 if (nid == MAX_NUMNODES)
620 nid = first_node(*nodes_allowed);
621 VM_BUG_ON(nid >= MAX_NUMNODES);
623 return nid;
626 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
628 if (!node_isset(nid, *nodes_allowed))
629 nid = next_node_allowed(nid, nodes_allowed);
630 return nid;
634 * returns the previously saved node ["this node"] from which to
635 * allocate a persistent huge page for the pool and advance the
636 * next node from which to allocate, handling wrap at end of node
637 * mask.
639 static int hstate_next_node_to_alloc(struct hstate *h,
640 nodemask_t *nodes_allowed)
642 int nid;
644 VM_BUG_ON(!nodes_allowed);
646 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
647 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
649 return nid;
653 * helper for free_pool_huge_page() - return the previously saved
654 * node ["this node"] from which to free a huge page. Advance the
655 * next node id whether or not we find a free huge page to free so
656 * that the next attempt to free addresses the next node.
658 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
660 int nid;
662 VM_BUG_ON(!nodes_allowed);
664 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
665 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
667 return nid;
670 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
671 for (nr_nodes = nodes_weight(*mask); \
672 nr_nodes > 0 && \
673 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
674 nr_nodes--)
676 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
677 for (nr_nodes = nodes_weight(*mask); \
678 nr_nodes > 0 && \
679 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
680 nr_nodes--)
682 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
683 static void destroy_compound_gigantic_page(struct page *page,
684 unsigned long order)
686 int i;
687 int nr_pages = 1 << order;
688 struct page *p = page + 1;
690 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
691 __ClearPageTail(p);
692 set_page_refcounted(p);
693 p->first_page = NULL;
696 set_compound_order(page, 0);
697 __ClearPageHead(page);
700 static void free_gigantic_page(struct page *page, unsigned order)
702 free_contig_range(page_to_pfn(page), 1 << order);
705 static int __alloc_gigantic_page(unsigned long start_pfn,
706 unsigned long nr_pages)
708 unsigned long end_pfn = start_pfn + nr_pages;
709 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
712 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
713 unsigned long nr_pages)
715 unsigned long i, end_pfn = start_pfn + nr_pages;
716 struct page *page;
718 for (i = start_pfn; i < end_pfn; i++) {
719 if (!pfn_valid(i))
720 return false;
722 page = pfn_to_page(i);
724 if (PageReserved(page))
725 return false;
727 if (page_count(page) > 0)
728 return false;
730 if (PageHuge(page))
731 return false;
734 return true;
737 static bool zone_spans_last_pfn(const struct zone *zone,
738 unsigned long start_pfn, unsigned long nr_pages)
740 unsigned long last_pfn = start_pfn + nr_pages - 1;
741 return zone_spans_pfn(zone, last_pfn);
744 static struct page *alloc_gigantic_page(int nid, unsigned order)
746 unsigned long nr_pages = 1 << order;
747 unsigned long ret, pfn, flags;
748 struct zone *z;
750 z = NODE_DATA(nid)->node_zones;
751 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
752 spin_lock_irqsave(&z->lock, flags);
754 pfn = ALIGN(z->zone_start_pfn, nr_pages);
755 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
756 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
758 * We release the zone lock here because
759 * alloc_contig_range() will also lock the zone
760 * at some point. If there's an allocation
761 * spinning on this lock, it may win the race
762 * and cause alloc_contig_range() to fail...
764 spin_unlock_irqrestore(&z->lock, flags);
765 ret = __alloc_gigantic_page(pfn, nr_pages);
766 if (!ret)
767 return pfn_to_page(pfn);
768 spin_lock_irqsave(&z->lock, flags);
770 pfn += nr_pages;
773 spin_unlock_irqrestore(&z->lock, flags);
776 return NULL;
779 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
780 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
782 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
784 struct page *page;
786 page = alloc_gigantic_page(nid, huge_page_order(h));
787 if (page) {
788 prep_compound_gigantic_page(page, huge_page_order(h));
789 prep_new_huge_page(h, page, nid);
792 return page;
795 static int alloc_fresh_gigantic_page(struct hstate *h,
796 nodemask_t *nodes_allowed)
798 struct page *page = NULL;
799 int nr_nodes, node;
801 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
802 page = alloc_fresh_gigantic_page_node(h, node);
803 if (page)
804 return 1;
807 return 0;
810 static inline bool gigantic_page_supported(void) { return true; }
811 #else
812 static inline bool gigantic_page_supported(void) { return false; }
813 static inline void free_gigantic_page(struct page *page, unsigned order) { }
814 static inline void destroy_compound_gigantic_page(struct page *page,
815 unsigned long order) { }
816 static inline int alloc_fresh_gigantic_page(struct hstate *h,
817 nodemask_t *nodes_allowed) { return 0; }
818 #endif
820 static void update_and_free_page(struct hstate *h, struct page *page)
822 int i;
824 if (hstate_is_gigantic(h) && !gigantic_page_supported())
825 return;
827 h->nr_huge_pages--;
828 h->nr_huge_pages_node[page_to_nid(page)]--;
829 for (i = 0; i < pages_per_huge_page(h); i++) {
830 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
831 1 << PG_referenced | 1 << PG_dirty |
832 1 << PG_active | 1 << PG_private |
833 1 << PG_writeback);
835 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
836 set_compound_page_dtor(page, NULL);
837 set_page_refcounted(page);
838 if (hstate_is_gigantic(h)) {
839 destroy_compound_gigantic_page(page, huge_page_order(h));
840 free_gigantic_page(page, huge_page_order(h));
841 } else {
842 arch_release_hugepage(page);
843 __free_pages(page, huge_page_order(h));
847 struct hstate *size_to_hstate(unsigned long size)
849 struct hstate *h;
851 for_each_hstate(h) {
852 if (huge_page_size(h) == size)
853 return h;
855 return NULL;
858 void free_huge_page(struct page *page)
861 * Can't pass hstate in here because it is called from the
862 * compound page destructor.
864 struct hstate *h = page_hstate(page);
865 int nid = page_to_nid(page);
866 struct hugepage_subpool *spool =
867 (struct hugepage_subpool *)page_private(page);
868 bool restore_reserve;
870 set_page_private(page, 0);
871 page->mapping = NULL;
872 BUG_ON(page_count(page));
873 BUG_ON(page_mapcount(page));
874 restore_reserve = PagePrivate(page);
875 ClearPagePrivate(page);
877 spin_lock(&hugetlb_lock);
878 hugetlb_cgroup_uncharge_page(hstate_index(h),
879 pages_per_huge_page(h), page);
880 if (restore_reserve)
881 h->resv_huge_pages++;
883 if (h->surplus_huge_pages_node[nid]) {
884 /* remove the page from active list */
885 list_del(&page->lru);
886 update_and_free_page(h, page);
887 h->surplus_huge_pages--;
888 h->surplus_huge_pages_node[nid]--;
889 } else {
890 arch_clear_hugepage_flags(page);
891 enqueue_huge_page(h, page);
893 spin_unlock(&hugetlb_lock);
894 hugepage_subpool_put_pages(spool, 1);
897 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
899 INIT_LIST_HEAD(&page->lru);
900 set_compound_page_dtor(page, free_huge_page);
901 spin_lock(&hugetlb_lock);
902 set_hugetlb_cgroup(page, NULL);
903 h->nr_huge_pages++;
904 h->nr_huge_pages_node[nid]++;
905 spin_unlock(&hugetlb_lock);
906 put_page(page); /* free it into the hugepage allocator */
909 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
911 int i;
912 int nr_pages = 1 << order;
913 struct page *p = page + 1;
915 /* we rely on prep_new_huge_page to set the destructor */
916 set_compound_order(page, order);
917 __SetPageHead(page);
918 __ClearPageReserved(page);
919 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
921 * For gigantic hugepages allocated through bootmem at
922 * boot, it's safer to be consistent with the not-gigantic
923 * hugepages and clear the PG_reserved bit from all tail pages
924 * too. Otherwse drivers using get_user_pages() to access tail
925 * pages may get the reference counting wrong if they see
926 * PG_reserved set on a tail page (despite the head page not
927 * having PG_reserved set). Enforcing this consistency between
928 * head and tail pages allows drivers to optimize away a check
929 * on the head page when they need know if put_page() is needed
930 * after get_user_pages().
932 __ClearPageReserved(p);
933 set_page_count(p, 0);
934 p->first_page = page;
935 /* Make sure p->first_page is always valid for PageTail() */
936 smp_wmb();
937 __SetPageTail(p);
942 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
943 * transparent huge pages. See the PageTransHuge() documentation for more
944 * details.
946 int PageHuge(struct page *page)
948 if (!PageCompound(page))
949 return 0;
951 page = compound_head(page);
952 return get_compound_page_dtor(page) == free_huge_page;
954 EXPORT_SYMBOL_GPL(PageHuge);
957 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
958 * normal or transparent huge pages.
960 int PageHeadHuge(struct page *page_head)
962 if (!PageHead(page_head))
963 return 0;
965 return get_compound_page_dtor(page_head) == free_huge_page;
968 pgoff_t __basepage_index(struct page *page)
970 struct page *page_head = compound_head(page);
971 pgoff_t index = page_index(page_head);
972 unsigned long compound_idx;
974 if (!PageHuge(page_head))
975 return page_index(page);
977 if (compound_order(page_head) >= MAX_ORDER)
978 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
979 else
980 compound_idx = page - page_head;
982 return (index << compound_order(page_head)) + compound_idx;
985 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
987 struct page *page;
989 page = alloc_pages_exact_node(nid,
990 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
991 __GFP_REPEAT|__GFP_NOWARN,
992 huge_page_order(h));
993 if (page) {
994 if (arch_prepare_hugepage(page)) {
995 __free_pages(page, huge_page_order(h));
996 return NULL;
998 prep_new_huge_page(h, page, nid);
1001 return page;
1004 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1006 struct page *page;
1007 int nr_nodes, node;
1008 int ret = 0;
1010 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1011 page = alloc_fresh_huge_page_node(h, node);
1012 if (page) {
1013 ret = 1;
1014 break;
1018 if (ret)
1019 count_vm_event(HTLB_BUDDY_PGALLOC);
1020 else
1021 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1023 return ret;
1027 * Free huge page from pool from next node to free.
1028 * Attempt to keep persistent huge pages more or less
1029 * balanced over allowed nodes.
1030 * Called with hugetlb_lock locked.
1032 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1033 bool acct_surplus)
1035 int nr_nodes, node;
1036 int ret = 0;
1038 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1040 * If we're returning unused surplus pages, only examine
1041 * nodes with surplus pages.
1043 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1044 !list_empty(&h->hugepage_freelists[node])) {
1045 struct page *page =
1046 list_entry(h->hugepage_freelists[node].next,
1047 struct page, lru);
1048 list_del(&page->lru);
1049 h->free_huge_pages--;
1050 h->free_huge_pages_node[node]--;
1051 if (acct_surplus) {
1052 h->surplus_huge_pages--;
1053 h->surplus_huge_pages_node[node]--;
1055 update_and_free_page(h, page);
1056 ret = 1;
1057 break;
1061 return ret;
1065 * Dissolve a given free hugepage into free buddy pages. This function does
1066 * nothing for in-use (including surplus) hugepages.
