ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / mm / memory.c
blob411144f977b10eab492410728784efe37c4ea54a
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
72 #include "internal.h"
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
94 void * high_memory;
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
121 EXPORT_SYMBOL(zero_pfn);
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 static int __init init_zero_pfn(void)
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
131 core_initcall(init_zero_pfn);
134 #if defined(SPLIT_RSS_COUNTING)
136 void sync_mm_rss(struct mm_struct *mm)
138 int i;
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
146 current->rss_stat.events = 0;
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151 struct task_struct *task = current;
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
170 #else /* SPLIT_RSS_COUNTING */
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175 static void check_sync_rss_stat(struct task_struct *task)
179 #endif /* SPLIT_RSS_COUNTING */
181 #ifdef HAVE_GENERIC_MMU_GATHER
183 static int tlb_next_batch(struct mmu_gather *tlb)
185 struct mmu_gather_batch *batch;
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
205 tlb->active->next = batch;
206 tlb->active = batch;
208 return 1;
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
218 tlb->mm = mm;
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
233 __tlb_reset_range(tlb);
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 if (!tlb->end)
239 return;
241 tlb_flush(tlb);
242 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
246 __tlb_reset_range(tlb);
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251 struct mmu_gather_batch *batch;
253 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254 free_pages_and_swap_cache(batch->pages, batch->nr);
255 batch->nr = 0;
257 tlb->active = &tlb->local;
260 void tlb_flush_mmu(struct mmu_gather *tlb)
262 tlb_flush_mmu_tlbonly(tlb);
263 tlb_flush_mmu_free(tlb);
266 /* tlb_finish_mmu
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272 struct mmu_gather_batch *batch, *next;
274 tlb_flush_mmu(tlb);
276 /* keep the page table cache within bounds */
277 check_pgt_cache();
279 for (batch = tlb->local.next; batch; batch = next) {
280 next = batch->next;
281 free_pages((unsigned long)batch, 0);
283 tlb->local.next = NULL;
286 /* __tlb_remove_page
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294 struct mmu_gather_batch *batch;
296 VM_BUG_ON(!tlb->end);
298 batch = tlb->active;
299 batch->pages[batch->nr++] = page;
300 if (batch->nr == batch->max) {
301 if (!tlb_next_batch(tlb))
302 return 0;
303 batch = tlb->active;
305 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
307 return batch->max - batch->nr;
310 #endif /* HAVE_GENERIC_MMU_GATHER */
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315 * See the comment near struct mmu_table_batch.
318 static void tlb_remove_table_smp_sync(void *arg)
320 /* Simply deliver the interrupt */
323 static void tlb_remove_table_one(void *table)
326 * This isn't an RCU grace period and hence the page-tables cannot be
327 * assumed to be actually RCU-freed.
329 * It is however sufficient for software page-table walkers that rely on
330 * IRQ disabling. See the comment near struct mmu_table_batch.
332 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333 __tlb_remove_table(table);
336 static void tlb_remove_table_rcu(struct rcu_head *head)
338 struct mmu_table_batch *batch;
339 int i;
341 batch = container_of(head, struct mmu_table_batch, rcu);
343 for (i = 0; i < batch->nr; i++)
344 __tlb_remove_table(batch->tables[i]);
346 free_page((unsigned long)batch);
349 void tlb_table_flush(struct mmu_gather *tlb)
351 struct mmu_table_batch **batch = &tlb->batch;
353 if (*batch) {
354 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355 *batch = NULL;
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
361 struct mmu_table_batch **batch = &tlb->batch;
364 * When there's less then two users of this mm there cannot be a
365 * concurrent page-table walk.
367 if (atomic_read(&tlb->mm->mm_users) < 2) {
368 __tlb_remove_table(table);
369 return;
372 if (*batch == NULL) {
373 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374 if (*batch == NULL) {
375 tlb_remove_table_one(table);
376 return;
378 (*batch)->nr = 0;
380 (*batch)->tables[(*batch)->nr++] = table;
381 if ((*batch)->nr == MAX_TABLE_BATCH)
382 tlb_table_flush(tlb);
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388 * Note: this doesn't free the actual pages themselves. That
389 * has been handled earlier when unmapping all the memory regions.
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392 unsigned long addr)
394 pgtable_t token = pmd_pgtable(*pmd);
395 pmd_clear(pmd);
396 pte_free_tlb(tlb, token, addr);
397 atomic_long_dec(&tlb->mm->nr_ptes);
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401 unsigned long addr, unsigned long end,
402 unsigned long floor, unsigned long ceiling)
404 pmd_t *pmd;
405 unsigned long next;
406 unsigned long start;
408 start = addr;
409 pmd = pmd_offset(pud, addr);
410 do {
411 next = pmd_addr_end(addr, end);
412 if (pmd_none_or_clear_bad(pmd))
413 continue;
414 free_pte_range(tlb, pmd, addr);
415 } while (pmd++, addr = next, addr != end);
417 start &= PUD_MASK;
418 if (start < floor)
419 return;
420 if (ceiling) {
421 ceiling &= PUD_MASK;
422 if (!ceiling)
423 return;
425 if (end - 1 > ceiling - 1)
426 return;
428 pmd = pmd_offset(pud, start);
429 pud_clear(pud);
430 pmd_free_tlb(tlb, pmd, start);
431 mm_dec_nr_pmds(tlb->mm);
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
438 pud_t *pud;
439 unsigned long next;
440 unsigned long start;
442 start = addr;
443 pud = pud_offset(pgd, addr);
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 } while (pud++, addr = next, addr != end);
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
459 if (end - 1 > ceiling - 1)
460 return;
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
464 pud_free_tlb(tlb, pud, start);
468 * This function frees user-level page tables of a process.
470 void free_pgd_range(struct mmu_gather *tlb,
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
474 pgd_t *pgd;
475 unsigned long next;
478 * The next few lines have given us lots of grief...
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
519 pgd = pgd_offset(tlb->mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 } while (pgd++, addr = next, addr != end);
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 unsigned long floor, unsigned long ceiling)
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
539 unlink_anon_vmas(vma);
540 unlink_file_vma(vma);
542 if (is_vm_hugetlb_page(vma)) {
543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 floor, next? next->vm_start: ceiling);
545 } else {
547 * Optimization: gather nearby vmas into one call down
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 && !is_vm_hugetlb_page(next)) {
551 vma = next;
552 next = vma->vm_next;
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
559 vma = next;
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
566 spinlock_t *ptl;
567 pgtable_t new = pte_alloc_one(mm, address);
568 int wait_split_huge_page;
569 if (!new)
570 return -ENOMEM;
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587 ptl = pmd_lock(mm, pmd);
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
600 return 0;
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
609 smp_wmb(); /* See comment in __pte_alloc */
611 spin_lock(&init_mm.page_table_lock);
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
613 pmd_populate_kernel(&init_mm, pmd, new);
614 new = NULL;
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
617 spin_unlock(&init_mm.page_table_lock);
618 if (new)
619 pte_free_kernel(&init_mm, new);
620 return 0;
623 static inline void init_rss_vec(int *rss)
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
630 int i;
632 if (current->mm == mm)
633 sync_mm_rss(mm);
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
644 * The calling function must still handle the error.
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
667 if (nr_unshown) {
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
670 nr_unshown);
671 nr_unshown = 0;
673 nr_shown = 0;
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
685 if (page)
686 dump_page(page, "bad pte");
687 printk(KERN_ALERT
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
693 if (vma->vm_ops)
694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 vma->vm_ops->fault);
696 if (vma->vm_file)
697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 vma->vm_file->f_op->mmap);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
726 * And for normal mappings this is false.
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
753 unsigned long pfn = pte_pfn(pte);
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_ops && vma->vm_ops->find_special_page)
759 return vma->vm_ops->find_special_page(vma, addr);
760 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
761 return NULL;
762 if (!is_zero_pfn(pfn))
763 print_bad_pte(vma, addr, pte, NULL);
764 return NULL;
767 /* !HAVE_PTE_SPECIAL case follows: */
769 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
770 if (vma->vm_flags & VM_MIXEDMAP) {
771 if (!pfn_valid(pfn))
772 return NULL;
773 goto out;
774 } else {
775 unsigned long off;
776 off = (addr - vma->vm_start) >> PAGE_SHIFT;
777 if (pfn == vma->vm_pgoff + off)
778 return NULL;
779 if (!is_cow_mapping(vma->vm_flags))
780 return NULL;
784 if (is_zero_pfn(pfn))
785 return NULL;
786 check_pfn:
787 if (unlikely(pfn > highest_memmap_pfn)) {
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
793 * NOTE! We still have PageReserved() pages in the page tables.
794 * eg. VDSO mappings can cause them to exist.
796 out:
797 return pfn_to_page(pfn);
801 * copy one vm_area from one task to the other. Assumes the page tables
802 * already present in the new task to be cleared in the whole range
803 * covered by this vma.
806 static inline unsigned long
807 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
808 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
809 unsigned long addr, int *rss)
811 unsigned long vm_flags = vma->vm_flags;
812 pte_t pte = *src_pte;
813 struct page *page;
815 /* pte contains position in swap or file, so copy. */
816 if (unlikely(!pte_present(pte))) {
817 swp_entry_t entry = pte_to_swp_entry(pte);
819 if (likely(!non_swap_entry(entry))) {
820 if (swap_duplicate(entry) < 0)
821 return entry.val;
823 /* make sure dst_mm is on swapoff's mmlist. */
824 if (unlikely(list_empty(&dst_mm->mmlist))) {
825 spin_lock(&mmlist_lock);
826 if (list_empty(&dst_mm->mmlist))
827 list_add(&dst_mm->mmlist,
828 &src_mm->mmlist);
829 spin_unlock(&mmlist_lock);
831 rss[MM_SWAPENTS]++;
832 } else if (is_migration_entry(entry)) {
833 page = migration_entry_to_page(entry);
835 if (PageAnon(page))
836 rss[MM_ANONPAGES]++;
837 else
838 rss[MM_FILEPAGES]++;
840 if (is_write_migration_entry(entry) &&
841 is_cow_mapping(vm_flags)) {
843 * COW mappings require pages in both
844 * parent and child to be set to read.
