ARM: pmu: add support for interrupt-affinity property
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / rpc_rdma.c
blob91ffde82fa0c49eba3e11385aec9e334eb6b699a
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 * rpc_rdma.c
43 * This file contains the guts of the RPC RDMA protocol, and
44 * does marshaling/unmarshaling, etc. It is also where interfacing
45 * to the Linux RPC framework lives.
48 #include "xprt_rdma.h"
50 #include <linux/highmem.h>
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY RPCDBG_TRANS
54 #endif
56 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
57 static const char transfertypes[][12] = {
58 "pure inline", /* no chunks */
59 " read chunk", /* some argument via rdma read */
60 "*read chunk", /* entire request via rdma read */
61 "write chunk", /* some result via rdma write */
62 "reply chunk" /* entire reply via rdma write */
64 #endif
67 * Chunk assembly from upper layer xdr_buf.
69 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70 * elements. Segments are then coalesced when registered, if possible
71 * within the selected memreg mode.
73 * Returns positive number of segments converted, or a negative errno.
76 static int
77 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
78 enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
80 int len, n = 0, p;
81 int page_base;
82 struct page **ppages;
84 if (pos == 0 && xdrbuf->head[0].iov_len) {
85 seg[n].mr_page = NULL;
86 seg[n].mr_offset = xdrbuf->head[0].iov_base;
87 seg[n].mr_len = xdrbuf->head[0].iov_len;
88 ++n;
91 len = xdrbuf->page_len;
92 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
93 page_base = xdrbuf->page_base & ~PAGE_MASK;
94 p = 0;
95 while (len && n < nsegs) {
96 if (!ppages[p]) {
97 /* alloc the pagelist for receiving buffer */
98 ppages[p] = alloc_page(GFP_ATOMIC);
99 if (!ppages[p])
100 return -ENOMEM;
102 seg[n].mr_page = ppages[p];
103 seg[n].mr_offset = (void *)(unsigned long) page_base;
104 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
105 if (seg[n].mr_len > PAGE_SIZE)
106 return -EIO;
107 len -= seg[n].mr_len;
108 ++n;
109 ++p;
110 page_base = 0; /* page offset only applies to first page */
113 /* Message overflows the seg array */
114 if (len && n == nsegs)
115 return -EIO;
117 if (xdrbuf->tail[0].iov_len) {
118 /* the rpcrdma protocol allows us to omit any trailing
119 * xdr pad bytes, saving the server an RDMA operation. */
120 if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
121 return n;
122 if (n == nsegs)
123 /* Tail remains, but we're out of segments */
124 return -EIO;
125 seg[n].mr_page = NULL;
126 seg[n].mr_offset = xdrbuf->tail[0].iov_base;
127 seg[n].mr_len = xdrbuf->tail[0].iov_len;
128 ++n;
131 return n;
135 * Create read/write chunk lists, and reply chunks, for RDMA
137 * Assume check against THRESHOLD has been done, and chunks are required.
138 * Assume only encoding one list entry for read|write chunks. The NFSv3
139 * protocol is simple enough to allow this as it only has a single "bulk
140 * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141 * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
143 * When used for a single reply chunk (which is a special write
144 * chunk used for the entire reply, rather than just the data), it
145 * is used primarily for READDIR and READLINK which would otherwise
146 * be severely size-limited by a small rdma inline read max. The server
147 * response will come back as an RDMA Write, followed by a message
148 * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149 * chunks do not provide data alignment, however they do not require
150 * "fixup" (moving the response to the upper layer buffer) either.
152 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
154 * Read chunklist (a linked list):
155 * N elements, position P (same P for all chunks of same arg!):
156 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
158 * Write chunklist (a list of (one) counted array):
159 * N elements:
160 * 1 - N - HLOO - HLOO - ... - HLOO - 0
162 * Reply chunk (a counted array):
163 * N elements:
164 * 1 - N - HLOO - HLOO - ... - HLOO
166 * Returns positive RPC/RDMA header size, or negative errno.