1068 static void dissolve_free_huge_page(struct page *page)
1070 spin_lock(&hugetlb_lock);
1071 if (PageHuge(page) && !page_count(page)) {
1072 struct hstate *h = page_hstate(page);
1073 int nid = page_to_nid(page);
1074 list_del(&page->lru);
1075 h->free_huge_pages--;
1076 h->free_huge_pages_node[nid]--;
1077 update_and_free_page(h, page);
1079 spin_unlock(&hugetlb_lock);
1083 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1084 * make specified memory blocks removable from the system.
1085 * Note that start_pfn should aligned with (minimum) hugepage size.
1087 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1089 unsigned int order = 8 * sizeof(void *);
1090 unsigned long pfn;
1091 struct hstate *h;
1093 if (!hugepages_supported())
1094 return;
1096 /* Set scan step to minimum hugepage size */
1097 for_each_hstate(h)
1098 if (order > huge_page_order(h))
1099 order = huge_page_order(h);
1100 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1101 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1102 dissolve_free_huge_page(pfn_to_page(pfn));
1105 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1107 struct page *page;
1108 unsigned int r_nid;
1110 if (hstate_is_gigantic(h))
1111 return NULL;
1114 * Assume we will successfully allocate the surplus page to
1115 * prevent racing processes from causing the surplus to exceed
1116 * overcommit
1118 * This however introduces a different race, where a process B
1119 * tries to grow the static hugepage pool while alloc_pages() is
1120 * called by process A. B will only examine the per-node
1121 * counters in determining if surplus huge pages can be
1122 * converted to normal huge pages in adjust_pool_surplus(). A
1123 * won't be able to increment the per-node counter, until the
1124 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1125 * no more huge pages can be converted from surplus to normal
1126 * state (and doesn't try to convert again). Thus, we have a
1127 * case where a surplus huge page exists, the pool is grown, and
1128 * the surplus huge page still exists after, even though it
1129 * should just have been converted to a normal huge page. This
1130 * does not leak memory, though, as the hugepage will be freed
1131 * once it is out of use. It also does not allow the counters to
1132 * go out of whack in adjust_pool_surplus() as we don't modify
1133 * the node values until we've gotten the hugepage and only the
1134 * per-node value is checked there.
1136 spin_lock(&hugetlb_lock);
1137 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1138 spin_unlock(&hugetlb_lock);
1139 return NULL;
1140 } else {
1141 h->nr_huge_pages++;
1142 h->surplus_huge_pages++;
1144 spin_unlock(&hugetlb_lock);
1146 if (nid == NUMA_NO_NODE)
1147 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1148 __GFP_REPEAT|__GFP_NOWARN,
1149 huge_page_order(h));
1150 else
1151 page = alloc_pages_exact_node(nid,
1152 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1153 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1155 if (page && arch_prepare_hugepage(page)) {
1156 __free_pages(page, huge_page_order(h));
1157 page = NULL;
1160 spin_lock(&hugetlb_lock);
1161 if (page) {
1162 INIT_LIST_HEAD(&page->lru);
1163 r_nid = page_to_nid(page);
1164 set_compound_page_dtor(page, free_huge_page);
1165 set_hugetlb_cgroup(page, NULL);
1167 * We incremented the global counters already
1169 h->nr_huge_pages_node[r_nid]++;
1170 h->surplus_huge_pages_node[r_nid]++;
1171 __count_vm_event(HTLB_BUDDY_PGALLOC);
1172 } else {
1173 h->nr_huge_pages--;
1174 h->surplus_huge_pages--;
1175 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1177 spin_unlock(&hugetlb_lock);
1179 return page;
1183 * This allocation function is useful in the context where vma is irrelevant.
1184 * E.g. soft-offlining uses this function because it only cares physical
1185 * address of error page.
1187 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1189 struct page *page = NULL;
1191 spin_lock(&hugetlb_lock);
1192 if (h->free_huge_pages - h->resv_huge_pages > 0)
1193 page = dequeue_huge_page_node(h, nid);
1194 spin_unlock(&hugetlb_lock);
1196 if (!page)
1197 page = alloc_buddy_huge_page(h, nid);
1199 return page;
1203 * Increase the hugetlb pool such that it can accommodate a reservation
1204 * of size 'delta'.
1206 static int gather_surplus_pages(struct hstate *h, int delta)
1208 struct list_head surplus_list;
1209 struct page *page, *tmp;
1210 int ret, i;
1211 int needed, allocated;
1212 bool alloc_ok = true;
1214 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1215 if (needed <= 0) {
1216 h->resv_huge_pages += delta;
1217 return 0;
1220 allocated = 0;
1221 INIT_LIST_HEAD(&surplus_list);
1223 ret = -ENOMEM;
1224 retry:
1225 spin_unlock(&hugetlb_lock);
1226 for (i = 0; i < needed; i++) {
1227 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1228 if (!page) {
1229 alloc_ok = false;
1230 break;
1232 list_add(&page->lru, &surplus_list);
1234 allocated += i;
1237 * After retaking hugetlb_lock, we need to recalculate 'needed'
1238 * because either resv_huge_pages or free_huge_pages may have changed.
1240 spin_lock(&hugetlb_lock);
1241 needed = (h->resv_huge_pages + delta) -
1242 (h->free_huge_pages + allocated);
1243 if (needed > 0) {
1244 if (alloc_ok)
1245 goto retry;
1247 * We were not able to allocate enough pages to
1248 * satisfy the entire reservation so we free what
1249 * we've allocated so far.
1251 goto free;
1254 * The surplus_list now contains _at_least_ the number of extra pages
1255 * needed to accommodate the reservation. Add the appropriate number
1256 * of pages to the hugetlb pool and free the extras back to the buddy
1257 * allocator. Commit the entire reservation here to prevent another
1258 * process from stealing the pages as they are added to the pool but
1259 * before they are reserved.
1261 needed += allocated;
1262 h->resv_huge_pages += delta;
1263 ret = 0;
1265 /* Free the needed pages to the hugetlb pool */
1266 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1267 if ((--needed) < 0)
1268 break;
1270 * This page is now managed by the hugetlb allocator and has
1271 * no users -- drop the buddy allocator's reference.
1273 put_page_testzero(page);
1274 VM_BUG_ON_PAGE(page_count(page), page);
1275 enqueue_huge_page(h, page);
1277 free:
1278 spin_unlock(&hugetlb_lock);
1280 /* Free unnecessary surplus pages to the buddy allocator */
1281 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1282 put_page(page);
1283 spin_lock(&hugetlb_lock);
1285 return ret;
1289 * When releasing a hugetlb pool reservation, any surplus pages that were
1290 * allocated to satisfy the reservation must be explicitly freed if they were
1291 * never used.
1292 * Called with hugetlb_lock held.
1294 static void return_unused_surplus_pages(struct hstate *h,
1295 unsigned long unused_resv_pages)
1297 unsigned long nr_pages;
1299 /* Uncommit the reservation */
1300 h->resv_huge_pages -= unused_resv_pages;
1302 /* Cannot return gigantic pages currently */
1303 if (hstate_is_gigantic(h))
1304 return;
1306 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1309 * We want to release as many surplus pages as possible, spread
1310 * evenly across all nodes with memory. Iterate across these nodes
1311 * until we can no longer free unreserved surplus pages. This occurs
1312 * when the nodes with surplus pages have no free pages.
1313 * free_pool_huge_page() will balance the the freed pages across the
1314 * on-line nodes with memory and will handle the hstate accounting.
1316 while (nr_pages--) {
1317 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1318 break;
1319 cond_resched_lock(&hugetlb_lock);
1324 * Determine if the huge page at addr within the vma has an associated
1325 * reservation. Where it does not we will need to logically increase
1326 * reservation and actually increase subpool usage before an allocation
1327 * can occur. Where any new reservation would be required the
1328 * reservation change is prepared, but not committed. Once the page
1329 * has been allocated from the subpool and instantiated the change should
1330 * be committed via vma_commit_reservation. No action is required on
1331 * failure.
1333 static long vma_needs_reservation(struct hstate *h,
1334 struct vm_area_struct *vma, unsigned long addr)
1336 struct resv_map *resv;
1337 pgoff_t idx;
1338 long chg;
1340 resv = vma_resv_map(vma);
1341 if (!resv)
1342 return 1;
1344 idx = vma_hugecache_offset(h, vma, addr);
1345 chg = region_chg(resv, idx, idx + 1);
1347 if (vma->vm_flags & VM_MAYSHARE)
1348 return chg;
1349 else
1350 return chg < 0 ? chg : 0;
1352 static void vma_commit_reservation(struct hstate *h,
1353 struct vm_area_struct *vma, unsigned long addr)
1355 struct resv_map *resv;
1356 pgoff_t idx;
1358 resv = vma_resv_map(vma);
1359 if (!resv)
1360 return;
1362 idx = vma_hugecache_offset(h, vma, addr);
1363 region_add(resv, idx, idx + 1);
1366 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1367 unsigned long addr, int avoid_reserve)
1369 struct hugepage_subpool *spool = subpool_vma(vma);
1370 struct hstate *h = hstate_vma(vma);
1371 struct page *page;
1372 long chg;
1373 int ret, idx;
1374 struct hugetlb_cgroup *h_cg;
1376 idx = hstate_index(h);
1378 * Processes that did not create the mapping will have no
1379 * reserves and will not have accounted against subpool
1380 * limit. Check that the subpool limit can be made before
1381 * satisfying the allocation MAP_NORESERVE mappings may also
1382 * need pages and subpool limit allocated allocated if no reserve
1383 * mapping overlaps.
1385 chg = vma_needs_reservation(h, vma, addr);
1386 if (chg < 0)
1387 return ERR_PTR(-ENOMEM);
1388 if (chg || avoid_reserve)
1389 if (hugepage_subpool_get_pages(spool, 1))
1390 return ERR_PTR(-ENOSPC);
1392 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1393 if (ret)
1394 goto out_subpool_put;
1396 spin_lock(&hugetlb_lock);
1397 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1398 if (!page) {
1399 spin_unlock(&hugetlb_lock);
1400 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1401 if (!page)
1402 goto out_uncharge_cgroup;
1404 spin_lock(&hugetlb_lock);
1405 list_move(&page->lru, &h->hugepage_activelist);
1406 /* Fall through */
1408 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1409 spin_unlock(&hugetlb_lock);
1411 set_page_private(page, (unsigned long)spool);
1413 vma_commit_reservation(h, vma, addr);
1414 return page;
1416 out_uncharge_cgroup:
1417 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1418 out_subpool_put:
1419 if (chg || avoid_reserve)
1420 hugepage_subpool_put_pages(spool, 1);
1421 return ERR_PTR(-ENOSPC);
1425 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1426 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1427 * where no ERR_VALUE is expected to be returned.
1429 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1430 unsigned long addr, int avoid_reserve)
1432 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1433 if (IS_ERR(page))
1434 page = NULL;
1435 return page;
1438 int __weak alloc_bootmem_huge_page(struct hstate *h)
1440 struct huge_bootmem_page *m;
1441 int nr_nodes, node;
1443 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1444 void *addr;
1446 addr = memblock_virt_alloc_try_nid_nopanic(
1447 huge_page_size(h), huge_page_size(h),
1448 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1449 if (addr) {
1451 * Use the beginning of the huge page to store the
1452 * huge_bootmem_page struct (until gather_bootmem
1453 * puts them into the mem_map).