846 make_migration_entry_read(&entry);
847 pte = swp_entry_to_pte(entry);
848 if (pte_swp_soft_dirty(*src_pte))
849 pte = pte_swp_mksoft_dirty(pte);
850 set_pte_at(src_mm, addr, src_pte, pte);
853 goto out_set_pte;
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
860 if (is_cow_mapping(vm_flags)) {
861 ptep_set_wrprotect(src_mm, addr, src_pte);
862 pte = pte_wrprotect(pte);
866 * If it's a shared mapping, mark it clean in
867 * the child
869 if (vm_flags & VM_SHARED)
870 pte = pte_mkclean(pte);
871 pte = pte_mkold(pte);
873 page = vm_normal_page(vma, addr, pte);
874 if (page) {
875 get_page(page);
876 page_dup_rmap(page);
877 if (PageAnon(page))
878 rss[MM_ANONPAGES]++;
879 else
880 rss[MM_FILEPAGES]++;
883 out_set_pte:
884 set_pte_at(dst_mm, addr, dst_pte, pte);
885 return 0;
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 unsigned long addr, unsigned long end)
892 pte_t *orig_src_pte, *orig_dst_pte;
893 pte_t *src_pte, *dst_pte;
894 spinlock_t *src_ptl, *dst_ptl;
895 int progress = 0;
896 int rss[NR_MM_COUNTERS];
897 swp_entry_t entry = (swp_entry_t){0};
899 again:
900 init_rss_vec(rss);
902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 if (!dst_pte)
904 return -ENOMEM;
905 src_pte = pte_offset_map(src_pmd, addr);
906 src_ptl = pte_lockptr(src_mm, src_pmd);
907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 orig_src_pte = src_pte;
909 orig_dst_pte = dst_pte;
910 arch_enter_lazy_mmu_mode();
912 do {
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
917 if (progress >= 32) {
918 progress = 0;
919 if (need_resched() ||
920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 break;
923 if (pte_none(*src_pte)) {
924 progress++;
925 continue;
927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 vma, addr, rss);
929 if (entry.val)
930 break;
931 progress += 8;
932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
934 arch_leave_lazy_mmu_mode();
935 spin_unlock(src_ptl);
936 pte_unmap(orig_src_pte);
937 add_mm_rss_vec(dst_mm, rss);
938 pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 cond_resched();
941 if (entry.val) {
942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 return -ENOMEM;
944 progress = 0;
946 if (addr != end)
947 goto again;
948 return 0;
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 unsigned long addr, unsigned long end)
955 pmd_t *src_pmd, *dst_pmd;
956 unsigned long next;
958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 if (!dst_pmd)
960 return -ENOMEM;
961 src_pmd = pmd_offset(src_pud, addr);
962 do {
963 next = pmd_addr_end(addr, end);
964 if (pmd_trans_huge(*src_pmd)) {
965 int err;
966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 err = copy_huge_pmd(dst_mm, src_mm,
968 dst_pmd, src_pmd, addr, vma);
969 if (err == -ENOMEM)
970 return -ENOMEM;
971 if (!err)
972 continue;
973 /* fall through */
975 if (pmd_none_or_clear_bad(src_pmd))
976 continue;
977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 vma, addr, next))
979 return -ENOMEM;
980 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 return 0;
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 unsigned long addr, unsigned long end)
988 pud_t *src_pud, *dst_pud;
989 unsigned long next;
991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 if (!dst_pud)
993 return -ENOMEM;
994 src_pud = pud_offset(src_pgd, addr);
995 do {
996 next = pud_addr_end(addr, end);
997 if (pud_none_or_clear_bad(src_pud))
998 continue;
999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pud++, src_pud++, addr = next, addr != end);
1003 return 0;
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 struct vm_area_struct *vma)
1009 pgd_t *src_pgd, *dst_pgd;
1010 unsigned long next;
1011 unsigned long addr = vma->vm_start;
1012 unsigned long end = vma->vm_end;
1013 unsigned long mmun_start; /* For mmu_notifiers */
1014 unsigned long mmun_end; /* For mmu_notifiers */
1015 bool is_cow;
1016 int ret;
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1025 !vma->anon_vma)
1026 return 0;
1028 if (is_vm_hugetlb_page(vma))
1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1036 ret = track_pfn_copy(vma);
1037 if (ret)
1038 return ret;
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1047 is_cow = is_cow_mapping(vma->vm_flags);
1048 mmun_start = addr;
1049 mmun_end = end;
1050 if (is_cow)
1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 mmun_end);
1054 ret = 0;
1055 dst_pgd = pgd_offset(dst_mm, addr);
1056 src_pgd = pgd_offset(src_mm, addr);
1057 do {
1058 next = pgd_addr_end(addr, end);
1059 if (pgd_none_or_clear_bad(src_pgd))
1060 continue;
1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 vma, addr, next))) {
1063 ret = -ENOMEM;
1064 break;
1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070 return ret;
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074 struct vm_area_struct *vma, pmd_t *pmd,
1075 unsigned long addr, unsigned long end,
1076 struct zap_details *details)
1078 struct mm_struct *mm = tlb->mm;
1079 int force_flush = 0;
1080 int rss[NR_MM_COUNTERS];
1081 spinlock_t *ptl;
1082 pte_t *start_pte;
1083 pte_t *pte;
1084 swp_entry_t entry;
1086 again:
1087 init_rss_vec(rss);
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
1090 arch_enter_lazy_mmu_mode();
1091 do {
1092 pte_t ptent = *pte;
1093 if (pte_none(ptent)) {
1094 continue;
1097 if (pte_present(ptent)) {
1098 struct page *page;
1100 page = vm_normal_page(vma, addr, ptent);
1101 if (unlikely(details) && page) {
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1111 ptent = ptep_get_and_clear_full(mm, addr, pte,
1112 tlb->fullmm);
1113 tlb_remove_tlb_entry(tlb, pte, addr);
1114 if (unlikely(!page))
1115 continue;
1116 if (PageAnon(page))
1117 rss[MM_ANONPAGES]--;
1118 else {
1119 if (pte_dirty(ptent)) {
1120 force_flush = 1;
1121 set_page_dirty(page);
1123 if (pte_young(ptent) &&
1124 likely(!(vma->vm_flags & VM_SEQ_READ)))
1125 mark_page_accessed(page);
1126 rss[MM_FILEPAGES]--;
1128 page_remove_rmap(page);
1129 if (unlikely(page_mapcount(page) < 0))
1130 print_bad_pte(vma, addr, ptent, page);
1131 if (unlikely(!__tlb_remove_page(tlb, page))) {
1132 force_flush = 1;
1133 addr += PAGE_SIZE;
1134 break;
1136 continue;
1138 /* If details->check_mapping, we leave swap entries. */
1139 if (unlikely(details))
1140 continue;
1142 entry = pte_to_swp_entry(ptent);
1143 if (!non_swap_entry(entry))
1144 rss[MM_SWAPENTS]--;
1145 else if (is_migration_entry(entry)) {
1146 struct page *page;
1148 page = migration_entry_to_page(entry);
1150 if (PageAnon(page))
1151 rss[MM_ANONPAGES]--;
1152 else
1153 rss[MM_FILEPAGES]--;
1155 if (unlikely(!free_swap_and_cache(entry)))
1156 print_bad_pte(vma, addr, ptent, NULL);
1157 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1158 } while (pte++, addr += PAGE_SIZE, addr != end);
1160 add_mm_rss_vec(mm, rss);
1161 arch_leave_lazy_mmu_mode();
1163 /* Do the actual TLB flush before dropping ptl */
1164 if (force_flush)
1165 tlb_flush_mmu_tlbonly(tlb);
1166 pte_unmap_unlock(start_pte, ptl);
1169 * If we forced a TLB flush (either due to running out of
1170 * batch buffers or because we needed to flush dirty TLB
1171 * entries before releasing the ptl), free the batched
1172 * memory too. Restart if we didn't do everything.
1174 if (force_flush) {
1175 force_flush = 0;
1176 tlb_flush_mmu_free(tlb);
1178 if (addr != end)
1179 goto again;
1182 return addr;
1185 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1186 struct vm_area_struct *vma, pud_t *pud,
1187 unsigned long addr, unsigned long end,
1188 struct zap_details *details)
1190 pmd_t *pmd;
1191 unsigned long next;
1193 pmd = pmd_offset(pud, addr);
1194 do {
1195 next = pmd_addr_end(addr, end);
1196 if (pmd_trans_huge(*pmd)) {
1197 if (next - addr != HPAGE_PMD_SIZE) {
1198 #ifdef CONFIG_DEBUG_VM
1199 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1200 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1201 __func__, addr, end,
1202 vma->vm_start,
1203 vma->vm_end);
1204 BUG();
1206 #endif
1207 split_huge_page_pmd(vma, addr, pmd);
1208 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1209 goto next;
1210 /* fall through */
1213 * Here there can be other concurrent MADV_DONTNEED or
1214 * trans huge page faults running, and if the pmd is
1215 * none or trans huge it can change under us. This is
1216 * because MADV_DONTNEED holds the mmap_sem in read
1217 * mode.
1219 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 goto next;
1221 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222 next:
1223 cond_resched();
1224 } while (pmd++, addr = next, addr != end);
1226 return addr;
1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, pgd_t *pgd,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1234 pud_t *pud;
1235 unsigned long next;
1237 pud = pud_offset(pgd, addr);
1238 do {
1239 next = pud_addr_end(addr, end);
1240 if (pud_none_or_clear_bad(pud))
1241 continue;
1242 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1243 } while (pud++, addr = next, addr != end);
1245 return addr;
1248 static void unmap_page_range(struct mmu_gather *tlb,
1249 struct vm_area_struct *vma,
1250 unsigned long addr, unsigned long end,
1251 struct zap_details *details)
1253 pgd_t *pgd;
1254 unsigned long next;
1256 if (details && !details->check_mapping)
1257 details = NULL;
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1305 if (vma->vm_file) {
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1322 * Unmap all pages in the vma list.
1324 * Only addresses between `start' and `end' will be unmapped.
1326 * The VMA list must be sorted in ascending virtual address order.
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1337 struct mm_struct *mm = vma->vm_mm;
1339 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1350 * @details: details of shared cache invalidation
1352 * Caller must protect the VMA list
1354 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1355 unsigned long size, struct zap_details *details)
1357 struct mm_struct *mm = vma->vm_mm;
1358 struct mmu_gather tlb;
1359 unsigned long end = start + size;
1361 lru_add_drain();
1362 tlb_gather_mmu(&tlb, mm, start, end);
1363 update_hiwater_rss(mm);
1364 mmu_notifier_invalidate_range_start(mm, start, end);
1365 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1366 unmap_single_vma(&tlb, vma, start, end, details);
1367 mmu_notifier_invalidate_range_end(mm, start, end);
1368 tlb_finish_mmu(&tlb, start, end);
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1378 * The range must fit into one VMA.
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 unsigned long size, struct zap_details *details)
1383 struct mm_struct *mm = vma->vm_mm;
1384 struct mmu_gather tlb;
1385 unsigned long end = address + size;
1387 lru_add_drain();
1388 tlb_gather_mmu(&tlb, mm, address, end);
1389 update_hiwater_rss(mm);
1390 mmu_notifier_invalidate_range_start(mm, address, end);
1391 unmap_single_vma(&tlb, vma, address, end, details);
1392 mmu_notifier_invalidate_range_end(mm, address, end);
1393 tlb_finish_mmu(&tlb, address, end);
1397 * zap_vma_ptes - remove ptes mapping the vma
1398 * @vma: vm_area_struct holding ptes to be zapped
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1402 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404 * The entire address range must be fully contained within the vma.
1406 * Returns 0 if successful.
1408 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size)
1411 if (address < vma->vm_start || address + size > vma->vm_end ||
1412 !(vma->vm_flags & VM_PFNMAP))
1413 return -1;
1414 zap_page_range_single(vma, address, size, NULL);
1415 return 0;
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1420 spinlock_t **ptl)
1422 pgd_t * pgd = pgd_offset(mm, addr);
1423 pud_t * pud = pud_alloc(mm, pgd, addr);
1424 if (pud) {
1425 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1426 if (pmd) {
1427 VM_BUG_ON(pmd_trans_huge(*pmd));
1428 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 return NULL;
1435 * This is the old fallback for page remapping.