169 static ssize_t
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171 struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
173 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175 int n, nsegs, nchunks = 0;
176 unsigned int pos;
177 struct rpcrdma_mr_seg *seg = req->rl_segments;
178 struct rpcrdma_read_chunk *cur_rchunk = NULL;
179 struct rpcrdma_write_array *warray = NULL;
180 struct rpcrdma_write_chunk *cur_wchunk = NULL;
181 __be32 *iptr = headerp->rm_body.rm_chunks;
183 if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184 /* a read chunk - server will RDMA Read our memory */
185 cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186 } else {
187 /* a write or reply chunk - server will RDMA Write our memory */
188 *iptr++ = xdr_zero; /* encode a NULL read chunk list */
189 if (type == rpcrdma_replych)
190 *iptr++ = xdr_zero; /* a NULL write chunk list */
191 warray = (struct rpcrdma_write_array *) iptr;
192 cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
195 if (type == rpcrdma_replych || type == rpcrdma_areadch)
196 pos = 0;
197 else
198 pos = target->head[0].iov_len;
200 nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201 if (nsegs < 0)
202 return nsegs;
204 do {
205 n = rpcrdma_register_external(seg, nsegs,
206 cur_wchunk != NULL, r_xprt);
207 if (n <= 0)
208 goto out;
209 if (cur_rchunk) { /* read */
210 cur_rchunk->rc_discrim = xdr_one;
211 /* all read chunks have the same "position" */
212 cur_rchunk->rc_position = cpu_to_be32(pos);
213 cur_rchunk->rc_target.rs_handle =
214 cpu_to_be32(seg->mr_rkey);
215 cur_rchunk->rc_target.rs_length =
216 cpu_to_be32(seg->mr_len);
217 xdr_encode_hyper(
218 (__be32 *)&cur_rchunk->rc_target.rs_offset,
219 seg->mr_base);
220 dprintk("RPC: %s: read chunk "
221 "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
222 seg->mr_len, (unsigned long long)seg->mr_base,
223 seg->mr_rkey, pos, n < nsegs ? "more" : "last");
224 cur_rchunk++;
225 r_xprt->rx_stats.read_chunk_count++;
226 } else { /* write/reply */
227 cur_wchunk->wc_target.rs_handle =
228 cpu_to_be32(seg->mr_rkey);
229 cur_wchunk->wc_target.rs_length =
230 cpu_to_be32(seg->mr_len);
231 xdr_encode_hyper(
232 (__be32 *)&cur_wchunk->wc_target.rs_offset,
233 seg->mr_base);
234 dprintk("RPC: %s: %s chunk "
235 "elem %d@0x%llx:0x%x (%s)\n", __func__,
236 (type == rpcrdma_replych) ? "reply" : "write",
237 seg->mr_len, (unsigned long long)seg->mr_base,
238 seg->mr_rkey, n < nsegs ? "more" : "last");
239 cur_wchunk++;
240 if (type == rpcrdma_replych)
241 r_xprt->rx_stats.reply_chunk_count++;
242 else
243 r_xprt->rx_stats.write_chunk_count++;
244 r_xprt->rx_stats.total_rdma_request += seg->mr_len;
246 nchunks++;
247 seg += n;
248 nsegs -= n;
249 } while (nsegs);
251 /* success. all failures return above */
252 req->rl_nchunks = nchunks;
255 * finish off header. If write, marshal discrim and nchunks.
257 if (cur_rchunk) {
258 iptr = (__be32 *) cur_rchunk;
259 *iptr++ = xdr_zero; /* finish the read chunk list */
260 *iptr++ = xdr_zero; /* encode a NULL write chunk list */
261 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
262 } else {
263 warray->wc_discrim = xdr_one;
264 warray->wc_nchunks = cpu_to_be32(nchunks);
265 iptr = (__be32 *) cur_wchunk;
266 if (type == rpcrdma_writech) {
267 *iptr++ = xdr_zero; /* finish the write chunk list */
268 *iptr++ = xdr_zero; /* encode a NULL reply chunk */
273 * Return header size.
275 return (unsigned char *)iptr - (unsigned char *)headerp;
277 out:
278 if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_FRMR) {
279 for (pos = 0; nchunks--;)
280 pos += rpcrdma_deregister_external(
281 &req->rl_segments[pos], r_xprt);
283 return n;
287 * Marshal chunks. This routine returns the header length
288 * consumed by marshaling.
290 * Returns positive RPC/RDMA header size, or negative errno.
293 ssize_t
294 rpcrdma_marshal_chunks(struct rpc_rqst *rqst, ssize_t result)
296 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
297 struct rpcrdma_msg *headerp = rdmab_to_msg(req->rl_rdmabuf);
299 if (req->rl_rtype != rpcrdma_noch)
300 result = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
301 headerp, req->rl_rtype);
302 else if (req->rl_wtype != rpcrdma_noch)
303 result = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
304 headerp, req->rl_wtype);
305 return result;
309 * Copy write data inline.
