2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY RPCDBG_TRANS
56 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
57 static const char transfertypes
[][12] = {
58 "pure inline", /* no chunks */
59 " read chunk", /* some argument via rdma read */
60 "*read chunk", /* entire request via rdma read */
61 "write chunk", /* some result via rdma write */
62 "reply chunk" /* entire reply via rdma write */
67 * Chunk assembly from upper layer xdr_buf.
69 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70 * elements. Segments are then coalesced when registered, if possible
71 * within the selected memreg mode.
73 * Returns positive number of segments converted, or a negative errno.
77 rpcrdma_convert_iovs(struct xdr_buf
*xdrbuf
, unsigned int pos
,
78 enum rpcrdma_chunktype type
, struct rpcrdma_mr_seg
*seg
, int nsegs
)
84 if (pos
== 0 && xdrbuf
->head
[0].iov_len
) {
85 seg
[n
].mr_page
= NULL
;
86 seg
[n
].mr_offset
= xdrbuf
->head
[0].iov_base
;
87 seg
[n
].mr_len
= xdrbuf
->head
[0].iov_len
;
91 len
= xdrbuf
->page_len
;
92 ppages
= xdrbuf
->pages
+ (xdrbuf
->page_base
>> PAGE_SHIFT
);
93 page_base
= xdrbuf
->page_base
& ~PAGE_MASK
;
95 while (len
&& n
< nsegs
) {
97 /* alloc the pagelist for receiving buffer */
98 ppages
[p
] = alloc_page(GFP_ATOMIC
);
102 seg
[n
].mr_page
= ppages
[p
];
103 seg
[n
].mr_offset
= (void *)(unsigned long) page_base
;
104 seg
[n
].mr_len
= min_t(u32
, PAGE_SIZE
- page_base
, len
);
105 if (seg
[n
].mr_len
> PAGE_SIZE
)
107 len
-= seg
[n
].mr_len
;
110 page_base
= 0; /* page offset only applies to first page */
113 /* Message overflows the seg array */
114 if (len
&& n
== nsegs
)
117 if (xdrbuf
->tail
[0].iov_len
) {
118 /* the rpcrdma protocol allows us to omit any trailing
119 * xdr pad bytes, saving the server an RDMA operation. */
120 if (xdrbuf
->tail
[0].iov_len
< 4 && xprt_rdma_pad_optimize
)
123 /* Tail remains, but we're out of segments */
125 seg
[n
].mr_page
= NULL
;
126 seg
[n
].mr_offset
= xdrbuf
->tail
[0].iov_base
;
127 seg
[n
].mr_len
= xdrbuf
->tail
[0].iov_len
;
135 * Create read/write chunk lists, and reply chunks, for RDMA
137 * Assume check against THRESHOLD has been done, and chunks are required.
138 * Assume only encoding one list entry for read|write chunks. The NFSv3
139 * protocol is simple enough to allow this as it only has a single "bulk
140 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
143 * When used for a single reply chunk (which is a special write
144 * chunk used for the entire reply, rather than just the data), it
145 * is used primarily for READDIR and READLINK which would otherwise
146 * be severely size-limited by a small rdma inline read max. The server
147 * response will come back as an RDMA Write, followed by a message
148 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149 * chunks do not provide data alignment, however they do not require
150 * "fixup" (moving the response to the upper layer buffer) either.
152 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
154 * Read chunklist (a linked list):
155 * N elements, position P (same P for all chunks of same arg!):
156 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
158 * Write chunklist (a list of (one) counted array):
160 * 1 - N - HLOO - HLOO - ... - HLOO - 0
162 * Reply chunk (a counted array):
164 * 1 - N - HLOO - HLOO - ... - HLOO
166 * Returns positive RPC/RDMA header size, or negative errno.