1437 * For historical reasons, it only allows reserved pages. Only
1438 * old drivers should use this, and they needed to mark their
1439 * pages reserved for the old functions anyway.
1441 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1442 struct page *page, pgprot_t prot)
1444 struct mm_struct *mm = vma->vm_mm;
1445 int retval;
1446 pte_t *pte;
1447 spinlock_t *ptl;
1449 retval = -EINVAL;
1450 if (PageAnon(page))
1451 goto out;
1452 retval = -ENOMEM;
1453 flush_dcache_page(page);
1454 pte = get_locked_pte(mm, addr, &ptl);
1455 if (!pte)
1456 goto out;
1457 retval = -EBUSY;
1458 if (!pte_none(*pte))
1459 goto out_unlock;
1461 /* Ok, finally just insert the thing.. */
1462 get_page(page);
1463 inc_mm_counter_fast(mm, MM_FILEPAGES);
1464 page_add_file_rmap(page);
1465 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1467 retval = 0;
1468 pte_unmap_unlock(pte, ptl);
1469 return retval;
1470 out_unlock:
1471 pte_unmap_unlock(pte, ptl);
1472 out:
1473 return retval;
1477 * vm_insert_page - insert single page into user vma
1478 * @vma: user vma to map to
1479 * @addr: target user address of this page
1480 * @page: source kernel page
1482 * This allows drivers to insert individual pages they've allocated
1483 * into a user vma.
1485 * The page has to be a nice clean _individual_ kernel allocation.
1486 * If you allocate a compound page, you need to have marked it as
1487 * such (__GFP_COMP), or manually just split the page up yourself
1488 * (see split_page()).
1490 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1491 * took an arbitrary page protection parameter. This doesn't allow
1492 * that. Your vma protection will have to be set up correctly, which
1493 * means that if you want a shared writable mapping, you'd better
1494 * ask for a shared writable mapping!
1496 * The page does not need to be reserved.
1498 * Usually this function is called from f_op->mmap() handler
1499 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1500 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1501 * function from other places, for example from page-fault handler.
1503 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1504 struct page *page)
1506 if (addr < vma->vm_start || addr >= vma->vm_end)
1507 return -EFAULT;
1508 if (!page_count(page))
1509 return -EINVAL;
1510 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1511 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1512 BUG_ON(vma->vm_flags & VM_PFNMAP);
1513 vma->vm_flags |= VM_MIXEDMAP;
1515 return insert_page(vma, addr, page, vma->vm_page_prot);
1517 EXPORT_SYMBOL(vm_insert_page);
1519 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1520 unsigned long pfn, pgprot_t prot)
1522 struct mm_struct *mm = vma->vm_mm;
1523 int retval;
1524 pte_t *pte, entry;
1525 spinlock_t *ptl;
1527 retval = -ENOMEM;
1528 pte = get_locked_pte(mm, addr, &ptl);
1529 if (!pte)
1530 goto out;
1531 retval = -EBUSY;
1532 if (!pte_none(*pte))
1533 goto out_unlock;
1535 /* Ok, finally just insert the thing.. */
1536 entry = pte_mkspecial(pfn_pte(pfn, prot));
1537 set_pte_at(mm, addr, pte, entry);
1538 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1540 retval = 0;
1541 out_unlock:
1542 pte_unmap_unlock(pte, ptl);
1543 out:
1544 return retval;
1548 * vm_insert_pfn - insert single pfn into user vma
1549 * @vma: user vma to map to
1550 * @addr: target user address of this page
1551 * @pfn: source kernel pfn
1553 * Similar to vm_insert_page, this allows drivers to insert individual pages
1554 * they've allocated into a user vma. Same comments apply.
1556 * This function should only be called from a vm_ops->fault handler, and
1557 * in that case the handler should return NULL.
1559 * vma cannot be a COW mapping.
1561 * As this is called only for pages that do not currently exist, we
1562 * do not need to flush old virtual caches or the TLB.
1564 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565 unsigned long pfn)
1567 int ret;
1568 pgprot_t pgprot = vma->vm_page_prot;
1570 * Technically, architectures with pte_special can avoid all these
1571 * restrictions (same for remap_pfn_range). However we would like
1572 * consistency in testing and feature parity among all, so we should
1573 * try to keep these invariants in place for everybody.
1575 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1576 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1577 (VM_PFNMAP|VM_MIXEDMAP));
1578 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1579 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1581 if (addr < vma->vm_start || addr >= vma->vm_end)
1582 return -EFAULT;
1583 if (track_pfn_insert(vma, &pgprot, pfn))
1584 return -EINVAL;
1586 ret = insert_pfn(vma, addr, pfn, pgprot);
1588 return ret;
1590 EXPORT_SYMBOL(vm_insert_pfn);
1592 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1593 unsigned long pfn)
1595 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1597 if (addr < vma->vm_start || addr >= vma->vm_end)
1598 return -EFAULT;
1601 * If we don't have pte special, then we have to use the pfn_valid()
1602 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1603 * refcount the page if pfn_valid is true (hence insert_page rather
1604 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1605 * without pte special, it would there be refcounted as a normal page.
1607 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1608 struct page *page;
1610 page = pfn_to_page(pfn);
1611 return insert_page(vma, addr, page, vma->vm_page_prot);
1613 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1615 EXPORT_SYMBOL(vm_insert_mixed);
1618 * maps a range of physical memory into the requested pages. the old
1619 * mappings are removed. any references to nonexistent pages results
1620 * in null mappings (currently treated as "copy-on-access")
1622 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1623 unsigned long addr, unsigned long end,
1624 unsigned long pfn, pgprot_t prot)
1626 pte_t *pte;
1627 spinlock_t *ptl;
1629 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1630 if (!pte)
1631 return -ENOMEM;
1632 arch_enter_lazy_mmu_mode();
1633 do {
1634 BUG_ON(!pte_none(*pte));
1635 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1636 pfn++;
1637 } while (pte++, addr += PAGE_SIZE, addr != end);
1638 arch_leave_lazy_mmu_mode();
1639 pte_unmap_unlock(pte - 1, ptl);
1640 return 0;
1643 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1644 unsigned long addr, unsigned long end,
1645 unsigned long pfn, pgprot_t prot)
1647 pmd_t *pmd;
1648 unsigned long next;
1650 pfn -= addr >> PAGE_SHIFT;
1651 pmd = pmd_alloc(mm, pud, addr);
1652 if (!pmd)
1653 return -ENOMEM;
1654 VM_BUG_ON(pmd_trans_huge(*pmd));
1655 do {
1656 next = pmd_addr_end(addr, end);
1657 if (remap_pte_range(mm, pmd, addr, next,
1658 pfn + (addr >> PAGE_SHIFT), prot))
1659 return -ENOMEM;
1660 } while (pmd++, addr = next, addr != end);
1661 return 0;
1664 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1665 unsigned long addr, unsigned long end,
1666 unsigned long pfn, pgprot_t prot)
1668 pud_t *pud;
1669 unsigned long next;
1671 pfn -= addr >> PAGE_SHIFT;
1672 pud = pud_alloc(mm, pgd, addr);
1673 if (!pud)
1674 return -ENOMEM;
1675 do {
1676 next = pud_addr_end(addr, end);
1677 if (remap_pmd_range(mm, pud, addr, next,
1678 pfn + (addr >> PAGE_SHIFT), prot))
1679 return -ENOMEM;
1680 } while (pud++, addr = next, addr != end);
1681 return 0;
1685 * remap_pfn_range - remap kernel memory to userspace
1686 * @vma: user vma to map to
1687 * @addr: target user address to start at
1688 * @pfn: physical address of kernel memory
1689 * @size: size of map area
1690 * @prot: page protection flags for this mapping
1692 * Note: this is only safe if the mm semaphore is held when called.
1694 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1695 unsigned long pfn, unsigned long size, pgprot_t prot)
1697 pgd_t *pgd;
1698 unsigned long next;
1699 unsigned long end = addr + PAGE_ALIGN(size);
1700 struct mm_struct *mm = vma->vm_mm;
1701 int err;
1704 * Physically remapped pages are special. Tell the
1705 * rest of the world about it:
1706 * VM_IO tells people not to look at these pages
1707 * (accesses can have side effects).
1708 * VM_PFNMAP tells the core MM that the base pages are just
1709 * raw PFN mappings, and do not have a "struct page" associated
1710 * with them.
1711 * VM_DONTEXPAND
1712 * Disable vma merging and expanding with mremap().
1713 * VM_DONTDUMP
1714 * Omit vma from core dump, even when VM_IO turned off.
1716 * There's a horrible special case to handle copy-on-write
1717 * behaviour that some programs depend on. We mark the "original"
1718 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1719 * See vm_normal_page() for details.
1721 if (is_cow_mapping(vma->vm_flags)) {
1722 if (addr != vma->vm_start || end != vma->vm_end)
1723 return -EINVAL;
1724 vma->vm_pgoff = pfn;
1727 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1728 if (err)
1729 return -EINVAL;
1731 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1733 BUG_ON(addr >= end);
1734 pfn -= addr >> PAGE_SHIFT;
1735 pgd = pgd_offset(mm, addr);
1736 flush_cache_range(vma, addr, end);
1737 do {
1738 next = pgd_addr_end(addr, end);
1739 err = remap_pud_range(mm, pgd, addr, next,
1740 pfn + (addr >> PAGE_SHIFT), prot);
1741 if (err)
1742 break;
1743 } while (pgd++, addr = next, addr != end);
1745 if (err)
1746 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1748 return err;
1750 EXPORT_SYMBOL(remap_pfn_range);
1753 * vm_iomap_memory - remap memory to userspace
1754 * @vma: user vma to map to
1755 * @start: start of area
1756 * @len: size of area
1758 * This is a simplified io_remap_pfn_range() for common driver use. The
1759 * driver just needs to give us the physical memory range to be mapped,
1760 * we'll figure out the rest from the vma information.
1762 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1763 * whatever write-combining details or similar.
1765 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1767 unsigned long vm_len, pfn, pages;
1769 /* Check that the physical memory area passed in looks valid */
1770 if (start + len < start)
1771 return -EINVAL;
1773 * You *really* shouldn't map things that aren't page-aligned,
1774 * but we've historically allowed it because IO memory might
1775 * just have smaller alignment.
1777 len += start & ~PAGE_MASK;
1778 pfn = start >> PAGE_SHIFT;
1779 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1780 if (pfn + pages < pfn)
1781 return -EINVAL;
1783 /* We start the mapping 'vm_pgoff' pages into the area */
1784 if (vma->vm_pgoff > pages)
1785 return -EINVAL;
1786 pfn += vma->vm_pgoff;
1787 pages -= vma->vm_pgoff;
1789 /* Can we fit all of the mapping? */
1790 vm_len = vma->vm_end - vma->vm_start;
1791 if (vm_len >> PAGE_SHIFT > pages)
1792 return -EINVAL;
1794 /* Ok, let it rip */
1795 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1797 EXPORT_SYMBOL(vm_iomap_memory);
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 unsigned long addr, unsigned long end,
1801 pte_fn_t fn, void *data)
1803 pte_t *pte;
1804 int err;
1805 pgtable_t token;
1806 spinlock_t *uninitialized_var(ptl);
1808 pte = (mm == &init_mm) ?