310 * This function is used for "small" requests. Data which is passed
311 * to RPC via iovecs (or page list) is copied directly into the
312 * pre-registered memory buffer for this request. For small amounts
313 * of data, this is efficient. The cutoff value is tunable.
315 static int
316 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
318 int i, npages, curlen;
319 int copy_len;
320 unsigned char *srcp, *destp;
321 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
322 int page_base;
323 struct page **ppages;
325 destp = rqst->rq_svec[0].iov_base;
326 curlen = rqst->rq_svec[0].iov_len;
327 destp += curlen;
329 * Do optional padding where it makes sense. Alignment of write
330 * payload can help the server, if our setting is accurate.
332 pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
333 if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
334 pad = 0; /* don't pad this request */
336 dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
337 __func__, pad, destp, rqst->rq_slen, curlen);
339 copy_len = rqst->rq_snd_buf.page_len;
341 if (rqst->rq_snd_buf.tail[0].iov_len) {
342 curlen = rqst->rq_snd_buf.tail[0].iov_len;
343 if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
344 memmove(destp + copy_len,
345 rqst->rq_snd_buf.tail[0].iov_base, curlen);
346 r_xprt->rx_stats.pullup_copy_count += curlen;
348 dprintk("RPC: %s: tail destp 0x%p len %d\n",
349 __func__, destp + copy_len, curlen);
350 rqst->rq_svec[0].iov_len += curlen;
352 r_xprt->rx_stats.pullup_copy_count += copy_len;
354 page_base = rqst->rq_snd_buf.page_base;
355 ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
356 page_base &= ~PAGE_MASK;
357 npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
358 for (i = 0; copy_len && i < npages; i++) {
359 curlen = PAGE_SIZE - page_base;
360 if (curlen > copy_len)
361 curlen = copy_len;
362 dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
363 __func__, i, destp, copy_len, curlen);
364 srcp = kmap_atomic(ppages[i]);
365 memcpy(destp, srcp+page_base, curlen);
366 kunmap_atomic(srcp);
367 rqst->rq_svec[0].iov_len += curlen;
368 destp += curlen;
369 copy_len -= curlen;
370 page_base = 0;
372 /* header now contains entire send message */
373 return pad;
377 * Marshal a request: the primary job of this routine is to choose
378 * the transfer modes. See comments below.
380 * Uses multiple RDMA IOVs for a request:
381 * [0] -- RPC RDMA header, which uses memory from the *start* of the
382 * preregistered buffer that already holds the RPC data in
383 * its middle.
384 * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
385 * [2] -- optional padding.
386 * [3] -- if padded, header only in [1] and data here.
388 * Returns zero on success, otherwise a negative errno.
392 rpcrdma_marshal_req(struct rpc_rqst *rqst)
394 struct rpc_xprt *xprt = rqst->rq_xprt;
395 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
396 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
397 char *base;
398 size_t rpclen, padlen;
399 ssize_t hdrlen;
400 struct rpcrdma_msg *headerp;
403 * rpclen gets amount of data in first buffer, which is the
404 * pre-registered buffer.
406 base = rqst->rq_svec[0].iov_base;
407 rpclen = rqst->rq_svec[0].iov_len;
409 headerp = rdmab_to_msg(req->rl_rdmabuf);
410 /* don't byte-swap XID, it's already done in request */
411 headerp->rm_xid = rqst->rq_xid;
412 headerp->rm_vers = rpcrdma_version;
413 headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
414 headerp->rm_type = rdma_msg;
417 * Chunks needed for results?
419 * o If the expected result is under the inline threshold, all ops
420 * return as inline (but see later).
421 * o Large non-read ops return as a single reply chunk.
422 * o Large read ops return data as write chunk(s), header as inline.
424 * Note: the NFS code sending down multiple result segments implies
425 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
429 * This code can handle read chunks, write chunks OR reply
430 * chunks -- only one type. If the request is too big to fit
431 * inline, then we will choose read chunks. If the request is
432 * a READ, then use write chunks to separate the file data
433 * into pages; otherwise use reply chunks.
435 if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
436 req->rl_wtype = rpcrdma_noch;
437 else if (rqst->rq_rcv_buf.page_len == 0)
438 req->rl_wtype = rpcrdma_replych;
439 else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
440 req->rl_wtype = rpcrdma_writech;
441 else
442 req->rl_wtype = rpcrdma_replych;
445 * Chunks needed for arguments?