1455 m = addr;
1456 goto found;
1459 return 0;
1461 found:
1462 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1463 /* Put them into a private list first because mem_map is not up yet */
1464 list_add(&m->list, &huge_boot_pages);
1465 m->hstate = h;
1466 return 1;
1469 static void __init prep_compound_huge_page(struct page *page, int order)
1471 if (unlikely(order > (MAX_ORDER - 1)))
1472 prep_compound_gigantic_page(page, order);
1473 else
1474 prep_compound_page(page, order);
1477 /* Put bootmem huge pages into the standard lists after mem_map is up */
1478 static void __init gather_bootmem_prealloc(void)
1480 struct huge_bootmem_page *m;
1482 list_for_each_entry(m, &huge_boot_pages, list) {
1483 struct hstate *h = m->hstate;
1484 struct page *page;
1486 #ifdef CONFIG_HIGHMEM
1487 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1488 memblock_free_late(__pa(m),
1489 sizeof(struct huge_bootmem_page));
1490 #else
1491 page = virt_to_page(m);
1492 #endif
1493 WARN_ON(page_count(page) != 1);
1494 prep_compound_huge_page(page, h->order);
1495 WARN_ON(PageReserved(page));
1496 prep_new_huge_page(h, page, page_to_nid(page));
1498 * If we had gigantic hugepages allocated at boot time, we need
1499 * to restore the 'stolen' pages to totalram_pages in order to
1500 * fix confusing memory reports from free(1) and another
1501 * side-effects, like CommitLimit going negative.
1503 if (hstate_is_gigantic(h))
1504 adjust_managed_page_count(page, 1 << h->order);
1508 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1510 unsigned long i;
1512 for (i = 0; i < h->max_huge_pages; ++i) {
1513 if (hstate_is_gigantic(h)) {
1514 if (!alloc_bootmem_huge_page(h))
1515 break;
1516 } else if (!alloc_fresh_huge_page(h,
1517 &node_states[N_MEMORY]))
1518 break;
1520 h->max_huge_pages = i;
1523 static void __init hugetlb_init_hstates(void)
1525 struct hstate *h;
1527 for_each_hstate(h) {
1528 /* oversize hugepages were init'ed in early boot */
1529 if (!hstate_is_gigantic(h))
1530 hugetlb_hstate_alloc_pages(h);
1534 static char * __init memfmt(char *buf, unsigned long n)
1536 if (n >= (1UL << 30))
1537 sprintf(buf, "%lu GB", n >> 30);
1538 else if (n >= (1UL << 20))
1539 sprintf(buf, "%lu MB", n >> 20);
1540 else
1541 sprintf(buf, "%lu KB", n >> 10);
1542 return buf;
1545 static void __init report_hugepages(void)
1547 struct hstate *h;
1549 for_each_hstate(h) {
1550 char buf[32];
1551 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1552 memfmt(buf, huge_page_size(h)),
1553 h->free_huge_pages);
1557 #ifdef CONFIG_HIGHMEM
1558 static void try_to_free_low(struct hstate *h, unsigned long count,
1559 nodemask_t *nodes_allowed)
1561 int i;
1563 if (hstate_is_gigantic(h))
1564 return;
1566 for_each_node_mask(i, *nodes_allowed) {
1567 struct page *page, *next;
1568 struct list_head *freel = &h->hugepage_freelists[i];
1569 list_for_each_entry_safe(page, next, freel, lru) {
1570 if (count >= h->nr_huge_pages)
1571 return;
1572 if (PageHighMem(page))
1573 continue;
1574 list_del(&page->lru);
1575 update_and_free_page(h, page);
1576 h->free_huge_pages--;
1577 h->free_huge_pages_node[page_to_nid(page)]--;
1581 #else
1582 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1583 nodemask_t *nodes_allowed)
1586 #endif
1589 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1590 * balanced by operating on them in a round-robin fashion.
1591 * Returns 1 if an adjustment was made.
1593 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1594 int delta)
1596 int nr_nodes, node;
1598 VM_BUG_ON(delta != -1 && delta != 1);
1600 if (delta < 0) {
1601 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1602 if (h->surplus_huge_pages_node[node])
1603 goto found;
1605 } else {
1606 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1607 if (h->surplus_huge_pages_node[node] <
1608 h->nr_huge_pages_node[node])
1609 goto found;
1612 return 0;
1614 found:
1615 h->surplus_huge_pages += delta;
1616 h->surplus_huge_pages_node[node] += delta;
1617 return 1;
1620 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1621 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1622 nodemask_t *nodes_allowed)
1624 unsigned long min_count, ret;
1626 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1627 return h->max_huge_pages;
1630 * Increase the pool size
1631 * First take pages out of surplus state. Then make up the
1632 * remaining difference by allocating fresh huge pages.
1634 * We might race with alloc_buddy_huge_page() here and be unable
1635 * to convert a surplus huge page to a normal huge page. That is
1636 * not critical, though, it just means the overall size of the
1637 * pool might be one hugepage larger than it needs to be, but
1638 * within all the constraints specified by the sysctls.
1640 spin_lock(&hugetlb_lock);
1641 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1642 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1643 break;
1646 while (count > persistent_huge_pages(h)) {
1648 * If this allocation races such that we no longer need the
1649 * page, free_huge_page will handle it by freeing the page
1650 * and reducing the surplus.
1652 spin_unlock(&hugetlb_lock);
1653 if (hstate_is_gigantic(h))
1654 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1655 else
1656 ret = alloc_fresh_huge_page(h, nodes_allowed);
1657 spin_lock(&hugetlb_lock);
1658 if (!ret)
1659 goto out;
1661 /* Bail for signals. Probably ctrl-c from user */
1662 if (signal_pending(current))
1663 goto out;
1667 * Decrease the pool size
1668 * First return free pages to the buddy allocator (being careful
1669 * to keep enough around to satisfy reservations). Then place
1670 * pages into surplus state as needed so the pool will shrink
1671 * to the desired size as pages become free.
1673 * By placing pages into the surplus state independent of the
1674 * overcommit value, we are allowing the surplus pool size to
1675 * exceed overcommit. There are few sane options here. Since
1676 * alloc_buddy_huge_page() is checking the global counter,
1677 * though, we'll note that we're not allowed to exceed surplus
1678 * and won't grow the pool anywhere else. Not until one of the
1679 * sysctls are changed, or the surplus pages go out of use.
1681 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1682 min_count = max(count, min_count);
1683 try_to_free_low(h, min_count, nodes_allowed);
1684 while (min_count < persistent_huge_pages(h)) {
1685 if (!free_pool_huge_page(h, nodes_allowed, 0))
1686 break;
1687 cond_resched_lock(&hugetlb_lock);
1689 while (count < persistent_huge_pages(h)) {
1690 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1691 break;
1693 out:
1694 ret = persistent_huge_pages(h);
1695 spin_unlock(&hugetlb_lock);
1696 return ret;
1699 #define HSTATE_ATTR_RO(_name) \
1700 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1702 #define HSTATE_ATTR(_name) \
1703 static struct kobj_attribute _name##_attr = \
1704 __ATTR(_name, 0644, _name##_show, _name##_store)
1706 static struct kobject *hugepages_kobj;
1707 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1709 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1711 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1713 int i;
1715 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1716 if (hstate_kobjs[i] == kobj) {
1717 if (nidp)
1718 *nidp = NUMA_NO_NODE;
1719 return &hstates[i];
1722 return kobj_to_node_hstate(kobj, nidp);
1725 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1726 struct kobj_attribute *attr, char *buf)
1728 struct hstate *h;
1729 unsigned long nr_huge_pages;
1730 int nid;
1732 h = kobj_to_hstate(kobj, &nid);
1733 if (nid == NUMA_NO_NODE)
1734 nr_huge_pages = h->nr_huge_pages;
1735 else
1736 nr_huge_pages = h->nr_huge_pages_node[nid];
1738 return sprintf(buf, "%lu\n", nr_huge_pages);
1741 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1742 struct hstate *h, int nid,
1743 unsigned long count, size_t len)
1745 int err;
1746 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1748 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1749 err = -EINVAL;
1750 goto out;
1753 if (nid == NUMA_NO_NODE) {
1755 * global hstate attribute
1757 if (!(obey_mempolicy &&
1758 init_nodemask_of_mempolicy(nodes_allowed))) {
1759 NODEMASK_FREE(nodes_allowed);
1760 nodes_allowed = &node_states[N_MEMORY];
1762 } else if (nodes_allowed) {
1764 * per node hstate attribute: adjust count to global,
1765 * but restrict alloc/free to the specified node.
1767 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1768 init_nodemask_of_node(nodes_allowed, nid);
1769 } else
1770 nodes_allowed = &node_states[N_MEMORY];
1772 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1774 if (nodes_allowed != &node_states[N_MEMORY])
1775 NODEMASK_FREE(nodes_allowed);
1777 return len;
1778 out:
1779 NODEMASK_FREE(nodes_allowed);
1780 return err;
1783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1784 struct kobject *kobj, const char *buf,
1785 size_t len)
1787 struct hstate *h;
1788 unsigned long count;
1789 int nid;
1790 int err;
1792 err = kstrtoul(buf, 10, &count);
1793 if (err)
1794 return err;
1796 h = kobj_to_hstate(kobj, &nid);
1797 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1800 static ssize_t nr_hugepages_show(struct kobject *kobj,
1801 struct kobj_attribute *attr, char *buf)
1803 return nr_hugepages_show_common(kobj, attr, buf);
1806 static ssize_t nr_hugepages_store(struct kobject *kobj,
1807 struct kobj_attribute *attr, const char *buf, size_t len)
1809 return nr_hugepages_store_common(false, kobj, buf, len);
1811 HSTATE_ATTR(nr_hugepages);
1813 #ifdef CONFIG_NUMA
1816 * hstate attribute for optionally mempolicy-based constraint on persistent
1817 * huge page alloc/free.