170 rpcrdma_create_chunks(struct rpc_rqst
*rqst
, struct xdr_buf
*target
,
171 struct rpcrdma_msg
*headerp
, enum rpcrdma_chunktype type
)
173 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
174 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(rqst
->rq_xprt
);
175 int n
, nsegs
, nchunks
= 0;
177 struct rpcrdma_mr_seg
*seg
= req
->rl_segments
;
178 struct rpcrdma_read_chunk
*cur_rchunk
= NULL
;
179 struct rpcrdma_write_array
*warray
= NULL
;
180 struct rpcrdma_write_chunk
*cur_wchunk
= NULL
;
181 __be32
*iptr
= headerp
->rm_body
.rm_chunks
;
183 if (type
== rpcrdma_readch
|| type
== rpcrdma_areadch
) {
184 /* a read chunk - server will RDMA Read our memory */
185 cur_rchunk
= (struct rpcrdma_read_chunk
*) iptr
;
187 /* a write or reply chunk - server will RDMA Write our memory */
188 *iptr
++ = xdr_zero
; /* encode a NULL read chunk list */
189 if (type
== rpcrdma_replych
)
190 *iptr
++ = xdr_zero
; /* a NULL write chunk list */
191 warray
= (struct rpcrdma_write_array
*) iptr
;
192 cur_wchunk
= (struct rpcrdma_write_chunk
*) (warray
+ 1);
195 if (type
== rpcrdma_replych
|| type
== rpcrdma_areadch
)
198 pos
= target
->head
[0].iov_len
;
200 nsegs
= rpcrdma_convert_iovs(target
, pos
, type
, seg
, RPCRDMA_MAX_SEGS
);
205 n
= rpcrdma_register_external(seg
, nsegs
,
206 cur_wchunk
!= NULL
, r_xprt
);
209 if (cur_rchunk
) { /* read */
210 cur_rchunk
->rc_discrim
= xdr_one
;
211 /* all read chunks have the same "position" */
212 cur_rchunk
->rc_position
= cpu_to_be32(pos
);
213 cur_rchunk
->rc_target
.rs_handle
=
214 cpu_to_be32(seg
->mr_rkey
);
215 cur_rchunk
->rc_target
.rs_length
=
216 cpu_to_be32(seg
->mr_len
);
218 (__be32
*)&cur_rchunk
->rc_target
.rs_offset
,
220 dprintk("RPC: %s: read chunk "
221 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__
,
222 seg
->mr_len
, (unsigned long long)seg
->mr_base
,
223 seg
->mr_rkey
, pos
, n
< nsegs
? "more" : "last");
225 r_xprt
->rx_stats
.read_chunk_count
++;
226 } else { /* write/reply */
227 cur_wchunk
->wc_target
.rs_handle
=
228 cpu_to_be32(seg
->mr_rkey
);
229 cur_wchunk
->wc_target
.rs_length
=
230 cpu_to_be32(seg
->mr_len
);
232 (__be32
*)&cur_wchunk
->wc_target
.rs_offset
,
234 dprintk("RPC: %s: %s chunk "
235 "elem %d@0x%llx:0x%x (%s)\n", __func__
,
236 (type
== rpcrdma_replych
) ? "reply" : "write",
237 seg
->mr_len
, (unsigned long long)seg
->mr_base
,
238 seg
->mr_rkey
, n
< nsegs
? "more" : "last");
240 if (type
== rpcrdma_replych
)
241 r_xprt
->rx_stats
.reply_chunk_count
++;
243 r_xprt
->rx_stats
.write_chunk_count
++;
244 r_xprt
->rx_stats
.total_rdma_request
+= seg
->mr_len
;
251 /* success. all failures return above */
252 req
->rl_nchunks
= nchunks
;
255 * finish off header. If write, marshal discrim and nchunks.
258 iptr
= (__be32
*) cur_rchunk
;
259 *iptr
++ = xdr_zero
; /* finish the read chunk list */
260 *iptr
++ = xdr_zero
; /* encode a NULL write chunk list */
261 *iptr
++ = xdr_zero
; /* encode a NULL reply chunk */
263 warray
->wc_discrim
= xdr_one
;
264 warray
->wc_nchunks
= cpu_to_be32(nchunks
);
265 iptr
= (__be32
*) cur_wchunk
;
266 if (type
== rpcrdma_writech
) {
267 *iptr
++ = xdr_zero
; /* finish the write chunk list */
268 *iptr
++ = xdr_zero
; /* encode a NULL reply chunk */
273 * Return header size.