1809 pte_alloc_kernel(pmd, addr) :
1810 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 if (!pte)
1812 return -ENOMEM;
1814 BUG_ON(pmd_huge(*pmd));
1816 arch_enter_lazy_mmu_mode();
1818 token = pmd_pgtable(*pmd);
1820 do {
1821 err = fn(pte++, token, addr, data);
1822 if (err)
1823 break;
1824 } while (addr += PAGE_SIZE, addr != end);
1826 arch_leave_lazy_mmu_mode();
1828 if (mm != &init_mm)
1829 pte_unmap_unlock(pte-1, ptl);
1830 return err;
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 unsigned long addr, unsigned long end,
1835 pte_fn_t fn, void *data)
1837 pmd_t *pmd;
1838 unsigned long next;
1839 int err;
1841 BUG_ON(pud_huge(*pud));
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
1846 do {
1847 next = pmd_addr_end(addr, end);
1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 if (err)
1850 break;
1851 } while (pmd++, addr = next, addr != end);
1852 return err;
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long addr, unsigned long end,
1857 pte_fn_t fn, void *data)
1859 pud_t *pud;
1860 unsigned long next;
1861 int err;
1863 pud = pud_alloc(mm, pgd, addr);
1864 if (!pud)
1865 return -ENOMEM;
1866 do {
1867 next = pud_addr_end(addr, end);
1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 if (err)
1870 break;
1871 } while (pud++, addr = next, addr != end);
1872 return err;
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 unsigned long size, pte_fn_t fn, void *data)
1882 pgd_t *pgd;
1883 unsigned long next;
1884 unsigned long end = addr + size;
1885 int err;
1887 BUG_ON(addr >= end);
1888 pgd = pgd_offset(mm, addr);
1889 do {
1890 next = pgd_addr_end(addr, end);
1891 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1892 if (err)
1893 break;
1894 } while (pgd++, addr = next, addr != end);
1896 return err;
1898 EXPORT_SYMBOL_GPL(apply_to_page_range);
1901 * handle_pte_fault chooses page fault handler according to an entry which was
1902 * read non-atomically. Before making any commitment, on those architectures
1903 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1904 * parts, do_swap_page must check under lock before unmapping the pte and
1905 * proceeding (but do_wp_page is only called after already making such a check;
1906 * and do_anonymous_page can safely check later on).
1908 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1909 pte_t *page_table, pte_t orig_pte)
1911 int same = 1;
1912 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1913 if (sizeof(pte_t) > sizeof(unsigned long)) {
1914 spinlock_t *ptl = pte_lockptr(mm, pmd);
1915 spin_lock(ptl);
1916 same = pte_same(*page_table, orig_pte);
1917 spin_unlock(ptl);
1919 #endif
1920 pte_unmap(page_table);
1921 return same;
1924 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1926 debug_dma_assert_idle(src);
1929 * If the source page was a PFN mapping, we don't have
1930 * a "struct page" for it. We do a best-effort copy by
1931 * just copying from the original user address. If that
1932 * fails, we just zero-fill it. Live with it.
1934 if (unlikely(!src)) {
1935 void *kaddr = kmap_atomic(dst);
1936 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1939 * This really shouldn't fail, because the page is there
1940 * in the page tables. But it might just be unreadable,
1941 * in which case we just give up and fill the result with
1942 * zeroes.
1944 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1945 clear_page(kaddr);
1946 kunmap_atomic(kaddr);
1947 flush_dcache_page(dst);
1948 } else
1949 copy_user_highpage(dst, src, va, vma);
1953 * Notify the address space that the page is about to become writable so that
1954 * it can prohibit this or wait for the page to get into an appropriate state.
1956 * We do this without the lock held, so that it can sleep if it needs to.
1958 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1959 unsigned long address)
1961 struct vm_fault vmf;
1962 int ret;
1964 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1965 vmf.pgoff = page->index;
1966 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1967 vmf.page = page;
1968 vmf.cow_page = NULL;
1970 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1971 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1972 return ret;
1973 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1974 lock_page(page);
1975 if (!page->mapping) {
1976 unlock_page(page);
1977 return 0; /* retry */
1979 ret |= VM_FAULT_LOCKED;
1980 } else
1981 VM_BUG_ON_PAGE(!PageLocked(page), page);
1982 return ret;
1986 * This routine handles present pages, when users try to write
1987 * to a shared page. It is done by copying the page to a new address
1988 * and decrementing the shared-page counter for the old page.
1990 * Note that this routine assumes that the protection checks have been
1991 * done by the caller (the low-level page fault routine in most cases).
1992 * Thus we can safely just mark it writable once we've done any necessary
1993 * COW.
1995 * We also mark the page dirty at this point even though the page will
1996 * change only once the write actually happens. This avoids a few races,
1997 * and potentially makes it more efficient.
1999 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2000 * but allow concurrent faults), with pte both mapped and locked.
2001 * We return with mmap_sem still held, but pte unmapped and unlocked.
2003 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2004 unsigned long address, pte_t *page_table, pmd_t *pmd,
2005 spinlock_t *ptl, pte_t orig_pte)
2006 __releases(ptl)
2008 struct page *old_page, *new_page = NULL;
2009 pte_t entry;
2010 int ret = 0;
2011 int page_mkwrite = 0;
2012 bool dirty_shared = false;
2013 unsigned long mmun_start = 0; /* For mmu_notifiers */
2014 unsigned long mmun_end = 0; /* For mmu_notifiers */
2015 struct mem_cgroup *memcg;
2017 old_page = vm_normal_page(vma, address, orig_pte);
2018 if (!old_page) {
2020 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2021 * VM_PFNMAP VMA.
2023 * We should not cow pages in a shared writeable mapping.
2024 * Just mark the pages writable as we can't do any dirty
2025 * accounting on raw pfn maps.
2027 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2028 (VM_WRITE|VM_SHARED))
2029 goto reuse;
2030 goto gotten;
2034 * Take out anonymous pages first, anonymous shared vmas are
2035 * not dirty accountable.
2037 if (PageAnon(old_page) && !PageKsm(old_page)) {
2038 if (!trylock_page(old_page)) {
2039 page_cache_get(old_page);
2040 pte_unmap_unlock(page_table, ptl);
2041 lock_page(old_page);
2042 page_table = pte_offset_map_lock(mm, pmd, address,
2043 &ptl);
2044 if (!pte_same(*page_table, orig_pte)) {
2045 unlock_page(old_page);
2046 goto unlock;
2048 page_cache_release(old_page);
2050 if (reuse_swap_page(old_page)) {
2052 * The page is all ours. Move it to our anon_vma so
2053 * the rmap code will not search our parent or siblings.
2054 * Protected against the rmap code by the page lock.
2056 page_move_anon_rmap(old_page, vma, address);
2057 unlock_page(old_page);
2058 goto reuse;
2060 unlock_page(old_page);
2061 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2062 (VM_WRITE|VM_SHARED))) {
2063 page_cache_get(old_page);
2065 * Only catch write-faults on shared writable pages,
2066 * read-only shared pages can get COWed by
2067 * get_user_pages(.write=1, .force=1).
2069 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2070 int tmp;
2072 pte_unmap_unlock(page_table, ptl);
2073 tmp = do_page_mkwrite(vma, old_page, address);
2074 if (unlikely(!tmp || (tmp &
2075 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2076 page_cache_release(old_page);
2077 return tmp;
2080 * Since we dropped the lock we need to revalidate
2081 * the PTE as someone else may have changed it. If
2082 * they did, we just return, as we can count on the
2083 * MMU to tell us if they didn't also make it writable.
2085 page_table = pte_offset_map_lock(mm, pmd, address,
2086 &ptl);
2087 if (!pte_same(*page_table, orig_pte)) {
2088 unlock_page(old_page);
2089 goto unlock;
2091 page_mkwrite = 1;
2094 dirty_shared = true;
2096 reuse:
2098 * Clear the pages cpupid information as the existing
2099 * information potentially belongs to a now completely
2100 * unrelated process.
2102 if (old_page)
2103 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2105 flush_cache_page(vma, address, pte_pfn(orig_pte));
2106 entry = pte_mkyoung(orig_pte);
2107 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2109 update_mmu_cache(vma, address, page_table);
2110 pte_unmap_unlock(page_table, ptl);
2111 ret |= VM_FAULT_WRITE;
2113 if (dirty_shared) {
2114 struct address_space *mapping;
2115 int dirtied;
2117 if (!page_mkwrite)
2118 lock_page(old_page);
2120 dirtied = set_page_dirty(old_page);
2121 VM_BUG_ON_PAGE(PageAnon(old_page), old_page);
2122 mapping = old_page->mapping;
2123 unlock_page(old_page);
2124 page_cache_release(old_page);
2126 if ((dirtied || page_mkwrite) && mapping) {
2128 * Some device drivers do not set page.mapping
2129 * but still dirty their pages
2131 balance_dirty_pages_ratelimited(mapping);
2134 if (!page_mkwrite)
2135 file_update_time(vma->vm_file);
2138 return ret;
2142 * Ok, we need to copy. Oh, well..
2144 page_cache_get(old_page);
2145 gotten:
2146 pte_unmap_unlock(page_table, ptl);
2148 if (unlikely(anon_vma_prepare(vma)))
2149 goto oom;
2151 if (is_zero_pfn(pte_pfn(orig_pte))) {
2152 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2153 if (!new_page)
2154 goto oom;
2155 } else {
2156 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2157 if (!new_page)
2158 goto oom;
2159 cow_user_page(new_page, old_page, address, vma);
2161 __SetPageUptodate(new_page);
2163 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2164 goto oom_free_new;
2166 mmun_start = address & PAGE_MASK;
2167 mmun_end = mmun_start + PAGE_SIZE;
2168 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2171 * Re-check the pte - we dropped the lock
2173 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2174 if (likely(pte_same(*page_table, orig_pte))) {
2175 if (old_page) {
2176 if (!PageAnon(old_page)) {
2177 dec_mm_counter_fast(mm, MM_FILEPAGES);
2178 inc_mm_counter_fast(mm, MM_ANONPAGES);
2180 } else
2181 inc_mm_counter_fast(mm, MM_ANONPAGES);
2182 flush_cache_page(vma, address, pte_pfn(orig_pte));
2183 entry = mk_pte(new_page, vma->vm_page_prot);
2184 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2186 * Clear the pte entry and flush it first, before updating the
2187 * pte with the new entry. This will avoid a race condition
2188 * seen in the presence of one thread doing SMC and another
2189 * thread doing COW.