1819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1820 struct kobj_attribute *attr, char *buf)
1822 return nr_hugepages_show_common(kobj, attr, buf);
1825 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1826 struct kobj_attribute *attr, const char *buf, size_t len)
1828 return nr_hugepages_store_common(true, kobj, buf, len);
1830 HSTATE_ATTR(nr_hugepages_mempolicy);
1831 #endif
1834 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1835 struct kobj_attribute *attr, char *buf)
1837 struct hstate *h = kobj_to_hstate(kobj, NULL);
1838 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1841 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1842 struct kobj_attribute *attr, const char *buf, size_t count)
1844 int err;
1845 unsigned long input;
1846 struct hstate *h = kobj_to_hstate(kobj, NULL);
1848 if (hstate_is_gigantic(h))
1849 return -EINVAL;
1851 err = kstrtoul(buf, 10, &input);
1852 if (err)
1853 return err;
1855 spin_lock(&hugetlb_lock);
1856 h->nr_overcommit_huge_pages = input;
1857 spin_unlock(&hugetlb_lock);
1859 return count;
1861 HSTATE_ATTR(nr_overcommit_hugepages);
1863 static ssize_t free_hugepages_show(struct kobject *kobj,
1864 struct kobj_attribute *attr, char *buf)
1866 struct hstate *h;
1867 unsigned long free_huge_pages;
1868 int nid;
1870 h = kobj_to_hstate(kobj, &nid);
1871 if (nid == NUMA_NO_NODE)
1872 free_huge_pages = h->free_huge_pages;
1873 else
1874 free_huge_pages = h->free_huge_pages_node[nid];
1876 return sprintf(buf, "%lu\n", free_huge_pages);
1878 HSTATE_ATTR_RO(free_hugepages);
1880 static ssize_t resv_hugepages_show(struct kobject *kobj,
1881 struct kobj_attribute *attr, char *buf)
1883 struct hstate *h = kobj_to_hstate(kobj, NULL);
1884 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1886 HSTATE_ATTR_RO(resv_hugepages);
1888 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1889 struct kobj_attribute *attr, char *buf)
1891 struct hstate *h;
1892 unsigned long surplus_huge_pages;
1893 int nid;
1895 h = kobj_to_hstate(kobj, &nid);
1896 if (nid == NUMA_NO_NODE)
1897 surplus_huge_pages = h->surplus_huge_pages;
1898 else
1899 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1901 return sprintf(buf, "%lu\n", surplus_huge_pages);
1903 HSTATE_ATTR_RO(surplus_hugepages);
1905 static struct attribute *hstate_attrs[] = {
1906 &nr_hugepages_attr.attr,
1907 &nr_overcommit_hugepages_attr.attr,
1908 &free_hugepages_attr.attr,
1909 &resv_hugepages_attr.attr,
1910 &surplus_hugepages_attr.attr,
1911 #ifdef CONFIG_NUMA
1912 &nr_hugepages_mempolicy_attr.attr,
1913 #endif
1914 NULL,
1917 static struct attribute_group hstate_attr_group = {
1918 .attrs = hstate_attrs,
1921 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1922 struct kobject **hstate_kobjs,
1923 struct attribute_group *hstate_attr_group)
1925 int retval;
1926 int hi = hstate_index(h);
1928 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1929 if (!hstate_kobjs[hi])
1930 return -ENOMEM;
1932 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1933 if (retval)
1934 kobject_put(hstate_kobjs[hi]);
1936 return retval;
1939 static void __init hugetlb_sysfs_init(void)
1941 struct hstate *h;
1942 int err;
1944 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1945 if (!hugepages_kobj)
1946 return;
1948 for_each_hstate(h) {
1949 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1950 hstate_kobjs, &hstate_attr_group);
1951 if (err)
1952 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1956 #ifdef CONFIG_NUMA
1959 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1960 * with node devices in node_devices[] using a parallel array. The array
1961 * index of a node device or _hstate == node id.
1962 * This is here to avoid any static dependency of the node device driver, in
1963 * the base kernel, on the hugetlb module.
1965 struct node_hstate {
1966 struct kobject *hugepages_kobj;
1967 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1969 struct node_hstate node_hstates[MAX_NUMNODES];
1972 * A subset of global hstate attributes for node devices
1974 static struct attribute *per_node_hstate_attrs[] = {
1975 &nr_hugepages_attr.attr,
1976 &free_hugepages_attr.attr,
1977 &surplus_hugepages_attr.attr,
1978 NULL,
1981 static struct attribute_group per_node_hstate_attr_group = {
1982 .attrs = per_node_hstate_attrs,
1986 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1987 * Returns node id via non-NULL nidp.
1989 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1991 int nid;
1993 for (nid = 0; nid < nr_node_ids; nid++) {
1994 struct node_hstate *nhs = &node_hstates[nid];
1995 int i;
1996 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1997 if (nhs->hstate_kobjs[i] == kobj) {
1998 if (nidp)
1999 *nidp = nid;
2000 return &hstates[i];
2004 BUG();
2005 return NULL;
2009 * Unregister hstate attributes from a single node device.
2010 * No-op if no hstate attributes attached.
2012 static void hugetlb_unregister_node(struct node *node)
2014 struct hstate *h;
2015 struct node_hstate *nhs = &node_hstates[node->dev.id];
2017 if (!nhs->hugepages_kobj)
2018 return; /* no hstate attributes */
2020 for_each_hstate(h) {
2021 int idx = hstate_index(h);
2022 if (nhs->hstate_kobjs[idx]) {
2023 kobject_put(nhs->hstate_kobjs[idx]);
2024 nhs->hstate_kobjs[idx] = NULL;
2028 kobject_put(nhs->hugepages_kobj);
2029 nhs->hugepages_kobj = NULL;
2033 * hugetlb module exit: unregister hstate attributes from node devices
2034 * that have them.
2036 static void hugetlb_unregister_all_nodes(void)
2038 int nid;
2041 * disable node device registrations.
2043 register_hugetlbfs_with_node(NULL, NULL);
2046 * remove hstate attributes from any nodes that have them.
2048 for (nid = 0; nid < nr_node_ids; nid++)
2049 hugetlb_unregister_node(node_devices[nid]);
2053 * Register hstate attributes for a single node device.
2054 * No-op if attributes already registered.
2056 static void hugetlb_register_node(struct node *node)
2058 struct hstate *h;
2059 struct node_hstate *nhs = &node_hstates[node->dev.id];
2060 int err;
2062 if (nhs->hugepages_kobj)
2063 return; /* already allocated */
2065 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2066 &node->dev.kobj);
2067 if (!nhs->hugepages_kobj)
2068 return;
2070 for_each_hstate(h) {
2071 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2072 nhs->hstate_kobjs,
2073 &per_node_hstate_attr_group);
2074 if (err) {
2075 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2076 h->name, node->dev.id);
2077 hugetlb_unregister_node(node);
2078 break;
2084 * hugetlb init time: register hstate attributes for all registered node
2085 * devices of nodes that have memory. All on-line nodes should have
2086 * registered their associated device by this time.
2088 static void __init hugetlb_register_all_nodes(void)
2090 int nid;
2092 for_each_node_state(nid, N_MEMORY) {
2093 struct node *node = node_devices[nid];
2094 if (node->dev.id == nid)
2095 hugetlb_register_node(node);
2099 * Let the node device driver know we're here so it can
2100 * [un]register hstate attributes on node hotplug.
2102 register_hugetlbfs_with_node(hugetlb_register_node,
2103 hugetlb_unregister_node);
2105 #else /* !CONFIG_NUMA */
2107 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2109 BUG();
2110 if (nidp)
2111 *nidp = -1;
2112 return NULL;
2115 static void hugetlb_unregister_all_nodes(void) { }
2117 static void hugetlb_register_all_nodes(void) { }
2119 #endif
2121 static void __exit hugetlb_exit(void)
2123 struct hstate *h;
2125 hugetlb_unregister_all_nodes();
2127 for_each_hstate(h) {
2128 kobject_put(hstate_kobjs[hstate_index(h)]);
2131 kobject_put(hugepages_kobj);
2132 kfree(htlb_fault_mutex_table);
2134 module_exit(hugetlb_exit);
2136 static int __init hugetlb_init(void)
2138 int i;
2140 if (!hugepages_supported())
2141 return 0;
2143 if (!size_to_hstate(default_hstate_size)) {
2144 default_hstate_size = HPAGE_SIZE;
2145 if (!size_to_hstate(default_hstate_size))
2146 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2148 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2149 if (default_hstate_max_huge_pages)
2150 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2152 hugetlb_init_hstates();
2153 gather_bootmem_prealloc();
2154 report_hugepages();
2156 hugetlb_sysfs_init();
2157 hugetlb_register_all_nodes();
2158 hugetlb_cgroup_file_init();
2160 #ifdef CONFIG_SMP
2161 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2162 #else
2163 num_fault_mutexes = 1;
2164 #endif
2165 htlb_fault_mutex_table =
2166 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2167 BUG_ON(!htlb_fault_mutex_table);
2169 for (i = 0; i < num_fault_mutexes; i++)
2170 mutex_init(&htlb_fault_mutex_table[i]);
2171 return 0;
2173 module_init(hugetlb_init);
2175 /* Should be called on processing a hugepagesz=... option */
2176 void __init hugetlb_add_hstate(unsigned order)
2178 struct hstate *h;
2179 unsigned long i;
2181 if (size_to_hstate(PAGE_SIZE << order)) {
2182 pr_warning("hugepagesz= specified twice, ignoring\n");
2183 return;
2185 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2186 BUG_ON(order == 0);
2187 h = &hstates[hugetlb_max_hstate++];
2188 h->order = order;
2189 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2190 h->nr_huge_pages = 0;
2191 h->free_huge_pages = 0;
2192 for (i = 0; i < MAX_NUMNODES; ++i)
2193 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2194 INIT_LIST_HEAD(&h->hugepage_activelist);
2195 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2196 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2197 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2198 huge_page_size(h)/1024);
2200 parsed_hstate = h;
2203 static int __init hugetlb_nrpages_setup(char *s)
2205 unsigned long *mhp;
2206 static unsigned long *last_mhp;
2209 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2210 * so this hugepages= parameter goes to the "default hstate".
2212 if (!hugetlb_max_hstate)
2213 mhp = &default_hstate_max_huge_pages;
2214 else
2215 mhp = &parsed_hstate->max_huge_pages;
2217 if (mhp == last_mhp) {
2218 pr_warning("hugepages= specified twice without "
2219 "interleaving hugepagesz=, ignoring\n");
2220 return 1;
2223 if (sscanf(s, "%lu", mhp) <= 0)
2224 *mhp = 0;
2227 * Global state is always initialized later in hugetlb_init.
2228 * But we need to allocate >= MAX_ORDER hstates here early to still
2229 * use the bootmem allocator.