275 return (unsigned char *)iptr
- (unsigned char *)headerp
;
278 if (r_xprt
->rx_ia
.ri_memreg_strategy
!= RPCRDMA_FRMR
) {
279 for (pos
= 0; nchunks
--;)
280 pos
+= rpcrdma_deregister_external(
281 &req
->rl_segments
[pos
], r_xprt
);
287 * Marshal chunks. This routine returns the header length
288 * consumed by marshaling.
290 * Returns positive RPC/RDMA header size, or negative errno.
294 rpcrdma_marshal_chunks(struct rpc_rqst
*rqst
, ssize_t result
)
296 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
297 struct rpcrdma_msg
*headerp
= rdmab_to_msg(req
->rl_rdmabuf
);
299 if (req
->rl_rtype
!= rpcrdma_noch
)
300 result
= rpcrdma_create_chunks(rqst
, &rqst
->rq_snd_buf
,
301 headerp
, req
->rl_rtype
);
302 else if (req
->rl_wtype
!= rpcrdma_noch
)
303 result
= rpcrdma_create_chunks(rqst
, &rqst
->rq_rcv_buf
,
304 headerp
, req
->rl_wtype
);
309 * Copy write data inline.
310 * This function is used for "small" requests. Data which is passed
311 * to RPC via iovecs (or page list) is copied directly into the
312 * pre-registered memory buffer for this request. For small amounts
313 * of data, this is efficient. The cutoff value is tunable.
316 rpcrdma_inline_pullup(struct rpc_rqst
*rqst
, int pad
)
318 int i
, npages
, curlen
;
320 unsigned char *srcp
, *destp
;
321 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(rqst
->rq_xprt
);
323 struct page
**ppages
;
325 destp
= rqst
->rq_svec
[0].iov_base
;
326 curlen
= rqst
->rq_svec
[0].iov_len
;
329 * Do optional padding where it makes sense. Alignment of write
330 * payload can help the server, if our setting is accurate.
332 pad
-= (curlen
+ 36/*sizeof(struct rpcrdma_msg_padded)*/);
333 if (pad
< 0 || rqst
->rq_slen
- curlen
< RPCRDMA_INLINE_PAD_THRESH
)
334 pad
= 0; /* don't pad this request */
336 dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
337 __func__
, pad
, destp
, rqst
->rq_slen
, curlen
);
339 copy_len
= rqst
->rq_snd_buf
.page_len
;
341 if (rqst
->rq_snd_buf
.tail
[0].iov_len
) {
342 curlen
= rqst
->rq_snd_buf
.tail
[0].iov_len
;
343 if (destp
+ copy_len
!= rqst
->rq_snd_buf
.tail
[0].iov_base
) {
344 memmove(destp
+ copy_len
,
345 rqst
->rq_snd_buf
.tail
[0].iov_base
, curlen
);
346 r_xprt
->rx_stats
.pullup_copy_count
+= curlen
;
348 dprintk("RPC: %s: tail destp 0x%p len %d\n",
349 __func__
, destp
+ copy_len
, curlen
);
350 rqst
->rq_svec
[0].iov_len
+= curlen
;
352 r_xprt
->rx_stats
.pullup_copy_count
+= copy_len
;
354 page_base
= rqst
->rq_snd_buf
.page_base
;
355 ppages
= rqst
->rq_snd_buf
.pages
+ (page_base
>> PAGE_SHIFT
);
356 page_base
&= ~PAGE_MASK
;
357 npages
= PAGE_ALIGN(page_base
+copy_len
) >> PAGE_SHIFT
;
358 for (i
= 0; copy_len
&& i
< npages
; i
++) {
359 curlen
= PAGE_SIZE
- page_base
;
360 if (curlen
> copy_len
)
362 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
363 __func__
, i
, destp
, copy_len
, curlen
);
364 srcp
= kmap_atomic(ppages
[i
]);
365 memcpy(destp
, srcp
+page_base
, curlen
);
367 rqst
->rq_svec
[0].iov_len
+= curlen
;
372 /* header now contains entire send message */
377 * Marshal a request: the primary job of this routine is to choose
378 * the transfer modes. See comments below.