2191 ptep_clear_flush_notify(vma, address, page_table);
2192 page_add_new_anon_rmap(new_page, vma, address);
2193 mem_cgroup_commit_charge(new_page, memcg, false);
2194 lru_cache_add_active_or_unevictable(new_page, vma);
2196 * We call the notify macro here because, when using secondary
2197 * mmu page tables (such as kvm shadow page tables), we want the
2198 * new page to be mapped directly into the secondary page table.
2200 set_pte_at_notify(mm, address, page_table, entry);
2201 update_mmu_cache(vma, address, page_table);
2202 if (old_page) {
2204 * Only after switching the pte to the new page may
2205 * we remove the mapcount here. Otherwise another
2206 * process may come and find the rmap count decremented
2207 * before the pte is switched to the new page, and
2208 * "reuse" the old page writing into it while our pte
2209 * here still points into it and can be read by other
2210 * threads.
2212 * The critical issue is to order this
2213 * page_remove_rmap with the ptp_clear_flush above.
2214 * Those stores are ordered by (if nothing else,)
2215 * the barrier present in the atomic_add_negative
2216 * in page_remove_rmap.
2218 * Then the TLB flush in ptep_clear_flush ensures that
2219 * no process can access the old page before the
2220 * decremented mapcount is visible. And the old page
2221 * cannot be reused until after the decremented
2222 * mapcount is visible. So transitively, TLBs to
2223 * old page will be flushed before it can be reused.
2225 page_remove_rmap(old_page);
2228 /* Free the old page.. */
2229 new_page = old_page;
2230 ret |= VM_FAULT_WRITE;
2231 } else
2232 mem_cgroup_cancel_charge(new_page, memcg);
2234 if (new_page)
2235 page_cache_release(new_page);
2236 unlock:
2237 pte_unmap_unlock(page_table, ptl);
2238 if (mmun_end > mmun_start)
2239 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2240 if (old_page) {
2242 * Don't let another task, with possibly unlocked vma,
2243 * keep the mlocked page.
2245 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2246 lock_page(old_page); /* LRU manipulation */
2247 munlock_vma_page(old_page);
2248 unlock_page(old_page);
2250 page_cache_release(old_page);
2252 return ret;
2253 oom_free_new:
2254 page_cache_release(new_page);
2255 oom:
2256 if (old_page)
2257 page_cache_release(old_page);
2258 return VM_FAULT_OOM;
2261 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2262 unsigned long start_addr, unsigned long end_addr,
2263 struct zap_details *details)
2265 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2268 static inline void unmap_mapping_range_tree(struct rb_root *root,
2269 struct zap_details *details)
2271 struct vm_area_struct *vma;
2272 pgoff_t vba, vea, zba, zea;
2274 vma_interval_tree_foreach(vma, root,
2275 details->first_index, details->last_index) {
2277 vba = vma->vm_pgoff;
2278 vea = vba + vma_pages(vma) - 1;
2279 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2280 zba = details->first_index;
2281 if (zba < vba)
2282 zba = vba;
2283 zea = details->last_index;
2284 if (zea > vea)
2285 zea = vea;
2287 unmap_mapping_range_vma(vma,
2288 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2289 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2290 details);
2295 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2296 * address_space corresponding to the specified page range in the underlying
2297 * file.
2299 * @mapping: the address space containing mmaps to be unmapped.
2300 * @holebegin: byte in first page to unmap, relative to the start of
2301 * the underlying file. This will be rounded down to a PAGE_SIZE
2302 * boundary. Note that this is different from truncate_pagecache(), which
2303 * must keep the partial page. In contrast, we must get rid of
2304 * partial pages.
2305 * @holelen: size of prospective hole in bytes. This will be rounded
2306 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2307 * end of the file.
2308 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2309 * but 0 when invalidating pagecache, don't throw away private data.
2311 void unmap_mapping_range(struct address_space *mapping,
2312 loff_t const holebegin, loff_t const holelen, int even_cows)
2314 struct zap_details details;
2315 pgoff_t hba = holebegin >> PAGE_SHIFT;
2316 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2318 /* Check for overflow. */
2319 if (sizeof(holelen) > sizeof(hlen)) {
2320 long long holeend =
2321 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2322 if (holeend & ~(long long)ULONG_MAX)
2323 hlen = ULONG_MAX - hba + 1;
2326 details.check_mapping = even_cows? NULL: mapping;
2327 details.first_index = hba;
2328 details.last_index = hba + hlen - 1;
2329 if (details.last_index < details.first_index)
2330 details.last_index = ULONG_MAX;
2333 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2334 i_mmap_lock_write(mapping);
2335 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2336 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2337 i_mmap_unlock_write(mapping);
2339 EXPORT_SYMBOL(unmap_mapping_range);
2342 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2343 * but allow concurrent faults), and pte mapped but not yet locked.
2344 * We return with pte unmapped and unlocked.
2346 * We return with the mmap_sem locked or unlocked in the same cases
2347 * as does filemap_fault().
2349 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2350 unsigned long address, pte_t *page_table, pmd_t *pmd,
2351 unsigned int flags, pte_t orig_pte)
2353 spinlock_t *ptl;
2354 struct page *page, *swapcache;
2355 struct mem_cgroup *memcg;
2356 swp_entry_t entry;
2357 pte_t pte;
2358 int locked;
2359 int exclusive = 0;
2360 int ret = 0;
2362 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2363 goto out;
2365 entry = pte_to_swp_entry(orig_pte);
2366 if (unlikely(non_swap_entry(entry))) {
2367 if (is_migration_entry(entry)) {
2368 migration_entry_wait(mm, pmd, address);
2369 } else if (is_hwpoison_entry(entry)) {
2370 ret = VM_FAULT_HWPOISON;
2371 } else {
2372 print_bad_pte(vma, address, orig_pte, NULL);
2373 ret = VM_FAULT_SIGBUS;
2375 goto out;
2377 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2378 page = lookup_swap_cache(entry);
2379 if (!page) {
2380 page = swapin_readahead(entry,
2381 GFP_HIGHUSER_MOVABLE, vma, address);
2382 if (!page) {
2384 * Back out if somebody else faulted in this pte
2385 * while we released the pte lock.
2387 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2388 if (likely(pte_same(*page_table, orig_pte)))
2389 ret = VM_FAULT_OOM;
2390 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2391 goto unlock;
2394 /* Had to read the page from swap area: Major fault */
2395 ret = VM_FAULT_MAJOR;
2396 count_vm_event(PGMAJFAULT);
2397 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2398 } else if (PageHWPoison(page)) {
2400 * hwpoisoned dirty swapcache pages are kept for killing
2401 * owner processes (which may be unknown at hwpoison time)
2403 ret = VM_FAULT_HWPOISON;
2404 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2405 swapcache = page;
2406 goto out_release;
2409 swapcache = page;
2410 locked = lock_page_or_retry(page, mm, flags);
2412 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2413 if (!locked) {
2414 ret |= VM_FAULT_RETRY;
2415 goto out_release;
2419 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2420 * release the swapcache from under us. The page pin, and pte_same
2421 * test below, are not enough to exclude that. Even if it is still
2422 * swapcache, we need to check that the page's swap has not changed.
2424 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2425 goto out_page;
2427 page = ksm_might_need_to_copy(page, vma, address);
2428 if (unlikely(!page)) {
2429 ret = VM_FAULT_OOM;
2430 page = swapcache;
2431 goto out_page;
2434 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2435 ret = VM_FAULT_OOM;
2436 goto out_page;
2440 * Back out if somebody else already faulted in this pte.
2442 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2443 if (unlikely(!pte_same(*page_table, orig_pte)))
2444 goto out_nomap;
2446 if (unlikely(!PageUptodate(page))) {
2447 ret = VM_FAULT_SIGBUS;
2448 goto out_nomap;
2452 * The page isn't present yet, go ahead with the fault.
2454 * Be careful about the sequence of operations here.
2455 * To get its accounting right, reuse_swap_page() must be called
2456 * while the page is counted on swap but not yet in mapcount i.e.
2457 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2458 * must be called after the swap_free(), or it will never succeed.
2461 inc_mm_counter_fast(mm, MM_ANONPAGES);
2462 dec_mm_counter_fast(mm, MM_SWAPENTS);
2463 pte = mk_pte(page, vma->vm_page_prot);
2464 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2465 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2466 flags &= ~FAULT_FLAG_WRITE;
2467 ret |= VM_FAULT_WRITE;
2468 exclusive = 1;
2470 flush_icache_page(vma, page);
2471 if (pte_swp_soft_dirty(orig_pte))
2472 pte = pte_mksoft_dirty(pte);
2473 set_pte_at(mm, address, page_table, pte);
2474 if (page == swapcache) {
2475 do_page_add_anon_rmap(page, vma, address, exclusive);
2476 mem_cgroup_commit_charge(page, memcg, true);
2477 } else { /* ksm created a completely new copy */
2478 page_add_new_anon_rmap(page, vma, address);
2479 mem_cgroup_commit_charge(page, memcg, false);
2480 lru_cache_add_active_or_unevictable(page, vma);
2483 swap_free(entry);
2484 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2485 try_to_free_swap(page);
2486 unlock_page(page);
2487 if (page != swapcache) {
2489 * Hold the lock to avoid the swap entry to be reused
2490 * until we take the PT lock for the pte_same() check
2491 * (to avoid false positives from pte_same). For
2492 * further safety release the lock after the swap_free
2493 * so that the swap count won't change under a
2494 * parallel locked swapcache.
2496 unlock_page(swapcache);
2497 page_cache_release(swapcache);
2500 if (flags & FAULT_FLAG_WRITE) {
2501 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2502 if (ret & VM_FAULT_ERROR)
2503 ret &= VM_FAULT_ERROR;
2504 goto out;
2507 /* No need to invalidate - it was non-present before */
2508 update_mmu_cache(vma, address, page_table);
2509 unlock:
2510 pte_unmap_unlock(page_table, ptl);
2511 out:
2512 return ret;
2513 out_nomap:
2514 mem_cgroup_cancel_charge(page, memcg);
2515 pte_unmap_unlock(page_table, ptl);
2516 out_page:
2517 unlock_page(page);
2518 out_release:
2519 page_cache_release(page);
2520 if (page != swapcache) {
2521 unlock_page(swapcache);
2522 page_cache_release(swapcache);
2524 return ret;
2528 * This is like a special single-page "expand_{down|up}wards()",
2529 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2530 * doesn't hit another vma.
2532 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2534 address &= PAGE_MASK;
2535 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2536 struct vm_area_struct *prev = vma->vm_prev;
2539 * Is there a mapping abutting this one below?
2541 * That's only ok if it's the same stack mapping
2542 * that has gotten split..
2544 if (prev && prev->vm_end == address)
2545 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2547 return expand_downwards(vma, address - PAGE_SIZE);
2549 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2550 struct vm_area_struct *next = vma->vm_next;
2552 /* As VM_GROWSDOWN but s/below/above/ */
2553 if (next && next->vm_start == address + PAGE_SIZE)
2554 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2556 return expand_upwards(vma, address + PAGE_SIZE);
2558 return 0;
2562 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2563 * but allow concurrent faults), and pte mapped but not yet locked.