2231 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2232 hugetlb_hstate_alloc_pages(parsed_hstate);
2234 last_mhp = mhp;
2236 return 1;
2238 __setup("hugepages=", hugetlb_nrpages_setup);
2240 static int __init hugetlb_default_setup(char *s)
2242 default_hstate_size = memparse(s, &s);
2243 return 1;
2245 __setup("default_hugepagesz=", hugetlb_default_setup);
2247 static unsigned int cpuset_mems_nr(unsigned int *array)
2249 int node;
2250 unsigned int nr = 0;
2252 for_each_node_mask(node, cpuset_current_mems_allowed)
2253 nr += array[node];
2255 return nr;
2258 #ifdef CONFIG_SYSCTL
2259 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2260 struct ctl_table *table, int write,
2261 void __user *buffer, size_t *length, loff_t *ppos)
2263 struct hstate *h = &default_hstate;
2264 unsigned long tmp = h->max_huge_pages;
2265 int ret;
2267 if (!hugepages_supported())
2268 return -ENOTSUPP;
2270 table->data = &tmp;
2271 table->maxlen = sizeof(unsigned long);
2272 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2273 if (ret)
2274 goto out;
2276 if (write)
2277 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2278 NUMA_NO_NODE, tmp, *length);
2279 out:
2280 return ret;
2283 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2284 void __user *buffer, size_t *length, loff_t *ppos)
2287 return hugetlb_sysctl_handler_common(false, table, write,
2288 buffer, length, ppos);
2291 #ifdef CONFIG_NUMA
2292 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2293 void __user *buffer, size_t *length, loff_t *ppos)
2295 return hugetlb_sysctl_handler_common(true, table, write,
2296 buffer, length, ppos);
2298 #endif /* CONFIG_NUMA */
2300 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2301 void __user *buffer,
2302 size_t *length, loff_t *ppos)
2304 struct hstate *h = &default_hstate;
2305 unsigned long tmp;
2306 int ret;
2308 if (!hugepages_supported())
2309 return -ENOTSUPP;
2311 tmp = h->nr_overcommit_huge_pages;
2313 if (write && hstate_is_gigantic(h))
2314 return -EINVAL;
2316 table->data = &tmp;
2317 table->maxlen = sizeof(unsigned long);
2318 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2319 if (ret)
2320 goto out;
2322 if (write) {
2323 spin_lock(&hugetlb_lock);
2324 h->nr_overcommit_huge_pages = tmp;
2325 spin_unlock(&hugetlb_lock);
2327 out:
2328 return ret;
2331 #endif /* CONFIG_SYSCTL */
2333 void hugetlb_report_meminfo(struct seq_file *m)
2335 struct hstate *h = &default_hstate;
2336 if (!hugepages_supported())
2337 return;
2338 seq_printf(m,
2339 "HugePages_Total: %5lu\n"
2340 "HugePages_Free: %5lu\n"
2341 "HugePages_Rsvd: %5lu\n"
2342 "HugePages_Surp: %5lu\n"
2343 "Hugepagesize: %8lu kB\n",
2344 h->nr_huge_pages,
2345 h->free_huge_pages,
2346 h->resv_huge_pages,
2347 h->surplus_huge_pages,
2348 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2351 int hugetlb_report_node_meminfo(int nid, char *buf)
2353 struct hstate *h = &default_hstate;
2354 if (!hugepages_supported())
2355 return 0;
2356 return sprintf(buf,
2357 "Node %d HugePages_Total: %5u\n"
2358 "Node %d HugePages_Free: %5u\n"
2359 "Node %d HugePages_Surp: %5u\n",
2360 nid, h->nr_huge_pages_node[nid],
2361 nid, h->free_huge_pages_node[nid],
2362 nid, h->surplus_huge_pages_node[nid]);
2365 void hugetlb_show_meminfo(void)
2367 struct hstate *h;
2368 int nid;
2370 if (!hugepages_supported())
2371 return;
2373 for_each_node_state(nid, N_MEMORY)
2374 for_each_hstate(h)
2375 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2376 nid,
2377 h->nr_huge_pages_node[nid],
2378 h->free_huge_pages_node[nid],
2379 h->surplus_huge_pages_node[nid],
2380 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2383 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2384 unsigned long hugetlb_total_pages(void)
2386 struct hstate *h;
2387 unsigned long nr_total_pages = 0;
2389 for_each_hstate(h)
2390 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2391 return nr_total_pages;
2394 static int hugetlb_acct_memory(struct hstate *h, long delta)
2396 int ret = -ENOMEM;
2398 spin_lock(&hugetlb_lock);
2400 * When cpuset is configured, it breaks the strict hugetlb page
2401 * reservation as the accounting is done on a global variable. Such
2402 * reservation is completely rubbish in the presence of cpuset because
2403 * the reservation is not checked against page availability for the
2404 * current cpuset. Application can still potentially OOM'ed by kernel
2405 * with lack of free htlb page in cpuset that the task is in.
2406 * Attempt to enforce strict accounting with cpuset is almost
2407 * impossible (or too ugly) because cpuset is too fluid that
2408 * task or memory node can be dynamically moved between cpusets.
2410 * The change of semantics for shared hugetlb mapping with cpuset is
2411 * undesirable. However, in order to preserve some of the semantics,
2412 * we fall back to check against current free page availability as
2413 * a best attempt and hopefully to minimize the impact of changing
2414 * semantics that cpuset has.
2416 if (delta > 0) {
2417 if (gather_surplus_pages(h, delta) < 0)
2418 goto out;
2420 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2421 return_unused_surplus_pages(h, delta);
2422 goto out;
2426 ret = 0;
2427 if (delta < 0)
2428 return_unused_surplus_pages(h, (unsigned long) -delta);
2430 out:
2431 spin_unlock(&hugetlb_lock);
2432 return ret;
2435 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2437 struct resv_map *resv = vma_resv_map(vma);
2440 * This new VMA should share its siblings reservation map if present.
2441 * The VMA will only ever have a valid reservation map pointer where
2442 * it is being copied for another still existing VMA. As that VMA
2443 * has a reference to the reservation map it cannot disappear until
2444 * after this open call completes. It is therefore safe to take a
2445 * new reference here without additional locking.
2447 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2448 kref_get(&resv->refs);
2451 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2453 struct hstate *h = hstate_vma(vma);
2454 struct resv_map *resv = vma_resv_map(vma);
2455 struct hugepage_subpool *spool = subpool_vma(vma);
2456 unsigned long reserve, start, end;
2458 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2459 return;
2461 start = vma_hugecache_offset(h, vma, vma->vm_start);
2462 end = vma_hugecache_offset(h, vma, vma->vm_end);
2464 reserve = (end - start) - region_count(resv, start, end);
2466 kref_put(&resv->refs, resv_map_release);
2468 if (reserve) {
2469 hugetlb_acct_memory(h, -reserve);
2470 hugepage_subpool_put_pages(spool, reserve);
2475 * We cannot handle pagefaults against hugetlb pages at all. They cause
2476 * handle_mm_fault() to try to instantiate regular-sized pages in the
2477 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2478 * this far.
2480 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2482 BUG();
2483 return 0;
2486 const struct vm_operations_struct hugetlb_vm_ops = {
2487 .fault = hugetlb_vm_op_fault,
2488 .open = hugetlb_vm_op_open,
2489 .close = hugetlb_vm_op_close,
2492 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2493 int writable)
2495 pte_t entry;
2497 if (writable) {
2498 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2499 vma->vm_page_prot)));
2500 } else {
2501 entry = huge_pte_wrprotect(mk_huge_pte(page,
2502 vma->vm_page_prot));
2504 entry = pte_mkyoung(entry);
2505 entry = pte_mkhuge(entry);
2506 entry = arch_make_huge_pte(entry, vma, page, writable);
2508 return entry;
2511 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2512 unsigned long address, pte_t *ptep)
2514 pte_t entry;
2516 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2517 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2518 update_mmu_cache(vma, address, ptep);
2521 static int is_hugetlb_entry_migration(pte_t pte)
2523 swp_entry_t swp;
2525 if (huge_pte_none(pte) || pte_present(pte))
2526 return 0;
2527 swp = pte_to_swp_entry(pte);
2528 if (non_swap_entry(swp) && is_migration_entry(swp))
2529 return 1;
2530 else
2531 return 0;
2534 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2536 swp_entry_t swp;
2538 if (huge_pte_none(pte) || pte_present(pte))
2539 return 0;
2540 swp = pte_to_swp_entry(pte);
2541 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2542 return 1;
2543 else
2544 return 0;
2547 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2548 struct vm_area_struct *vma)
2550 pte_t *src_pte, *dst_pte, entry;
2551 struct page *ptepage;
2552 unsigned long addr;
2553 int cow;
2554 struct hstate *h = hstate_vma(vma);
2555 unsigned long sz = huge_page_size(h);
2556 unsigned long mmun_start; /* For mmu_notifiers */
2557 unsigned long mmun_end; /* For mmu_notifiers */
2558 int ret = 0;
2560 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2562 mmun_start = vma->vm_start;
2563 mmun_end = vma->vm_end;
2564 if (cow)
2565 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2567 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2568 spinlock_t *src_ptl, *dst_ptl;
2569 src_pte = huge_pte_offset(src, addr);
2570 if (!src_pte)
2571 continue;
2572 dst_pte = huge_pte_alloc(dst, addr, sz);
2573 if (!dst_pte) {
2574 ret = -ENOMEM;
2575 break;
2578 /* If the pagetables are shared don't copy or take references */
2579 if (dst_pte == src_pte)
2580 continue;
2582 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2583 src_ptl = huge_pte_lockptr(h, src, src_pte);
2584 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2585 entry = huge_ptep_get(src_pte);
2586 if (huge_pte_none(entry)) { /* skip none entry */
2588 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2589 is_hugetlb_entry_hwpoisoned(entry))) {
2590 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2592 if (is_write_migration_entry(swp_entry) && cow) {
2594 * COW mappings require pages in both
2595 * parent and child to be set to read.
2597 make_migration_entry_read(&swp_entry);
2598 entry = swp_entry_to_pte(swp_entry);
2599 set_huge_pte_at(src, addr, src_pte, entry);
2601 set_huge_pte_at(dst, addr, dst_pte, entry);
2602 } else {
2603 if (cow) {
2604 huge_ptep_set_wrprotect(src, addr, src_pte);
2605 mmu_notifier_invalidate_range(src, mmun_start,
2606 mmun_end);
2608 entry = huge_ptep_get(src_pte);
2609 ptepage = pte_page(entry);
2610 get_page(ptepage);
2611 page_dup_rmap(ptepage);
2612 set_huge_pte_at(dst, addr, dst_pte, entry);
2614 spin_unlock(src_ptl);
2615 spin_unlock(dst_ptl);
2618 if (cow)
2619 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2621 return ret;
2624 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2625 unsigned long start, unsigned long end,
2626 struct page *ref_page)
2628 int force_flush = 0;
2629 struct mm_struct *mm = vma->vm_mm;
2630 unsigned long address;
2631 pte_t *ptep;
2632 pte_t pte;
2633 spinlock_t *ptl;
2634 struct page *page;
2635 struct hstate *h = hstate_vma(vma);
2636 unsigned long sz = huge_page_size(h);
2637 const unsigned long mmun_start = start; /* For mmu_notifiers */
2638 const unsigned long mmun_end = end; /* For mmu_notifiers */
2640 WARN_ON(!is_vm_hugetlb_page(vma));
2641 BUG_ON(start & ~huge_page_mask(h));
2642 BUG_ON(end & ~huge_page_mask(h));
2644 tlb_start_vma(tlb, vma);
2645 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2646 address = start;
2647 again:
2648 for (; address < end; address += sz) {
2649 ptep = huge_pte_offset(mm, address);
2650 if (!ptep)
2651 continue;
2653 ptl = huge_pte_lock(h, mm, ptep);
2654 if (huge_pmd_unshare(mm, &address, ptep))
2655 goto unlock;
2657 pte = huge_ptep_get(ptep);
2658 if (huge_pte_none(pte))
2659 goto unlock;
2662 * Migrating hugepage or HWPoisoned hugepage is already
2663 * unmapped and its refcount is dropped, so just clear pte here.
2665 if (unlikely(!pte_present(pte))) {
2666 huge_pte_clear(mm, address, ptep);
2667 goto unlock;
2670 page = pte_page(pte);
2672 * If a reference page is supplied, it is because a specific
2673 * page is being unmapped, not a range. Ensure the page we
2674 * are about to unmap is the actual page of interest.