380 * Uses multiple RDMA IOVs for a request:
381 * [0] -- RPC RDMA header, which uses memory from the *start* of the
382 * preregistered buffer that already holds the RPC data in
384 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
385 * [2] -- optional padding.
386 * [3] -- if padded, header only in [1] and data here.
388 * Returns zero on success, otherwise a negative errno.
392 rpcrdma_marshal_req(struct rpc_rqst
*rqst
)
394 struct rpc_xprt
*xprt
= rqst
->rq_xprt
;
395 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
396 struct rpcrdma_req
*req
= rpcr_to_rdmar(rqst
);
398 size_t rpclen
, padlen
;
400 struct rpcrdma_msg
*headerp
;
403 * rpclen gets amount of data in first buffer, which is the
404 * pre-registered buffer.
406 base
= rqst
->rq_svec
[0].iov_base
;
407 rpclen
= rqst
->rq_svec
[0].iov_len
;
409 headerp
= rdmab_to_msg(req
->rl_rdmabuf
);
410 /* don't byte-swap XID, it's already done in request */
411 headerp
->rm_xid
= rqst
->rq_xid
;
412 headerp
->rm_vers
= rpcrdma_version
;
413 headerp
->rm_credit
= cpu_to_be32(r_xprt
->rx_buf
.rb_max_requests
);
414 headerp
->rm_type
= rdma_msg
;
417 * Chunks needed for results?
419 * o If the expected result is under the inline threshold, all ops
420 * return as inline (but see later).
421 * o Large non-read ops return as a single reply chunk.
422 * o Large read ops return data as write chunk(s), header as inline.
424 * Note: the NFS code sending down multiple result segments implies
425 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
429 * This code can handle read chunks, write chunks OR reply
430 * chunks -- only one type. If the request is too big to fit
431 * inline, then we will choose read chunks. If the request is
432 * a READ, then use write chunks to separate the file data
433 * into pages; otherwise use reply chunks.
435 if (rqst
->rq_rcv_buf
.buflen
<= RPCRDMA_INLINE_READ_THRESHOLD(rqst
))
436 req
->rl_wtype
= rpcrdma_noch
;
437 else if (rqst
->rq_rcv_buf
.page_len
== 0)
438 req
->rl_wtype
= rpcrdma_replych
;
439 else if (rqst
->rq_rcv_buf
.flags
& XDRBUF_READ
)
440 req
->rl_wtype
= rpcrdma_writech
;
442 req
->rl_wtype
= rpcrdma_replych
;
445 * Chunks needed for arguments?
447 * o If the total request is under the inline threshold, all ops
448 * are sent as inline.
449 * o Large non-write ops are sent with the entire message as a
450 * single read chunk (protocol 0-position special case).
451 * o Large write ops transmit data as read chunk(s), header as
454 * Note: the NFS code sending down multiple argument segments
455 * implies the op is a write.
456 * TBD check NFSv4 setacl
458 if (rqst
->rq_snd_buf
.len
<= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst
))
459 req
->rl_rtype
= rpcrdma_noch
;
460 else if (rqst
->rq_snd_buf
.page_len
== 0)
461 req
->rl_rtype
= rpcrdma_areadch
;
463 req
->rl_rtype
= rpcrdma_readch
;
465 /* The following simplification is not true forever */
466 if (req
->rl_rtype
!= rpcrdma_noch
&& req
->rl_wtype
== rpcrdma_replych
)
467 req
->rl_wtype
= rpcrdma_noch
;
468 if (req
->rl_rtype
!= rpcrdma_noch
&& req
->rl_wtype
!= rpcrdma_noch
) {
469 dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
474 hdrlen
= RPCRDMA_HDRLEN_MIN
;
478 * Pull up any extra send data into the preregistered buffer.
479 * When padding is in use and applies to the transfer, insert
480 * it and change the message type.