2564 * We return with mmap_sem still held, but pte unmapped and unlocked.
2566 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2567 unsigned long address, pte_t *page_table, pmd_t *pmd,
2568 unsigned int flags)
2570 struct mem_cgroup *memcg;
2571 struct page *page;
2572 spinlock_t *ptl;
2573 pte_t entry;
2575 pte_unmap(page_table);
2577 /* Check if we need to add a guard page to the stack */
2578 if (check_stack_guard_page(vma, address) < 0)
2579 return VM_FAULT_SIGSEGV;
2581 /* Use the zero-page for reads */
2582 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2583 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2584 vma->vm_page_prot));
2585 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2586 if (!pte_none(*page_table))
2587 goto unlock;
2588 goto setpte;
2591 /* Allocate our own private page. */
2592 if (unlikely(anon_vma_prepare(vma)))
2593 goto oom;
2594 page = alloc_zeroed_user_highpage_movable(vma, address);
2595 if (!page)
2596 goto oom;
2598 * The memory barrier inside __SetPageUptodate makes sure that
2599 * preceeding stores to the page contents become visible before
2600 * the set_pte_at() write.
2602 __SetPageUptodate(page);
2604 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2605 goto oom_free_page;
2607 entry = mk_pte(page, vma->vm_page_prot);
2608 if (vma->vm_flags & VM_WRITE)
2609 entry = pte_mkwrite(pte_mkdirty(entry));
2611 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2612 if (!pte_none(*page_table))
2613 goto release;
2615 inc_mm_counter_fast(mm, MM_ANONPAGES);
2616 page_add_new_anon_rmap(page, vma, address);
2617 mem_cgroup_commit_charge(page, memcg, false);
2618 lru_cache_add_active_or_unevictable(page, vma);
2619 setpte:
2620 set_pte_at(mm, address, page_table, entry);
2622 /* No need to invalidate - it was non-present before */
2623 update_mmu_cache(vma, address, page_table);
2624 unlock:
2625 pte_unmap_unlock(page_table, ptl);
2626 return 0;
2627 release:
2628 mem_cgroup_cancel_charge(page, memcg);
2629 page_cache_release(page);
2630 goto unlock;
2631 oom_free_page:
2632 page_cache_release(page);
2633 oom:
2634 return VM_FAULT_OOM;
2638 * The mmap_sem must have been held on entry, and may have been
2639 * released depending on flags and vma->vm_ops->fault() return value.
2640 * See filemap_fault() and __lock_page_retry().
2642 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2643 pgoff_t pgoff, unsigned int flags,
2644 struct page *cow_page, struct page **page)
2646 struct vm_fault vmf;
2647 int ret;
2649 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2650 vmf.pgoff = pgoff;
2651 vmf.flags = flags;
2652 vmf.page = NULL;
2653 vmf.cow_page = cow_page;
2655 ret = vma->vm_ops->fault(vma, &vmf);
2656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2657 return ret;
2658 if (!vmf.page)
2659 goto out;
2661 if (unlikely(PageHWPoison(vmf.page))) {
2662 if (ret & VM_FAULT_LOCKED)
2663 unlock_page(vmf.page);
2664 page_cache_release(vmf.page);
2665 return VM_FAULT_HWPOISON;
2668 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2669 lock_page(vmf.page);
2670 else
2671 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2673 out:
2674 *page = vmf.page;
2675 return ret;
2679 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2681 * @vma: virtual memory area
2682 * @address: user virtual address
2683 * @page: page to map
2684 * @pte: pointer to target page table entry
2685 * @write: true, if new entry is writable
2686 * @anon: true, if it's anonymous page
2688 * Caller must hold page table lock relevant for @pte.
2690 * Target users are page handler itself and implementations of
2691 * vm_ops->map_pages.
2693 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2694 struct page *page, pte_t *pte, bool write, bool anon)
2696 pte_t entry;
2698 flush_icache_page(vma, page);
2699 entry = mk_pte(page, vma->vm_page_prot);
2700 if (write)
2701 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2702 if (anon) {
2703 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2704 page_add_new_anon_rmap(page, vma, address);
2705 } else {
2706 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2707 page_add_file_rmap(page);
2709 set_pte_at(vma->vm_mm, address, pte, entry);
2711 /* no need to invalidate: a not-present page won't be cached */
2712 update_mmu_cache(vma, address, pte);
2715 static unsigned long fault_around_bytes __read_mostly =
2716 rounddown_pow_of_two(65536);
2718 #ifdef CONFIG_DEBUG_FS
2719 static int fault_around_bytes_get(void *data, u64 *val)
2721 *val = fault_around_bytes;
2722 return 0;
2726 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2727 * rounded down to nearest page order. It's what do_fault_around() expects to
2728 * see.
2730 static int fault_around_bytes_set(void *data, u64 val)
2732 if (val / PAGE_SIZE > PTRS_PER_PTE)
2733 return -EINVAL;
2734 if (val > PAGE_SIZE)
2735 fault_around_bytes = rounddown_pow_of_two(val);
2736 else
2737 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2738 return 0;
2740 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2741 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2743 static int __init fault_around_debugfs(void)
2745 void *ret;
2747 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2748 &fault_around_bytes_fops);
2749 if (!ret)
2750 pr_warn("Failed to create fault_around_bytes in debugfs");
2751 return 0;
2753 late_initcall(fault_around_debugfs);
2754 #endif
2757 * do_fault_around() tries to map few pages around the fault address. The hope
2758 * is that the pages will be needed soon and this will lower the number of
2759 * faults to handle.
2761 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2762 * not ready to be mapped: not up-to-date, locked, etc.
2764 * This function is called with the page table lock taken. In the split ptlock
2765 * case the page table lock only protects only those entries which belong to
2766 * the page table corresponding to the fault address.
2768 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2769 * only once.
2771 * fault_around_pages() defines how many pages we'll try to map.
2772 * do_fault_around() expects it to return a power of two less than or equal to
2773 * PTRS_PER_PTE.
2775 * The virtual address of the area that we map is naturally aligned to the
2776 * fault_around_pages() value (and therefore to page order). This way it's
2777 * easier to guarantee that we don't cross page table boundaries.
2779 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2780 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2782 unsigned long start_addr, nr_pages, mask;
2783 pgoff_t max_pgoff;
2784 struct vm_fault vmf;
2785 int off;
2787 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2788 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2790 start_addr = max(address & mask, vma->vm_start);
2791 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2792 pte -= off;
2793 pgoff -= off;
2796 * max_pgoff is either end of page table or end of vma
2797 * or fault_around_pages() from pgoff, depending what is nearest.
2799 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2800 PTRS_PER_PTE - 1;
2801 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2802 pgoff + nr_pages - 1);
2804 /* Check if it makes any sense to call ->map_pages */
2805 while (!pte_none(*pte)) {
2806 if (++pgoff > max_pgoff)
2807 return;
2808 start_addr += PAGE_SIZE;
2809 if (start_addr >= vma->vm_end)
2810 return;
2811 pte++;
2814 vmf.virtual_address = (void __user *) start_addr;
2815 vmf.pte = pte;
2816 vmf.pgoff = pgoff;
2817 vmf.max_pgoff = max_pgoff;
2818 vmf.flags = flags;
2819 vma->vm_ops->map_pages(vma, &vmf);
2822 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2823 unsigned long address, pmd_t *pmd,
2824 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2826 struct page *fault_page;
2827 spinlock_t *ptl;
2828 pte_t *pte;
2829 int ret = 0;
2832 * Let's call ->map_pages() first and use ->fault() as fallback
2833 * if page by the offset is not ready to be mapped (cold cache or
2834 * something).
2836 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2837 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2838 do_fault_around(vma, address, pte, pgoff, flags);
2839 if (!pte_same(*pte, orig_pte))
2840 goto unlock_out;
2841 pte_unmap_unlock(pte, ptl);
2844 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2845 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2846 return ret;
2848 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2849 if (unlikely(!pte_same(*pte, orig_pte))) {
2850 pte_unmap_unlock(pte, ptl);
2851 unlock_page(fault_page);
2852 page_cache_release(fault_page);
2853 return ret;
2855 do_set_pte(vma, address, fault_page, pte, false, false);
2856 unlock_page(fault_page);
2857 unlock_out:
2858 pte_unmap_unlock(pte, ptl);
2859 return ret;
2862 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2863 unsigned long address, pmd_t *pmd,
2864 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2866 struct page *fault_page, *new_page;
2867 struct mem_cgroup *memcg;
2868 spinlock_t *ptl;
2869 pte_t *pte;
2870 int ret;
2872 if (unlikely(anon_vma_prepare(vma)))
2873 return VM_FAULT_OOM;
2875 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2876 if (!new_page)
2877 return VM_FAULT_OOM;
2879 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2880 page_cache_release(new_page);
2881 return VM_FAULT_OOM;
2884 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
2885 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2886 goto uncharge_out;
2888 if (fault_page)
2889 copy_user_highpage(new_page, fault_page, address, vma);
2890 __SetPageUptodate(new_page);
2892 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2893 if (unlikely(!pte_same(*pte, orig_pte))) {
2894 pte_unmap_unlock(pte, ptl);
2895 if (fault_page) {
2896 unlock_page(fault_page);
2897 page_cache_release(fault_page);
2898 } else {
2900 * The fault handler has no page to lock, so it holds
2901 * i_mmap_lock for read to protect against truncate.
2903 i_mmap_unlock_read(vma->vm_file->f_mapping);
2905 goto uncharge_out;
2907 do_set_pte(vma, address, new_page, pte, true, true);
2908 mem_cgroup_commit_charge(new_page, memcg, false);
2909 lru_cache_add_active_or_unevictable(new_page, vma);
2910 pte_unmap_unlock(pte, ptl);
2911 if (fault_page) {
2912 unlock_page(fault_page);
2913 page_cache_release(fault_page);
2914 } else {
2916 * The fault handler has no page to lock, so it holds
2917 * i_mmap_lock for read to protect against truncate.
2919 i_mmap_unlock_read(vma->vm_file->f_mapping);
2921 return ret;
2922 uncharge_out:
2923 mem_cgroup_cancel_charge(new_page, memcg);
2924 page_cache_release(new_page);
2925 return ret;
2928 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2929 unsigned long address, pmd_t *pmd,
2930 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2932 struct page *fault_page;
2933 struct address_space *mapping;
2934 spinlock_t *ptl;
2935 pte_t *pte;
2936 int dirtied = 0;
2937 int ret, tmp;
2939 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2941 return ret;
2944 * Check if the backing address space wants to know that the page is
2945 * about to become writable
2947 if (vma->vm_ops->page_mkwrite) {
2948 unlock_page(fault_page);
2949 tmp = do_page_mkwrite(vma, fault_page, address);
2950 if (unlikely(!tmp ||
2951 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2952 page_cache_release(fault_page);
2953 return tmp;
2957 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2958 if (unlikely(!pte_same(*pte, orig_pte))) {
2959 pte_unmap_unlock(pte, ptl);
2960 unlock_page(fault_page);
2961 page_cache_release(fault_page);
2962 return ret;
2964 do_set_pte(vma, address, fault_page, pte, true, false);
2965 pte_unmap_unlock(pte, ptl);
2967 if (set_page_dirty(fault_page))
2968 dirtied = 1;
2970 * Take a local copy of the address_space - page.mapping may be zeroed
2971 * by truncate after unlock_page(). The address_space itself remains
2972 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2973 * release semantics to prevent the compiler from undoing this copying.