2676 if (ref_page) {
2677 if (page != ref_page)
2678 goto unlock;
2681 * Mark the VMA as having unmapped its page so that
2682 * future faults in this VMA will fail rather than
2683 * looking like data was lost
2685 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2688 pte = huge_ptep_get_and_clear(mm, address, ptep);
2689 tlb_remove_tlb_entry(tlb, ptep, address);
2690 if (huge_pte_dirty(pte))
2691 set_page_dirty(page);
2693 page_remove_rmap(page);
2694 force_flush = !__tlb_remove_page(tlb, page);
2695 if (force_flush) {
2696 address += sz;
2697 spin_unlock(ptl);
2698 break;
2700 /* Bail out after unmapping reference page if supplied */
2701 if (ref_page) {
2702 spin_unlock(ptl);
2703 break;
2705 unlock:
2706 spin_unlock(ptl);
2709 * mmu_gather ran out of room to batch pages, we break out of
2710 * the PTE lock to avoid doing the potential expensive TLB invalidate
2711 * and page-free while holding it.
2713 if (force_flush) {
2714 force_flush = 0;
2715 tlb_flush_mmu(tlb);
2716 if (address < end && !ref_page)
2717 goto again;
2719 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 tlb_end_vma(tlb, vma);
2723 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2724 struct vm_area_struct *vma, unsigned long start,
2725 unsigned long end, struct page *ref_page)
2727 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2730 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2731 * test will fail on a vma being torn down, and not grab a page table
2732 * on its way out. We're lucky that the flag has such an appropriate
2733 * name, and can in fact be safely cleared here. We could clear it
2734 * before the __unmap_hugepage_range above, but all that's necessary
2735 * is to clear it before releasing the i_mmap_rwsem. This works
2736 * because in the context this is called, the VMA is about to be
2737 * destroyed and the i_mmap_rwsem is held.
2739 vma->vm_flags &= ~VM_MAYSHARE;
2742 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2743 unsigned long end, struct page *ref_page)
2745 struct mm_struct *mm;
2746 struct mmu_gather tlb;
2748 mm = vma->vm_mm;
2750 tlb_gather_mmu(&tlb, mm, start, end);
2751 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2752 tlb_finish_mmu(&tlb, start, end);
2756 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2757 * mappping it owns the reserve page for. The intention is to unmap the page
2758 * from other VMAs and let the children be SIGKILLed if they are faulting the
2759 * same region.
2761 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2762 struct page *page, unsigned long address)
2764 struct hstate *h = hstate_vma(vma);
2765 struct vm_area_struct *iter_vma;
2766 struct address_space *mapping;
2767 pgoff_t pgoff;
2770 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2771 * from page cache lookup which is in HPAGE_SIZE units.
2773 address = address & huge_page_mask(h);
2774 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2775 vma->vm_pgoff;
2776 mapping = file_inode(vma->vm_file)->i_mapping;
2779 * Take the mapping lock for the duration of the table walk. As
2780 * this mapping should be shared between all the VMAs,
2781 * __unmap_hugepage_range() is called as the lock is already held
2783 i_mmap_lock_write(mapping);
2784 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2785 /* Do not unmap the current VMA */
2786 if (iter_vma == vma)
2787 continue;
2790 * Unmap the page from other VMAs without their own reserves.
2791 * They get marked to be SIGKILLed if they fault in these
2792 * areas. This is because a future no-page fault on this VMA
2793 * could insert a zeroed page instead of the data existing
2794 * from the time of fork. This would look like data corruption
2796 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2797 unmap_hugepage_range(iter_vma, address,
2798 address + huge_page_size(h), page);
2800 i_mmap_unlock_write(mapping);
2804 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2805 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2806 * cannot race with other handlers or page migration.
2807 * Keep the pte_same checks anyway to make transition from the mutex easier.
2809 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2810 unsigned long address, pte_t *ptep, pte_t pte,
2811 struct page *pagecache_page, spinlock_t *ptl)
2813 struct hstate *h = hstate_vma(vma);
2814 struct page *old_page, *new_page;
2815 int ret = 0, outside_reserve = 0;
2816 unsigned long mmun_start; /* For mmu_notifiers */
2817 unsigned long mmun_end; /* For mmu_notifiers */
2819 old_page = pte_page(pte);
2821 retry_avoidcopy:
2822 /* If no-one else is actually using this page, avoid the copy
2823 * and just make the page writable */
2824 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2825 page_move_anon_rmap(old_page, vma, address);
2826 set_huge_ptep_writable(vma, address, ptep);
2827 return 0;
2831 * If the process that created a MAP_PRIVATE mapping is about to
2832 * perform a COW due to a shared page count, attempt to satisfy
2833 * the allocation without using the existing reserves. The pagecache
2834 * page is used to determine if the reserve at this address was
2835 * consumed or not. If reserves were used, a partial faulted mapping
2836 * at the time of fork() could consume its reserves on COW instead
2837 * of the full address range.
2839 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2840 old_page != pagecache_page)
2841 outside_reserve = 1;
2843 page_cache_get(old_page);
2846 * Drop page table lock as buddy allocator may be called. It will
2847 * be acquired again before returning to the caller, as expected.
2849 spin_unlock(ptl);
2850 new_page = alloc_huge_page(vma, address, outside_reserve);
2852 if (IS_ERR(new_page)) {
2854 * If a process owning a MAP_PRIVATE mapping fails to COW,
2855 * it is due to references held by a child and an insufficient
2856 * huge page pool. To guarantee the original mappers
2857 * reliability, unmap the page from child processes. The child
2858 * may get SIGKILLed if it later faults.
2860 if (outside_reserve) {
2861 page_cache_release(old_page);
2862 BUG_ON(huge_pte_none(pte));
2863 unmap_ref_private(mm, vma, old_page, address);
2864 BUG_ON(huge_pte_none(pte));
2865 spin_lock(ptl);
2866 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2867 if (likely(ptep &&
2868 pte_same(huge_ptep_get(ptep), pte)))
2869 goto retry_avoidcopy;
2871 * race occurs while re-acquiring page table
2872 * lock, and our job is done.
2874 return 0;
2877 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2878 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2879 goto out_release_old;
2883 * When the original hugepage is shared one, it does not have
2884 * anon_vma prepared.
2886 if (unlikely(anon_vma_prepare(vma))) {
2887 ret = VM_FAULT_OOM;
2888 goto out_release_all;
2891 copy_user_huge_page(new_page, old_page, address, vma,
2892 pages_per_huge_page(h));
2893 __SetPageUptodate(new_page);
2895 mmun_start = address & huge_page_mask(h);
2896 mmun_end = mmun_start + huge_page_size(h);
2897 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2900 * Retake the page table lock to check for racing updates
2901 * before the page tables are altered
2903 spin_lock(ptl);
2904 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2905 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2906 ClearPagePrivate(new_page);
2908 /* Break COW */
2909 huge_ptep_clear_flush(vma, address, ptep);
2910 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2911 set_huge_pte_at(mm, address, ptep,
2912 make_huge_pte(vma, new_page, 1));
2913 page_remove_rmap(old_page);
2914 hugepage_add_new_anon_rmap(new_page, vma, address);
2915 /* Make the old page be freed below */
2916 new_page = old_page;
2918 spin_unlock(ptl);
2919 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2920 out_release_all:
2921 page_cache_release(new_page);
2922 out_release_old:
2923 page_cache_release(old_page);
2925 spin_lock(ptl); /* Caller expects lock to be held */
2926 return ret;
2929 /* Return the pagecache page at a given address within a VMA */
2930 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2931 struct vm_area_struct *vma, unsigned long address)
2933 struct address_space *mapping;
2934 pgoff_t idx;
2936 mapping = vma->vm_file->f_mapping;
2937 idx = vma_hugecache_offset(h, vma, address);
2939 return find_lock_page(mapping, idx);
2943 * Return whether there is a pagecache page to back given address within VMA.
2944 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2946 static bool hugetlbfs_pagecache_present(struct hstate *h,
2947 struct vm_area_struct *vma, unsigned long address)
2949 struct address_space *mapping;
2950 pgoff_t idx;
2951 struct page *page;
2953 mapping = vma->vm_file->f_mapping;
2954 idx = vma_hugecache_offset(h, vma, address);
2956 page = find_get_page(mapping, idx);
2957 if (page)
2958 put_page(page);
2959 return page != NULL;
2962 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2963 struct address_space *mapping, pgoff_t idx,
2964 unsigned long address, pte_t *ptep, unsigned int flags)
2966 struct hstate *h = hstate_vma(vma);
2967 int ret = VM_FAULT_SIGBUS;
2968 int anon_rmap = 0;
2969 unsigned long size;
2970 struct page *page;
2971 pte_t new_pte;
2972 spinlock_t *ptl;
2975 * Currently, we are forced to kill the process in the event the
2976 * original mapper has unmapped pages from the child due to a failed
2977 * COW. Warn that such a situation has occurred as it may not be obvious
2979 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2980 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2981 current->pid);
2982 return ret;
2986 * Use page lock to guard against racing truncation
2987 * before we get page_table_lock.
2989 retry:
2990 page = find_lock_page(mapping, idx);
2991 if (!page) {
2992 size = i_size_read(mapping->host) >> huge_page_shift(h);
2993 if (idx >= size)
2994 goto out;
2995 page = alloc_huge_page(vma, address, 0);
2996 if (IS_ERR(page)) {
2997 ret = PTR_ERR(page);
2998 if (ret == -ENOMEM)
2999 ret = VM_FAULT_OOM;
3000 else
3001 ret = VM_FAULT_SIGBUS;
3002 goto out;
3004 clear_huge_page(page, address, pages_per_huge_page(h));
3005 __SetPageUptodate(page);
3007 if (vma->vm_flags & VM_MAYSHARE) {
3008 int err;
3009 struct inode *inode = mapping->host;
3011 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3012 if (err) {
3013 put_page(page);
3014 if (err == -EEXIST)
3015 goto retry;
3016 goto out;
3018 ClearPagePrivate(page);
3020 spin_lock(&inode->i_lock);
3021 inode->i_blocks += blocks_per_huge_page(h);
3022 spin_unlock(&inode->i_lock);
3023 } else {
3024 lock_page(page);
3025 if (unlikely(anon_vma_prepare(vma))) {
3026 ret = VM_FAULT_OOM;
3027 goto backout_unlocked;
3029 anon_rmap = 1;
3031 } else {
3033 * If memory error occurs between mmap() and fault, some process
3034 * don't have hwpoisoned swap entry for errored virtual address.
3035 * So we need to block hugepage fault by PG_hwpoison bit check.
3037 if (unlikely(PageHWPoison(page))) {
3038 ret = VM_FAULT_HWPOISON |
3039 VM_FAULT_SET_HINDEX(hstate_index(h));
3040 goto backout_unlocked;
3045 * If we are going to COW a private mapping later, we examine the
3046 * pending reservations for this page now. This will ensure that
3047 * any allocations necessary to record that reservation occur outside
3048 * the spinlock.