482 if (req
->rl_rtype
== rpcrdma_noch
) {
484 padlen
= rpcrdma_inline_pullup(rqst
,
485 RPCRDMA_INLINE_PAD_VALUE(rqst
));
488 headerp
->rm_type
= rdma_msgp
;
489 headerp
->rm_body
.rm_padded
.rm_align
=
490 cpu_to_be32(RPCRDMA_INLINE_PAD_VALUE(rqst
));
491 headerp
->rm_body
.rm_padded
.rm_thresh
=
492 cpu_to_be32(RPCRDMA_INLINE_PAD_THRESH
);
493 headerp
->rm_body
.rm_padded
.rm_pempty
[0] = xdr_zero
;
494 headerp
->rm_body
.rm_padded
.rm_pempty
[1] = xdr_zero
;
495 headerp
->rm_body
.rm_padded
.rm_pempty
[2] = xdr_zero
;
496 hdrlen
+= 2 * sizeof(u32
); /* extra words in padhdr */
497 if (req
->rl_wtype
!= rpcrdma_noch
) {
498 dprintk("RPC: %s: invalid chunk list\n",
503 headerp
->rm_body
.rm_nochunks
.rm_empty
[0] = xdr_zero
;
504 headerp
->rm_body
.rm_nochunks
.rm_empty
[1] = xdr_zero
;
505 headerp
->rm_body
.rm_nochunks
.rm_empty
[2] = xdr_zero
;
506 /* new length after pullup */
507 rpclen
= rqst
->rq_svec
[0].iov_len
;
509 * Currently we try to not actually use read inline.
510 * Reply chunks have the desirable property that
511 * they land, packed, directly in the target buffers
512 * without headers, so they require no fixup. The
513 * additional RDMA Write op sends the same amount
514 * of data, streams on-the-wire and adds no overhead
515 * on receive. Therefore, we request a reply chunk
516 * for non-writes wherever feasible and efficient.
518 if (req
->rl_wtype
== rpcrdma_noch
)
519 req
->rl_wtype
= rpcrdma_replych
;
523 hdrlen
= rpcrdma_marshal_chunks(rqst
, hdrlen
);
527 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
528 " headerp 0x%p base 0x%p lkey 0x%x\n",
529 __func__
, transfertypes
[req
->rl_wtype
], hdrlen
, rpclen
, padlen
,
530 headerp
, base
, rdmab_lkey(req
->rl_rdmabuf
));
533 * initialize send_iov's - normally only two: rdma chunk header and
534 * single preregistered RPC header buffer, but if padding is present,
535 * then use a preregistered (and zeroed) pad buffer between the RPC
536 * header and any write data. In all non-rdma cases, any following
537 * data has been copied into the RPC header buffer.
539 req
->rl_send_iov
[0].addr
= rdmab_addr(req
->rl_rdmabuf
);
540 req
->rl_send_iov
[0].length
= hdrlen
;
541 req
->rl_send_iov
[0].lkey
= rdmab_lkey(req
->rl_rdmabuf
);
543 req
->rl_send_iov
[1].addr
= rdmab_addr(req
->rl_sendbuf
);
544 req
->rl_send_iov
[1].length
= rpclen
;
545 req
->rl_send_iov
[1].lkey
= rdmab_lkey(req
->rl_sendbuf
);
550 struct rpcrdma_ep
*ep
= &r_xprt
->rx_ep
;
552 req
->rl_send_iov
[2].addr
= rdmab_addr(ep
->rep_padbuf
);
553 req
->rl_send_iov
[2].length
= padlen
;
554 req
->rl_send_iov
[2].lkey
= rdmab_lkey(ep
->rep_padbuf
);
556 req
->rl_send_iov
[3].addr
= req
->rl_send_iov
[1].addr
+ rpclen
;
557 req
->rl_send_iov
[3].length
= rqst
->rq_slen
- rpclen
;
558 req
->rl_send_iov
[3].lkey
= rdmab_lkey(req
->rl_sendbuf
);
567 * Chase down a received write or reply chunklist to get length
568 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
571 rpcrdma_count_chunks(struct rpcrdma_rep
*rep
, unsigned int max
, int wrchunk
, __be32
**iptrp
)
573 unsigned int i
, total_len
;
574 struct rpcrdma_write_chunk
*cur_wchunk
;
575 char *base
= (char *)rdmab_to_msg(rep
->rr_rdmabuf
);
577 i
= be32_to_cpu(**iptrp
);
580 cur_wchunk
= (struct rpcrdma_write_chunk
*) (*iptrp
+ 1);
583 struct rpcrdma_segment
*seg
= &cur_wchunk
->wc_target
;
586 xdr_decode_hyper((__be32
*)&seg
->rs_offset
, &off
);
587 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
589 be32_to_cpu(seg
->rs_length
),
590 (unsigned long long)off
,
591 be32_to_cpu(seg
->rs_handle
));
593 total_len
+= be32_to_cpu(seg
->rs_length
);
596 /* check and adjust for properly terminated write chunk */
598 __be32
*w
= (__be32
*) cur_wchunk
;
599 if (*w
++ != xdr_zero
)
601 cur_wchunk
= (struct rpcrdma_write_chunk
*) w
;
603 if ((char *)cur_wchunk
> base
+ rep
->rr_len
)
606 *iptrp
= (__be32
*) cur_wchunk
;
611 * Scatter inline received data back into provided iov's.