2975 mapping = fault_page->mapping;
2976 unlock_page(fault_page);
2977 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2979 * Some device drivers do not set page.mapping but still
2980 * dirty their pages
2982 balance_dirty_pages_ratelimited(mapping);
2985 if (!vma->vm_ops->page_mkwrite)
2986 file_update_time(vma->vm_file);
2988 return ret;
2992 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2993 * but allow concurrent faults).
2994 * The mmap_sem may have been released depending on flags and our
2995 * return value. See filemap_fault() and __lock_page_or_retry().
2997 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2998 unsigned long address, pte_t *page_table, pmd_t *pmd,
2999 unsigned int flags, pte_t orig_pte)
3001 pgoff_t pgoff = (((address & PAGE_MASK)
3002 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3004 pte_unmap(page_table);
3005 if (!(flags & FAULT_FLAG_WRITE))
3006 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3007 orig_pte);
3008 if (!(vma->vm_flags & VM_SHARED))
3009 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3010 orig_pte);
3011 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3014 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3015 unsigned long addr, int page_nid,
3016 int *flags)
3018 get_page(page);
3020 count_vm_numa_event(NUMA_HINT_FAULTS);
3021 if (page_nid == numa_node_id()) {
3022 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3023 *flags |= TNF_FAULT_LOCAL;
3026 return mpol_misplaced(page, vma, addr);
3029 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3030 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3032 struct page *page = NULL;
3033 spinlock_t *ptl;
3034 int page_nid = -1;
3035 int last_cpupid;
3036 int target_nid;
3037 bool migrated = false;
3038 int flags = 0;
3040 /* A PROT_NONE fault should not end up here */
3041 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3044 * The "pte" at this point cannot be used safely without
3045 * validation through pte_unmap_same(). It's of NUMA type but
3046 * the pfn may be screwed if the read is non atomic.
3048 * We can safely just do a "set_pte_at()", because the old
3049 * page table entry is not accessible, so there would be no
3050 * concurrent hardware modifications to the PTE.
3052 ptl = pte_lockptr(mm, pmd);
3053 spin_lock(ptl);
3054 if (unlikely(!pte_same(*ptep, pte))) {
3055 pte_unmap_unlock(ptep, ptl);
3056 goto out;
3059 /* Make it present again */
3060 pte = pte_modify(pte, vma->vm_page_prot);
3061 pte = pte_mkyoung(pte);
3062 set_pte_at(mm, addr, ptep, pte);
3063 update_mmu_cache(vma, addr, ptep);
3065 page = vm_normal_page(vma, addr, pte);
3066 if (!page) {
3067 pte_unmap_unlock(ptep, ptl);
3068 return 0;
3072 * Avoid grouping on DSO/COW pages in specific and RO pages
3073 * in general, RO pages shouldn't hurt as much anyway since
3074 * they can be in shared cache state.
3076 * FIXME! This checks "pmd_dirty()" as an approximation of
3077 * "is this a read-only page", since checking "pmd_write()"
3078 * is even more broken. We haven't actually turned this into
3079 * a writable page, so pmd_write() will always be false.
3081 if (!pte_dirty(pte))
3082 flags |= TNF_NO_GROUP;
3085 * Flag if the page is shared between multiple address spaces. This
3086 * is later used when determining whether to group tasks together
3088 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3089 flags |= TNF_SHARED;
3091 last_cpupid = page_cpupid_last(page);
3092 page_nid = page_to_nid(page);
3093 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3094 pte_unmap_unlock(ptep, ptl);
3095 if (target_nid == -1) {
3096 put_page(page);
3097 goto out;
3100 /* Migrate to the requested node */
3101 migrated = migrate_misplaced_page(page, vma, target_nid);
3102 if (migrated) {
3103 page_nid = target_nid;
3104 flags |= TNF_MIGRATED;
3107 out:
3108 if (page_nid != -1)
3109 task_numa_fault(last_cpupid, page_nid, 1, flags);
3110 return 0;
3114 * These routines also need to handle stuff like marking pages dirty
3115 * and/or accessed for architectures that don't do it in hardware (most
3116 * RISC architectures). The early dirtying is also good on the i386.
3118 * There is also a hook called "update_mmu_cache()" that architectures
3119 * with external mmu caches can use to update those (ie the Sparc or
3120 * PowerPC hashed page tables that act as extended TLBs).
3122 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3123 * but allow concurrent faults), and pte mapped but not yet locked.
3124 * We return with pte unmapped and unlocked.
3126 * The mmap_sem may have been released depending on flags and our
3127 * return value. See filemap_fault() and __lock_page_or_retry().
3129 static int handle_pte_fault(struct mm_struct *mm,
3130 struct vm_area_struct *vma, unsigned long address,
3131 pte_t *pte, pmd_t *pmd, unsigned int flags)
3133 pte_t entry;
3134 spinlock_t *ptl;
3137 * some architectures can have larger ptes than wordsize,
3138 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3139 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3140 * The code below just needs a consistent view for the ifs and
3141 * we later double check anyway with the ptl lock held. So here
3142 * a barrier will do.
3144 entry = *pte;
3145 barrier();
3146 if (!pte_present(entry)) {
3147 if (pte_none(entry)) {
3148 if (vma->vm_ops) {
3149 if (likely(vma->vm_ops->fault))
3150 return do_fault(mm, vma, address, pte,
3151 pmd, flags, entry);
3153 return do_anonymous_page(mm, vma, address,
3154 pte, pmd, flags);
3156 return do_swap_page(mm, vma, address,
3157 pte, pmd, flags, entry);
3160 if (pte_protnone(entry))
3161 return do_numa_page(mm, vma, address, entry, pte, pmd);
3163 ptl = pte_lockptr(mm, pmd);
3164 spin_lock(ptl);
3165 if (unlikely(!pte_same(*pte, entry)))
3166 goto unlock;
3167 if (flags & FAULT_FLAG_WRITE) {
3168 if (!pte_write(entry))
3169 return do_wp_page(mm, vma, address,
3170 pte, pmd, ptl, entry);
3171 entry = pte_mkdirty(entry);
3173 entry = pte_mkyoung(entry);
3174 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3175 update_mmu_cache(vma, address, pte);
3176 } else {
3178 * This is needed only for protection faults but the arch code
3179 * is not yet telling us if this is a protection fault or not.
3180 * This still avoids useless tlb flushes for .text page faults
3181 * with threads.
3183 if (flags & FAULT_FLAG_WRITE)
3184 flush_tlb_fix_spurious_fault(vma, address);
3186 unlock:
3187 pte_unmap_unlock(pte, ptl);
3188 return 0;
3192 * By the time we get here, we already hold the mm semaphore
3194 * The mmap_sem may have been released depending on flags and our
3195 * return value. See filemap_fault() and __lock_page_or_retry().
3197 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3198 unsigned long address, unsigned int flags)
3200 pgd_t *pgd;
3201 pud_t *pud;
3202 pmd_t *pmd;
3203 pte_t *pte;
3205 if (unlikely(is_vm_hugetlb_page(vma)))
3206 return hugetlb_fault(mm, vma, address, flags);
3208 pgd = pgd_offset(mm, address);
3209 pud = pud_alloc(mm, pgd, address);
3210 if (!pud)
3211 return VM_FAULT_OOM;
3212 pmd = pmd_alloc(mm, pud, address);
3213 if (!pmd)
3214 return VM_FAULT_OOM;
3215 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3216 int ret = VM_FAULT_FALLBACK;
3217 if (!vma->vm_ops)
3218 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3219 pmd, flags);
3220 if (!(ret & VM_FAULT_FALLBACK))
3221 return ret;
3222 } else {
3223 pmd_t orig_pmd = *pmd;
3224 int ret;
3226 barrier();
3227 if (pmd_trans_huge(orig_pmd)) {
3228 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3231 * If the pmd is splitting, return and retry the
3232 * the fault. Alternative: wait until the split
3233 * is done, and goto retry.
3235 if (pmd_trans_splitting(orig_pmd))
3236 return 0;
3238 if (pmd_protnone(orig_pmd))
3239 return do_huge_pmd_numa_page(mm, vma, address,
3240 orig_pmd, pmd);
3242 if (dirty && !pmd_write(orig_pmd)) {
3243 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3244 orig_pmd);
3245 if (!(ret & VM_FAULT_FALLBACK))
3246 return ret;
3247 } else {
3248 huge_pmd_set_accessed(mm, vma, address, pmd,
3249 orig_pmd, dirty);
3250 return 0;
3256 * Use __pte_alloc instead of pte_alloc_map, because we can't
3257 * run pte_offset_map on the pmd, if an huge pmd could
3258 * materialize from under us from a different thread.
3260 if (unlikely(pmd_none(*pmd)) &&
3261 unlikely(__pte_alloc(mm, vma, pmd, address)))
3262 return VM_FAULT_OOM;
3263 /* if an huge pmd materialized from under us just retry later */
3264 if (unlikely(pmd_trans_huge(*pmd)))
3265 return 0;
3267 * A regular pmd is established and it can't morph into a huge pmd
3268 * from under us anymore at this point because we hold the mmap_sem
3269 * read mode and khugepaged takes it in write mode. So now it's
3270 * safe to run pte_offset_map().
3272 pte = pte_offset_map(pmd, address);
3274 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3278 * By the time we get here, we already hold the mm semaphore
3280 * The mmap_sem may have been released depending on flags and our
3281 * return value. See filemap_fault() and __lock_page_or_retry().
3283 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3284 unsigned long address, unsigned int flags)
3286 int ret;
3288 __set_current_state(TASK_RUNNING);
3290 count_vm_event(PGFAULT);
3291 mem_cgroup_count_vm_event(mm, PGFAULT);
3293 /* do counter updates before entering really critical section. */
3294 check_sync_rss_stat(current);
3297 * Enable the memcg OOM handling for faults triggered in user
3298 * space. Kernel faults are handled more gracefully.
3300 if (flags & FAULT_FLAG_USER)
3301 mem_cgroup_oom_enable();
3303 ret = __handle_mm_fault(mm, vma, address, flags);
3305 if (flags & FAULT_FLAG_USER) {
3306 mem_cgroup_oom_disable();
3308 * The task may have entered a memcg OOM situation but
3309 * if the allocation error was handled gracefully (no
3310 * VM_FAULT_OOM), there is no need to kill anything.
3311 * Just clean up the OOM state peacefully.
3313 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3314 mem_cgroup_oom_synchronize(false);
3317 return ret;
3319 EXPORT_SYMBOL_GPL(handle_mm_fault);
3321 #ifndef __PAGETABLE_PUD_FOLDED
3323 * Allocate page upper directory.
3324 * We've already handled the fast-path in-line.