3050 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3051 if (vma_needs_reservation(h, vma, address) < 0) {
3052 ret = VM_FAULT_OOM;
3053 goto backout_unlocked;
3056 ptl = huge_pte_lockptr(h, mm, ptep);
3057 spin_lock(ptl);
3058 size = i_size_read(mapping->host) >> huge_page_shift(h);
3059 if (idx >= size)
3060 goto backout;
3062 ret = 0;
3063 if (!huge_pte_none(huge_ptep_get(ptep)))
3064 goto backout;
3066 if (anon_rmap) {
3067 ClearPagePrivate(page);
3068 hugepage_add_new_anon_rmap(page, vma, address);
3069 } else
3070 page_dup_rmap(page);
3071 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3072 && (vma->vm_flags & VM_SHARED)));
3073 set_huge_pte_at(mm, address, ptep, new_pte);
3075 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3076 /* Optimization, do the COW without a second fault */
3077 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3080 spin_unlock(ptl);
3081 unlock_page(page);
3082 out:
3083 return ret;
3085 backout:
3086 spin_unlock(ptl);
3087 backout_unlocked:
3088 unlock_page(page);
3089 put_page(page);
3090 goto out;
3093 #ifdef CONFIG_SMP
3094 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3095 struct vm_area_struct *vma,
3096 struct address_space *mapping,
3097 pgoff_t idx, unsigned long address)
3099 unsigned long key[2];
3100 u32 hash;
3102 if (vma->vm_flags & VM_SHARED) {
3103 key[0] = (unsigned long) mapping;
3104 key[1] = idx;
3105 } else {
3106 key[0] = (unsigned long) mm;
3107 key[1] = address >> huge_page_shift(h);
3110 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3112 return hash & (num_fault_mutexes - 1);
3114 #else
3116 * For uniprocesor systems we always use a single mutex, so just
3117 * return 0 and avoid the hashing overhead.
3119 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3120 struct vm_area_struct *vma,
3121 struct address_space *mapping,
3122 pgoff_t idx, unsigned long address)
3124 return 0;
3126 #endif
3128 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3129 unsigned long address, unsigned int flags)
3131 pte_t *ptep, entry;
3132 spinlock_t *ptl;
3133 int ret;
3134 u32 hash;
3135 pgoff_t idx;
3136 struct page *page = NULL;
3137 struct page *pagecache_page = NULL;
3138 struct hstate *h = hstate_vma(vma);
3139 struct address_space *mapping;
3140 int need_wait_lock = 0;
3142 address &= huge_page_mask(h);
3144 ptep = huge_pte_offset(mm, address);
3145 if (ptep) {
3146 entry = huge_ptep_get(ptep);
3147 if (unlikely(is_hugetlb_entry_migration(entry))) {
3148 migration_entry_wait_huge(vma, mm, ptep);
3149 return 0;
3150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3151 return VM_FAULT_HWPOISON_LARGE |
3152 VM_FAULT_SET_HINDEX(hstate_index(h));
3155 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3156 if (!ptep)
3157 return VM_FAULT_OOM;
3159 mapping = vma->vm_file->f_mapping;
3160 idx = vma_hugecache_offset(h, vma, address);
3163 * Serialize hugepage allocation and instantiation, so that we don't
3164 * get spurious allocation failures if two CPUs race to instantiate
3165 * the same page in the page cache.
3167 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3168 mutex_lock(&htlb_fault_mutex_table[hash]);
3170 entry = huge_ptep_get(ptep);
3171 if (huge_pte_none(entry)) {
3172 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3173 goto out_mutex;
3176 ret = 0;
3179 * entry could be a migration/hwpoison entry at this point, so this
3180 * check prevents the kernel from going below assuming that we have
3181 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3182 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3183 * handle it.
3185 if (!pte_present(entry))
3186 goto out_mutex;
3189 * If we are going to COW the mapping later, we examine the pending
3190 * reservations for this page now. This will ensure that any
3191 * allocations necessary to record that reservation occur outside the
3192 * spinlock. For private mappings, we also lookup the pagecache
3193 * page now as it is used to determine if a reservation has been
3194 * consumed.
3196 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3197 if (vma_needs_reservation(h, vma, address) < 0) {
3198 ret = VM_FAULT_OOM;
3199 goto out_mutex;
3202 if (!(vma->vm_flags & VM_MAYSHARE))
3203 pagecache_page = hugetlbfs_pagecache_page(h,
3204 vma, address);
3207 ptl = huge_pte_lock(h, mm, ptep);
3209 /* Check for a racing update before calling hugetlb_cow */
3210 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3211 goto out_ptl;
3214 * hugetlb_cow() requires page locks of pte_page(entry) and
3215 * pagecache_page, so here we need take the former one
3216 * when page != pagecache_page or !pagecache_page.
3218 page = pte_page(entry);
3219 if (page != pagecache_page)
3220 if (!trylock_page(page)) {
3221 need_wait_lock = 1;
3222 goto out_ptl;
3225 get_page(page);
3227 if (flags & FAULT_FLAG_WRITE) {
3228 if (!huge_pte_write(entry)) {
3229 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3230 pagecache_page, ptl);
3231 goto out_put_page;
3233 entry = huge_pte_mkdirty(entry);
3235 entry = pte_mkyoung(entry);
3236 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3237 flags & FAULT_FLAG_WRITE))
3238 update_mmu_cache(vma, address, ptep);
3239 out_put_page:
3240 if (page != pagecache_page)
3241 unlock_page(page);
3242 put_page(page);
3243 out_ptl:
3244 spin_unlock(ptl);
3246 if (pagecache_page) {
3247 unlock_page(pagecache_page);
3248 put_page(pagecache_page);
3250 out_mutex:
3251 mutex_unlock(&htlb_fault_mutex_table[hash]);
3253 * Generally it's safe to hold refcount during waiting page lock. But
3254 * here we just wait to defer the next page fault to avoid busy loop and
3255 * the page is not used after unlocked before returning from the current
3256 * page fault. So we are safe from accessing freed page, even if we wait
3257 * here without taking refcount.
3259 if (need_wait_lock)
3260 wait_on_page_locked(page);
3261 return ret;
3264 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3265 struct page **pages, struct vm_area_struct **vmas,
3266 unsigned long *position, unsigned long *nr_pages,
3267 long i, unsigned int flags)
3269 unsigned long pfn_offset;
3270 unsigned long vaddr = *position;
3271 unsigned long remainder = *nr_pages;
3272 struct hstate *h = hstate_vma(vma);
3274 while (vaddr < vma->vm_end && remainder) {
3275 pte_t *pte;
3276 spinlock_t *ptl = NULL;
3277 int absent;
3278 struct page *page;
3281 * Some archs (sparc64, sh*) have multiple pte_ts to
3282 * each hugepage. We have to make sure we get the
3283 * first, for the page indexing below to work.
3285 * Note that page table lock is not held when pte is null.
3287 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3288 if (pte)
3289 ptl = huge_pte_lock(h, mm, pte);
3290 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3293 * When coredumping, it suits get_dump_page if we just return
3294 * an error where there's an empty slot with no huge pagecache
3295 * to back it. This way, we avoid allocating a hugepage, and
3296 * the sparse dumpfile avoids allocating disk blocks, but its
3297 * huge holes still show up with zeroes where they need to be.
3299 if (absent && (flags & FOLL_DUMP) &&
3300 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3301 if (pte)
3302 spin_unlock(ptl);
3303 remainder = 0;
3304 break;
3308 * We need call hugetlb_fault for both hugepages under migration
3309 * (in which case hugetlb_fault waits for the migration,) and
3310 * hwpoisoned hugepages (in which case we need to prevent the
3311 * caller from accessing to them.) In order to do this, we use
3312 * here is_swap_pte instead of is_hugetlb_entry_migration and
3313 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3314 * both cases, and because we can't follow correct pages
3315 * directly from any kind of swap entries.
3317 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3318 ((flags & FOLL_WRITE) &&
3319 !huge_pte_write(huge_ptep_get(pte)))) {
3320 int ret;
3322 if (pte)
3323 spin_unlock(ptl);
3324 ret = hugetlb_fault(mm, vma, vaddr,
3325 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3326 if (!(ret & VM_FAULT_ERROR))
3327 continue;
3329 remainder = 0;
3330 break;
3333 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3334 page = pte_page(huge_ptep_get(pte));
3335 same_page:
3336 if (pages) {
3337 pages[i] = mem_map_offset(page, pfn_offset);
3338 get_page_foll(pages[i]);
3341 if (vmas)
3342 vmas[i] = vma;
3344 vaddr += PAGE_SIZE;
3345 ++pfn_offset;
3346 --remainder;
3347 ++i;
3348 if (vaddr < vma->vm_end && remainder &&
3349 pfn_offset < pages_per_huge_page(h)) {
3351 * We use pfn_offset to avoid touching the pageframes
3352 * of this compound page.
3354 goto same_page;
3356 spin_unlock(ptl);
3358 *nr_pages = remainder;
3359 *position = vaddr;
3361 return i ? i : -EFAULT;
3364 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3365 unsigned long address, unsigned long end, pgprot_t newprot)
3367 struct mm_struct *mm = vma->vm_mm;
3368 unsigned long start = address;
3369 pte_t *ptep;
3370 pte_t pte;
3371 struct hstate *h = hstate_vma(vma);
3372 unsigned long pages = 0;
3374 BUG_ON(address >= end);
3375 flush_cache_range(vma, address, end);
3377 mmu_notifier_invalidate_range_start(mm, start, end);
3378 i_mmap_lock_write(vma->vm_file->f_mapping);
3379 for (; address < end; address += huge_page_size(h)) {
3380 spinlock_t *ptl;
3381 ptep = huge_pte_offset(mm, address);
3382 if (!ptep)
3383 continue;
3384 ptl = huge_pte_lock(h, mm, ptep);
3385 if (huge_pmd_unshare(mm, &address, ptep)) {
3386 pages++;
3387 spin_unlock(ptl);
3388 continue;
3390 pte = huge_ptep_get(ptep);
3391 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3392 spin_unlock(ptl);
3393 continue;
3395 if (unlikely(is_hugetlb_entry_migration(pte))) {
3396 swp_entry_t entry = pte_to_swp_entry(pte);
3398 if (is_write_migration_entry(entry)) {
3399 pte_t newpte;
3401 make_migration_entry_read(&entry);
3402 newpte = swp_entry_to_pte(entry);
3403 set_huge_pte_at(mm, address, ptep, newpte);
3404 pages++;
3406 spin_unlock(ptl);
3407 continue;
3409 if (!huge_pte_none(pte)) {
3410 pte = huge_ptep_get_and_clear(mm, address, ptep);
3411 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3412 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3413 set_huge_pte_at(mm, address, ptep, pte);
3414 pages++;
3416 spin_unlock(ptl);
3419 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3420 * may have cleared our pud entry and done put_page on the page table:
3421 * once we release i_mmap_rwsem, another task can do the final put_page
3422 * and that page table be reused and filled with junk.