614 rpcrdma_inline_fixup(struct rpc_rqst
*rqst
, char *srcp
, int copy_len
, int pad
)
616 int i
, npages
, curlen
, olen
;
618 struct page
**ppages
;
621 curlen
= rqst
->rq_rcv_buf
.head
[0].iov_len
;
622 if (curlen
> copy_len
) { /* write chunk header fixup */
624 rqst
->rq_rcv_buf
.head
[0].iov_len
= curlen
;
627 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
628 __func__
, srcp
, copy_len
, curlen
);
630 /* Shift pointer for first receive segment only */
631 rqst
->rq_rcv_buf
.head
[0].iov_base
= srcp
;
637 rpcx_to_rdmax(rqst
->rq_xprt
)->rx_stats
.fixup_copy_count
+= olen
;
638 page_base
= rqst
->rq_rcv_buf
.page_base
;
639 ppages
= rqst
->rq_rcv_buf
.pages
+ (page_base
>> PAGE_SHIFT
);
640 page_base
&= ~PAGE_MASK
;
642 if (copy_len
&& rqst
->rq_rcv_buf
.page_len
) {
643 npages
= PAGE_ALIGN(page_base
+
644 rqst
->rq_rcv_buf
.page_len
) >> PAGE_SHIFT
;
645 for (; i
< npages
; i
++) {
646 curlen
= PAGE_SIZE
- page_base
;
647 if (curlen
> copy_len
)
649 dprintk("RPC: %s: page %d"
650 " srcp 0x%p len %d curlen %d\n",
651 __func__
, i
, srcp
, copy_len
, curlen
);
652 destp
= kmap_atomic(ppages
[i
]);
653 memcpy(destp
+ page_base
, srcp
, curlen
);
654 flush_dcache_page(ppages
[i
]);
655 kunmap_atomic(destp
);
664 if (copy_len
&& rqst
->rq_rcv_buf
.tail
[0].iov_len
) {
666 if (curlen
> rqst
->rq_rcv_buf
.tail
[0].iov_len
)
667 curlen
= rqst
->rq_rcv_buf
.tail
[0].iov_len
;
668 if (rqst
->rq_rcv_buf
.tail
[0].iov_base
!= srcp
)
669 memmove(rqst
->rq_rcv_buf
.tail
[0].iov_base
, srcp
, curlen
);
670 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
671 __func__
, srcp
, copy_len
, curlen
);
672 rqst
->rq_rcv_buf
.tail
[0].iov_len
= curlen
;
673 copy_len
-= curlen
; ++i
;
675 rqst
->rq_rcv_buf
.tail
[0].iov_len
= 0;
678 /* implicit padding on terminal chunk */
679 unsigned char *p
= rqst
->rq_rcv_buf
.tail
[0].iov_base
;
681 p
[rqst
->rq_rcv_buf
.tail
[0].iov_len
++] = 0;
685 dprintk("RPC: %s: %d bytes in"
686 " %d extra segments (%d lost)\n",
687 __func__
, olen
, i
, copy_len
);
689 /* TBD avoid a warning from call_decode() */
690 rqst
->rq_private_buf
= rqst
->rq_rcv_buf
;
694 rpcrdma_connect_worker(struct work_struct
*work
)
696 struct rpcrdma_ep
*ep
=
697 container_of(work
, struct rpcrdma_ep
, rep_connect_worker
.work
);
698 struct rpcrdma_xprt
*r_xprt
=
699 container_of(ep
, struct rpcrdma_xprt
, rx_ep
);
700 struct rpc_xprt
*xprt
= &r_xprt
->rx_xprt
;
702 spin_lock_bh(&xprt
->transport_lock
);
703 if (++xprt
->connect_cookie
== 0) /* maintain a reserved value */
704 ++xprt
->connect_cookie
;
705 if (ep
->rep_connected
> 0) {
706 if (!xprt_test_and_set_connected(xprt
))