3326 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3328 pud_t *new = pud_alloc_one(mm, address);
3329 if (!new)
3330 return -ENOMEM;
3332 smp_wmb(); /* See comment in __pte_alloc */
3334 spin_lock(&mm->page_table_lock);
3335 if (pgd_present(*pgd)) /* Another has populated it */
3336 pud_free(mm, new);
3337 else
3338 pgd_populate(mm, pgd, new);
3339 spin_unlock(&mm->page_table_lock);
3340 return 0;
3342 #endif /* __PAGETABLE_PUD_FOLDED */
3344 #ifndef __PAGETABLE_PMD_FOLDED
3346 * Allocate page middle directory.
3347 * We've already handled the fast-path in-line.
3349 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3351 pmd_t *new = pmd_alloc_one(mm, address);
3352 if (!new)
3353 return -ENOMEM;
3355 smp_wmb(); /* See comment in __pte_alloc */
3357 spin_lock(&mm->page_table_lock);
3358 #ifndef __ARCH_HAS_4LEVEL_HACK
3359 if (!pud_present(*pud)) {
3360 mm_inc_nr_pmds(mm);
3361 pud_populate(mm, pud, new);
3362 } else /* Another has populated it */
3363 pmd_free(mm, new);
3364 #else
3365 if (!pgd_present(*pud)) {
3366 mm_inc_nr_pmds(mm);
3367 pgd_populate(mm, pud, new);
3368 } else /* Another has populated it */
3369 pmd_free(mm, new);
3370 #endif /* __ARCH_HAS_4LEVEL_HACK */
3371 spin_unlock(&mm->page_table_lock);
3372 return 0;
3374 #endif /* __PAGETABLE_PMD_FOLDED */
3376 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3377 pte_t **ptepp, spinlock_t **ptlp)
3379 pgd_t *pgd;
3380 pud_t *pud;
3381 pmd_t *pmd;
3382 pte_t *ptep;
3384 pgd = pgd_offset(mm, address);
3385 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3386 goto out;
3388 pud = pud_offset(pgd, address);
3389 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3390 goto out;
3392 pmd = pmd_offset(pud, address);
3393 VM_BUG_ON(pmd_trans_huge(*pmd));
3394 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3395 goto out;
3397 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3398 if (pmd_huge(*pmd))
3399 goto out;
3401 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3402 if (!ptep)
3403 goto out;
3404 if (!pte_present(*ptep))
3405 goto unlock;
3406 *ptepp = ptep;
3407 return 0;
3408 unlock:
3409 pte_unmap_unlock(ptep, *ptlp);
3410 out:
3411 return -EINVAL;
3414 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3415 pte_t **ptepp, spinlock_t **ptlp)
3417 int res;
3419 /* (void) is needed to make gcc happy */
3420 (void) __cond_lock(*ptlp,
3421 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3422 return res;
3426 * follow_pfn - look up PFN at a user virtual address
3427 * @vma: memory mapping
3428 * @address: user virtual address
3429 * @pfn: location to store found PFN
3431 * Only IO mappings and raw PFN mappings are allowed.
3433 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3435 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3436 unsigned long *pfn)
3438 int ret = -EINVAL;
3439 spinlock_t *ptl;
3440 pte_t *ptep;
3442 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3443 return ret;
3445 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3446 if (ret)
3447 return ret;
3448 *pfn = pte_pfn(*ptep);
3449 pte_unmap_unlock(ptep, ptl);
3450 return 0;
3452 EXPORT_SYMBOL(follow_pfn);
3454 #ifdef CONFIG_HAVE_IOREMAP_PROT
3455 int follow_phys(struct vm_area_struct *vma,
3456 unsigned long address, unsigned int flags,
3457 unsigned long *prot, resource_size_t *phys)
3459 int ret = -EINVAL;
3460 pte_t *ptep, pte;
3461 spinlock_t *ptl;
3463 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3464 goto out;
3466 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3467 goto out;
3468 pte = *ptep;
3470 if ((flags & FOLL_WRITE) && !pte_write(pte))
3471 goto unlock;
3473 *prot = pgprot_val(pte_pgprot(pte));
3474 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3476 ret = 0;
3477 unlock:
3478 pte_unmap_unlock(ptep, ptl);
3479 out:
3480 return ret;
3483 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3484 void *buf, int len, int write)
3486 resource_size_t phys_addr;
3487 unsigned long prot = 0;
3488 void __iomem *maddr;
3489 int offset = addr & (PAGE_SIZE-1);
3491 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3492 return -EINVAL;
3494 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3495 if (write)
3496 memcpy_toio(maddr + offset, buf, len);
3497 else
3498 memcpy_fromio(buf, maddr + offset, len);
3499 iounmap(maddr);
3501 return len;
3503 EXPORT_SYMBOL_GPL(generic_access_phys);
3504 #endif
3507 * Access another process' address space as given in mm. If non-NULL, use the
3508 * given task for page fault accounting.
3510 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3511 unsigned long addr, void *buf, int len, int write)
3513 struct vm_area_struct *vma;
3514 void *old_buf = buf;
3516 down_read(&mm->mmap_sem);
3517 /* ignore errors, just check how much was successfully transferred */
3518 while (len) {
3519 int bytes, ret, offset;
3520 void *maddr;
3521 struct page *page = NULL;
3523 ret = get_user_pages(tsk, mm, addr, 1,
3524 write, 1, &page, &vma);
3525 if (ret <= 0) {
3526 #ifndef CONFIG_HAVE_IOREMAP_PROT
3527 break;
3528 #else
3530 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3531 * we can access using slightly different code.
3533 vma = find_vma(mm, addr);
3534 if (!vma || vma->vm_start > addr)
3535 break;
3536 if (vma->vm_ops && vma->vm_ops->access)
3537 ret = vma->vm_ops->access(vma, addr, buf,
3538 len, write);
3539 if (ret <= 0)
3540 break;
3541 bytes = ret;
3542 #endif
3543 } else {
3544 bytes = len;
3545 offset = addr & (PAGE_SIZE-1);
3546 if (bytes > PAGE_SIZE-offset)
3547 bytes = PAGE_SIZE-offset;
3549 maddr = kmap(page);
3550 if (write) {
3551 copy_to_user_page(vma, page, addr,
3552 maddr + offset, buf, bytes);
3553 set_page_dirty_lock(page);
3554 } else {
3555 copy_from_user_page(vma, page, addr,
3556 buf, maddr + offset, bytes);
3558 kunmap(page);
3559 page_cache_release(page);
3561 len -= bytes;
3562 buf += bytes;
3563 addr += bytes;
3565 up_read(&mm->mmap_sem);
3567 return buf - old_buf;
3571 * access_remote_vm - access another process' address space
3572 * @mm: the mm_struct of the target address space
3573 * @addr: start address to access
3574 * @buf: source or destination buffer
3575 * @len: number of bytes to transfer
3576 * @write: whether the access is a write
3578 * The caller must hold a reference on @mm.
3580 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3581 void *buf, int len, int write)
3583 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3587 * Access another process' address space.
3588 * Source/target buffer must be kernel space,
3589 * Do not walk the page table directly, use get_user_pages
3591 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3592 void *buf, int len, int write)
3594 struct mm_struct *mm;
3595 int ret;
3597 mm = get_task_mm(tsk);
3598 if (!mm)
3599 return 0;
3601 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3602 mmput(mm);
3604 return ret;
3608 * Print the name of a VMA.
3610 void print_vma_addr(char *prefix, unsigned long ip)
3612 struct mm_struct *mm = current->mm;
3613 struct vm_area_struct *vma;
3616 * Do not print if we are in atomic
3617 * contexts (in exception stacks, etc.):
3619 if (preempt_count())
3620 return;
3622 down_read(&mm->mmap_sem);
3623 vma = find_vma(mm, ip);
3624 if (vma && vma->vm_file) {
3625 struct file *f = vma->vm_file;
3626 char *buf = (char *)__get_free_page(GFP_KERNEL);
3627 if (buf) {
3628 char *p;
3630 p = d_path(&f->f_path, buf, PAGE_SIZE);
3631 if (IS_ERR(p))
3632 p = "?";
3633 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3634 vma->vm_start,
3635 vma->vm_end - vma->vm_start);
3636 free_page((unsigned long)buf);
3639 up_read(&mm->mmap_sem);
3642 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3643 void might_fault(void)
3646 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3647 * holding the mmap_sem, this is safe because kernel memory doesn't
3648 * get paged out, therefore we'll never actually fault, and the
3649 * below annotations will generate false positives.
3651 if (segment_eq(get_fs(), KERNEL_DS))
3652 return;
3655 * it would be nicer only to annotate paths which are not under
3656 * pagefault_disable, however that requires a larger audit and
3657 * providing helpers like get_user_atomic.
3659 if (in_atomic())
3660 return;
3662 __might_sleep(__FILE__, __LINE__, 0);
3664 if (current->mm)
3665 might_lock_read(&current->mm->mmap_sem);
3667 EXPORT_SYMBOL(might_fault);
3668 #endif
3670 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3671 static void clear_gigantic_page(struct page *page,
3672 unsigned long addr,
3673 unsigned int pages_per_huge_page)
3675 int i;
3676 struct page *p = page;
3678 might_sleep();
3679 for (i = 0; i < pages_per_huge_page;
3680 i++, p = mem_map_next(p, page, i)) {
3681 cond_resched();
3682 clear_user_highpage(p, addr + i * PAGE_SIZE);
3685 void clear_huge_page(struct page *page,
3686 unsigned long addr, unsigned int pages_per_huge_page)
3688 int i;
3690 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3691 clear_gigantic_page(page, addr, pages_per_huge_page);
3692 return;
3695 might_sleep();
3696 for (i = 0; i < pages_per_huge_page; i++) {
3697 cond_resched();
3698 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3702 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3703 unsigned long addr,
3704 struct vm_area_struct *vma,
3705 unsigned int pages_per_huge_page)
3707 int i;
3708 struct page *dst_base = dst;
3709 struct page *src_base = src;
3711 for (i = 0; i < pages_per_huge_page; ) {
3712 cond_resched();
3713 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3715 i++;
3716 dst = mem_map_next(dst, dst_base, i);
3717 src = mem_map_next(src, src_base, i);
3721 void copy_user_huge_page(struct page *dst, struct page *src,
3722 unsigned long addr, struct vm_area_struct *vma,
3723 unsigned int pages_per_huge_page)
3725 int i;
3727 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3728 copy_user_gigantic_page(dst, src, addr, vma,
3729 pages_per_huge_page);
3730 return;
3733 might_sleep();
3734 for (i = 0; i < pages_per_huge_page; i++) {
3735 cond_resched();
3736 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3739 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3741 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3743 static struct kmem_cache *page_ptl_cachep;
3745 void __init ptlock_cache_init(void)
3747 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3748 SLAB_PANIC, NULL);
3751 bool ptlock_alloc(struct page *page)
3753 spinlock_t *ptl;
3755 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3756 if (!ptl)
3757 return false;
3758 page->ptl = ptl;
3759 return true;
3762 void ptlock_free(struct page *page)
3764 kmem_cache_free(page_ptl_cachep, page->ptl);
3766 #endif