3424 flush_tlb_range(vma, start, end);
3425 mmu_notifier_invalidate_range(mm, start, end);
3426 i_mmap_unlock_write(vma->vm_file->f_mapping);
3427 mmu_notifier_invalidate_range_end(mm, start, end);
3429 return pages << h->order;
3432 int hugetlb_reserve_pages(struct inode *inode,
3433 long from, long to,
3434 struct vm_area_struct *vma,
3435 vm_flags_t vm_flags)
3437 long ret, chg;
3438 struct hstate *h = hstate_inode(inode);
3439 struct hugepage_subpool *spool = subpool_inode(inode);
3440 struct resv_map *resv_map;
3443 * Only apply hugepage reservation if asked. At fault time, an
3444 * attempt will be made for VM_NORESERVE to allocate a page
3445 * without using reserves
3447 if (vm_flags & VM_NORESERVE)
3448 return 0;
3451 * Shared mappings base their reservation on the number of pages that
3452 * are already allocated on behalf of the file. Private mappings need
3453 * to reserve the full area even if read-only as mprotect() may be
3454 * called to make the mapping read-write. Assume !vma is a shm mapping
3456 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3457 resv_map = inode_resv_map(inode);
3459 chg = region_chg(resv_map, from, to);
3461 } else {
3462 resv_map = resv_map_alloc();
3463 if (!resv_map)
3464 return -ENOMEM;
3466 chg = to - from;
3468 set_vma_resv_map(vma, resv_map);
3469 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3472 if (chg < 0) {
3473 ret = chg;
3474 goto out_err;
3477 /* There must be enough pages in the subpool for the mapping */
3478 if (hugepage_subpool_get_pages(spool, chg)) {
3479 ret = -ENOSPC;
3480 goto out_err;
3484 * Check enough hugepages are available for the reservation.
3485 * Hand the pages back to the subpool if there are not
3487 ret = hugetlb_acct_memory(h, chg);
3488 if (ret < 0) {
3489 hugepage_subpool_put_pages(spool, chg);
3490 goto out_err;
3494 * Account for the reservations made. Shared mappings record regions
3495 * that have reservations as they are shared by multiple VMAs.
3496 * When the last VMA disappears, the region map says how much
3497 * the reservation was and the page cache tells how much of
3498 * the reservation was consumed. Private mappings are per-VMA and
3499 * only the consumed reservations are tracked. When the VMA
3500 * disappears, the original reservation is the VMA size and the
3501 * consumed reservations are stored in the map. Hence, nothing
3502 * else has to be done for private mappings here
3504 if (!vma || vma->vm_flags & VM_MAYSHARE)
3505 region_add(resv_map, from, to);
3506 return 0;
3507 out_err:
3508 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3509 kref_put(&resv_map->refs, resv_map_release);
3510 return ret;
3513 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3515 struct hstate *h = hstate_inode(inode);
3516 struct resv_map *resv_map = inode_resv_map(inode);
3517 long chg = 0;
3518 struct hugepage_subpool *spool = subpool_inode(inode);
3520 if (resv_map)
3521 chg = region_truncate(resv_map, offset);
3522 spin_lock(&inode->i_lock);
3523 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3524 spin_unlock(&inode->i_lock);
3526 hugepage_subpool_put_pages(spool, (chg - freed));
3527 hugetlb_acct_memory(h, -(chg - freed));
3530 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3531 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3532 struct vm_area_struct *vma,
3533 unsigned long addr, pgoff_t idx)
3535 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3536 svma->vm_start;
3537 unsigned long sbase = saddr & PUD_MASK;
3538 unsigned long s_end = sbase + PUD_SIZE;
3540 /* Allow segments to share if only one is marked locked */
3541 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3542 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3545 * match the virtual addresses, permission and the alignment of the
3546 * page table page.
3548 if (pmd_index(addr) != pmd_index(saddr) ||
3549 vm_flags != svm_flags ||
3550 sbase < svma->vm_start || svma->vm_end < s_end)
3551 return 0;
3553 return saddr;
3556 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3558 unsigned long base = addr & PUD_MASK;
3559 unsigned long end = base + PUD_SIZE;
3562 * check on proper vm_flags and page table alignment
3564 if (vma->vm_flags & VM_MAYSHARE &&
3565 vma->vm_start <= base && end <= vma->vm_end)
3566 return 1;
3567 return 0;
3571 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3572 * and returns the corresponding pte. While this is not necessary for the
3573 * !shared pmd case because we can allocate the pmd later as well, it makes the
3574 * code much cleaner. pmd allocation is essential for the shared case because
3575 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3576 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3577 * bad pmd for sharing.
3579 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3581 struct vm_area_struct *vma = find_vma(mm, addr);
3582 struct address_space *mapping = vma->vm_file->f_mapping;
3583 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3584 vma->vm_pgoff;
3585 struct vm_area_struct *svma;
3586 unsigned long saddr;
3587 pte_t *spte = NULL;
3588 pte_t *pte;
3589 spinlock_t *ptl;
3591 if (!vma_shareable(vma, addr))
3592 return (pte_t *)pmd_alloc(mm, pud, addr);
3594 i_mmap_lock_write(mapping);
3595 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3596 if (svma == vma)
3597 continue;
3599 saddr = page_table_shareable(svma, vma, addr, idx);
3600 if (saddr) {
3601 spte = huge_pte_offset(svma->vm_mm, saddr);
3602 if (spte) {
3603 mm_inc_nr_pmds(mm);
3604 get_page(virt_to_page(spte));
3605 break;
3610 if (!spte)
3611 goto out;
3613 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3614 spin_lock(ptl);
3615 if (pud_none(*pud)) {
3616 pud_populate(mm, pud,
3617 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3618 } else {
3619 put_page(virt_to_page(spte));
3620 mm_inc_nr_pmds(mm);
3622 spin_unlock(ptl);
3623 out:
3624 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3625 i_mmap_unlock_write(mapping);
3626 return pte;
3630 * unmap huge page backed by shared pte.
3632 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3633 * indicated by page_count > 1, unmap is achieved by clearing pud and
3634 * decrementing the ref count. If count == 1, the pte page is not shared.
3636 * called with page table lock held.
3638 * returns: 1 successfully unmapped a shared pte page
3639 * 0 the underlying pte page is not shared, or it is the last user
3641 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3643 pgd_t *pgd = pgd_offset(mm, *addr);
3644 pud_t *pud = pud_offset(pgd, *addr);
3646 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3647 if (page_count(virt_to_page(ptep)) == 1)
3648 return 0;
3650 pud_clear(pud);
3651 put_page(virt_to_page(ptep));
3652 mm_dec_nr_pmds(mm);
3653 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3654 return 1;
3656 #define want_pmd_share() (1)
3657 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3658 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3660 return NULL;
3662 #define want_pmd_share() (0)
3663 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3665 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3666 pte_t *huge_pte_alloc(struct mm_struct *mm,
3667 unsigned long addr, unsigned long sz)
3669 pgd_t *pgd;
3670 pud_t *pud;
3671 pte_t *pte = NULL;
3673 pgd = pgd_offset(mm, addr);
3674 pud = pud_alloc(mm, pgd, addr);
3675 if (pud) {
3676 if (sz == PUD_SIZE) {
3677 pte = (pte_t *)pud;
3678 } else {
3679 BUG_ON(sz != PMD_SIZE);
3680 if (want_pmd_share() && pud_none(*pud))
3681 pte = huge_pmd_share(mm, addr, pud);
3682 else
3683 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3686 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3688 return pte;
3691 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3693 pgd_t *pgd;
3694 pud_t *pud;
3695 pmd_t *pmd = NULL;
3697 pgd = pgd_offset(mm, addr);
3698 if (pgd_present(*pgd)) {
3699 pud = pud_offset(pgd, addr);
3700 if (pud_present(*pud)) {
3701 if (pud_huge(*pud))
3702 return (pte_t *)pud;
3703 pmd = pmd_offset(pud, addr);
3706 return (pte_t *) pmd;
3709 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3712 * These functions are overwritable if your architecture needs its own
3713 * behavior.
3715 struct page * __weak
3716 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3717 int write)
3719 return ERR_PTR(-EINVAL);
3722 struct page * __weak
3723 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3724 pmd_t *pmd, int flags)
3726 struct page *page = NULL;
3727 spinlock_t *ptl;
3728 retry:
3729 ptl = pmd_lockptr(mm, pmd);
3730 spin_lock(ptl);
3732 * make sure that the address range covered by this pmd is not
3733 * unmapped from other threads.
3735 if (!pmd_huge(*pmd))
3736 goto out;
3737 if (pmd_present(*pmd)) {
3738 page = pte_page(*(pte_t *)pmd) +
3739 ((address & ~PMD_MASK) >> PAGE_SHIFT);
3740 if (flags & FOLL_GET)
3741 get_page(page);
3742 } else {
3743 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3744 spin_unlock(ptl);
3745 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3746 goto retry;
3749 * hwpoisoned entry is treated as no_page_table in
3750 * follow_page_mask().
3753 out:
3754 spin_unlock(ptl);
3755 return page;
3758 struct page * __weak
3759 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3760 pud_t *pud, int flags)
3762 if (flags & FOLL_GET)
3763 return NULL;
3765 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3768 #ifdef CONFIG_MEMORY_FAILURE
3770 /* Should be called in hugetlb_lock */
3771 static int is_hugepage_on_freelist(struct page *hpage)
3773 struct page *page;
3774 struct page *tmp;
3775 struct hstate *h = page_hstate(hpage);
3776 int nid = page_to_nid(hpage);
3778 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3779 if (page == hpage)
3780 return 1;
3781 return 0;
3785 * This function is called from memory failure code.
3786 * Assume the caller holds page lock of the head page.
3788 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3790 struct hstate *h = page_hstate(hpage);
3791 int nid = page_to_nid(hpage);
3792 int ret = -EBUSY;
3794 spin_lock(&hugetlb_lock);
3795 if (is_hugepage_on_freelist(hpage)) {
3797 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3798 * but dangling hpage->lru can trigger list-debug warnings
3799 * (this happens when we call unpoison_memory() on it),
3800 * so let it point to itself with list_del_init().
3802 list_del_init(&hpage->lru);
3803 set_page_refcounted(hpage);
3804 h->free_huge_pages--;
3805 h->free_huge_pages_node[nid]--;
3806 ret = 0;
3808 spin_unlock(&hugetlb_lock);
3809 return ret;
3811 #endif
3813 bool isolate_huge_page(struct page *page, struct list_head *list)
3815 VM_BUG_ON_PAGE(!PageHead(page), page);
3816 if (!get_page_unless_zero(page))
3817 return false;
3818 spin_lock(&hugetlb_lock);
3819 list_move_tail(&page->lru, list);
3820 spin_unlock(&hugetlb_lock);
3821 return true;
3824 void putback_active_hugepage(struct page *page)
3826 VM_BUG_ON_PAGE(!PageHead(page), page);
3827 spin_lock(&hugetlb_lock);
3828 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3829 spin_unlock(&hugetlb_lock);
3830 put_page(page);
3833 bool is_hugepage_active(struct page *page)
3835 VM_BUG_ON_PAGE(!PageHuge(page), page);
3837 * This function can be called for a tail page because the caller,
3838 * scan_movable_pages, scans through a given pfn-range which typically
3839 * covers one memory block. In systems using gigantic hugepage (1GB
3840 * for x86_64,) a hugepage is larger than a memory block, and we don't
3841 * support migrating such large hugepages for now, so return false
3842 * when called for tail pages.
3844 if (PageTail(page))
3845 return false;
3847 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3848 * so we should return false for them.
3850 if (unlikely(PageHWPoison(page)))
3851 return false;
3852 return page_count(page) > 0;