707 xprt_wake_pending_tasks(xprt
, 0);
709 if (xprt_test_and_clear_connected(xprt
))
710 xprt_wake_pending_tasks(xprt
, -ENOTCONN
);
712 spin_unlock_bh(&xprt
->transport_lock
);
716 * This function is called when an async event is posted to
717 * the connection which changes the connection state. All it
718 * does at this point is mark the connection up/down, the rpc
719 * timers do the rest.
722 rpcrdma_conn_func(struct rpcrdma_ep
*ep
)
724 schedule_delayed_work(&ep
->rep_connect_worker
, 0);
728 * Called as a tasklet to do req/reply match and complete a request
729 * Errors must result in the RPC task either being awakened, or
730 * allowed to timeout, to discover the errors at that time.
733 rpcrdma_reply_handler(struct rpcrdma_rep
*rep
)
735 struct rpcrdma_msg
*headerp
;
736 struct rpcrdma_req
*req
;
737 struct rpc_rqst
*rqst
;
738 struct rpc_xprt
*xprt
= rep
->rr_xprt
;
739 struct rpcrdma_xprt
*r_xprt
= rpcx_to_rdmax(xprt
);
745 /* Check status. If bad, signal disconnect and return rep to pool */
746 if (rep
->rr_len
== ~0U) {
747 rpcrdma_recv_buffer_put(rep
);
748 if (r_xprt
->rx_ep
.rep_connected
== 1) {
749 r_xprt
->rx_ep
.rep_connected
= -EIO
;
750 rpcrdma_conn_func(&r_xprt
->rx_ep
);
754 if (rep
->rr_len
< RPCRDMA_HDRLEN_MIN
) {
755 dprintk("RPC: %s: short/invalid reply\n", __func__
);
758 headerp
= rdmab_to_msg(rep
->rr_rdmabuf
);
759 if (headerp
->rm_vers
!= rpcrdma_version
) {
760 dprintk("RPC: %s: invalid version %d\n",
761 __func__
, be32_to_cpu(headerp
->rm_vers
));
765 /* Get XID and try for a match. */
766 spin_lock(&xprt
->transport_lock
);
767 rqst
= xprt_lookup_rqst(xprt
, headerp
->rm_xid
);
769 spin_unlock(&xprt
->transport_lock
);
770 dprintk("RPC: %s: reply 0x%p failed "
771 "to match any request xid 0x%08x len %d\n",
772 __func__
, rep
, be32_to_cpu(headerp
->rm_xid
),
775 r_xprt
->rx_stats
.bad_reply_count
++;
776 rep
->rr_func
= rpcrdma_reply_handler
;
777 if (rpcrdma_ep_post_recv(&r_xprt
->rx_ia
, &r_xprt
->rx_ep
, rep
))
778 rpcrdma_recv_buffer_put(rep
);
783 /* get request object */
784 req
= rpcr_to_rdmar(rqst
);
786 spin_unlock(&xprt
->transport_lock
);
787 dprintk("RPC: %s: duplicate reply 0x%p to RPC "
788 "request 0x%p: xid 0x%08x\n", __func__
, rep
, req
,
789 be32_to_cpu(headerp
->rm_xid
));
793 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
794 " RPC request 0x%p xid 0x%08x\n",
795 __func__
, rep
, req
, rqst
,
796 be32_to_cpu(headerp
->rm_xid
));
798 /* from here on, the reply is no longer an orphan */
800 xprt
->reestablish_timeout
= 0;
802 /* check for expected message types */
803 /* The order of some of these tests is important. */
804 switch (headerp
->rm_type
) {
806 /* never expect read chunks */
807 /* never expect reply chunks (two ways to check) */
808 /* never expect write chunks without having offered RDMA */
809 if (headerp
->rm_body
.rm_chunks
[0] != xdr_zero
||
810 (headerp
->rm_body
.rm_chunks
[1] == xdr_zero
&&
811 headerp
->rm_body
.rm_chunks
[2] != xdr_zero
) ||
812 (headerp
->rm_body
.rm_chunks
[1] != xdr_zero
&&
813 req
->rl_nchunks
== 0))
815 if (headerp
->rm_body
.rm_chunks
[1] != xdr_zero
) {
816 /* count any expected write chunks in read reply */
817 /* start at write chunk array count */
818 iptr
= &headerp
->rm_body
.rm_chunks
[2];
819 rdmalen
= rpcrdma_count_chunks(rep
,
820 req
->rl_nchunks
, 1, &iptr
);
821 /* check for validity, and no reply chunk after */
822 if (rdmalen
< 0 || *iptr
++ != xdr_zero
)
825 ((unsigned char *)iptr
- (unsigned char *)headerp
);
826 status
= rep
->rr_len
+ rdmalen
;
827 r_xprt
->rx_stats
.total_rdma_reply
+= rdmalen
;
828 /* special case - last chunk may omit padding */
830 rdmalen
= 4 - rdmalen
;
834 /* else ordinary inline */
836 iptr
= (__be32
*)((unsigned char *)headerp
+
838 rep
->rr_len
-= RPCRDMA_HDRLEN_MIN
;
839 status
= rep
->rr_len
;
841 /* Fix up the rpc results for upper layer */
842 rpcrdma_inline_fixup(rqst
, (char *)iptr
, rep
->rr_len
, rdmalen
);
846 /* never expect read or write chunks, always reply chunks */
847 if (headerp
->rm_body
.rm_chunks
[0] != xdr_zero
||
848 headerp
->rm_body
.rm_chunks
[1] != xdr_zero
||
849 headerp
->rm_body
.rm_chunks
[2] != xdr_one
||
850 req
->rl_nchunks
== 0)
852 iptr
= (__be32
*)((unsigned char *)headerp
+
854 rdmalen
= rpcrdma_count_chunks(rep
, req
->rl_nchunks
, 0, &iptr
);
857 r_xprt
->rx_stats
.total_rdma_reply
+= rdmalen
;
858 /* Reply chunk buffer already is the reply vector - no fixup. */
864 dprintk("%s: invalid rpcrdma reply header (type %d):"
865 " chunks[012] == %d %d %d"
866 " expected chunks <= %d\n",
867 __func__
, be32_to_cpu(headerp
->rm_type
),
868 headerp
->rm_body
.rm_chunks
[0],
869 headerp
->rm_body
.rm_chunks
[1],
870 headerp
->rm_body
.rm_chunks
[2],
873 r_xprt
->rx_stats
.bad_reply_count
++;
877 credits
= be32_to_cpu(headerp
->rm_credit
);
879 credits
= 1; /* don't deadlock */
880 else if (credits
> r_xprt
->rx_buf
.rb_max_requests
)
881 credits
= r_xprt
->rx_buf
.rb_max_requests
;
884 xprt
->cwnd
= credits
<< RPC_CWNDSHIFT
;
885 if (xprt
->cwnd
> cwnd
)
886 xprt_release_rqst_cong(rqst
->rq_task
);
888 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
889 __func__
, xprt
, rqst
, status
);
890 xprt_complete_rqst(rqst
->rq_task
, status
);
891 spin_unlock(&xprt
->transport_lock
);