447 * o If the total request is under the inline threshold, all ops
448 * are sent as inline.
449 * o Large non-write ops are sent with the entire message as a
450 * single read chunk (protocol 0-position special case).
451 * o Large write ops transmit data as read chunk(s), header as
452 * inline.
454 * Note: the NFS code sending down multiple argument segments
455 * implies the op is a write.
456 * TBD check NFSv4 setacl
458 if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
459 req->rl_rtype = rpcrdma_noch;
460 else if (rqst->rq_snd_buf.page_len == 0)
461 req->rl_rtype = rpcrdma_areadch;
462 else
463 req->rl_rtype = rpcrdma_readch;
465 /* The following simplification is not true forever */
466 if (req->rl_rtype != rpcrdma_noch && req->rl_wtype == rpcrdma_replych)
467 req->rl_wtype = rpcrdma_noch;
468 if (req->rl_rtype != rpcrdma_noch && req->rl_wtype != rpcrdma_noch) {
469 dprintk("RPC: %s: cannot marshal multiple chunk lists\n",
470 __func__);
471 return -EIO;
474 hdrlen = RPCRDMA_HDRLEN_MIN;
475 padlen = 0;
478 * Pull up any extra send data into the preregistered buffer.
479 * When padding is in use and applies to the transfer, insert
480 * it and change the message type.
482 if (req->rl_rtype == rpcrdma_noch) {
484 padlen = rpcrdma_inline_pullup(rqst,
485 RPCRDMA_INLINE_PAD_VALUE(rqst));
487 if (padlen) {
488 headerp->rm_type = rdma_msgp;
489 headerp->rm_body.rm_padded.rm_align =
490 cpu_to_be32(RPCRDMA_INLINE_PAD_VALUE(rqst));
491 headerp->rm_body.rm_padded.rm_thresh =
492 cpu_to_be32(RPCRDMA_INLINE_PAD_THRESH);
493 headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
494 headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
495 headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
496 hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
497 if (req->rl_wtype != rpcrdma_noch) {
498 dprintk("RPC: %s: invalid chunk list\n",
499 __func__);
500 return -EIO;
502 } else {
503 headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
504 headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
505 headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
506 /* new length after pullup */
507 rpclen = rqst->rq_svec[0].iov_len;
509 * Currently we try to not actually use read inline.
510 * Reply chunks have the desirable property that
511 * they land, packed, directly in the target buffers
512 * without headers, so they require no fixup. The
513 * additional RDMA Write op sends the same amount
514 * of data, streams on-the-wire and adds no overhead
515 * on receive. Therefore, we request a reply chunk
516 * for non-writes wherever feasible and efficient.
518 if (req->rl_wtype == rpcrdma_noch)
519 req->rl_wtype = rpcrdma_replych;
523 hdrlen = rpcrdma_marshal_chunks(rqst, hdrlen);
524 if (hdrlen < 0)
525 return hdrlen;
527 dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
528 " headerp 0x%p base 0x%p lkey 0x%x\n",
529 __func__, transfertypes[req->rl_wtype], hdrlen, rpclen, padlen,
530 headerp, base, rdmab_lkey(req->rl_rdmabuf));
533 * initialize send_iov's - normally only two: rdma chunk header and
534 * single preregistered RPC header buffer, but if padding is present,
535 * then use a preregistered (and zeroed) pad buffer between the RPC
536 * header and any write data. In all non-rdma cases, any following
537 * data has been copied into the RPC header buffer.
539 req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
540 req->rl_send_iov[0].length = hdrlen;
541 req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
543 req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
544 req->rl_send_iov[1].length = rpclen;
545 req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
547 req->rl_niovs = 2;
549 if (padlen) {
550 struct rpcrdma_ep *ep = &r_xprt->rx_ep;
552 req->rl_send_iov[2].addr = rdmab_addr(ep->rep_padbuf);
553 req->rl_send_iov[2].length = padlen;
554 req->rl_send_iov[2].lkey = rdmab_lkey(ep->rep_padbuf);
556 req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
557 req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
558 req->rl_send_iov[3].lkey = rdmab_lkey(req->rl_sendbuf);
560 req->rl_niovs = 4;
563 return 0;
567 * Chase down a received write or reply chunklist to get length
568 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
570 static int
571 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
573 unsigned int i, total_len;
574 struct rpcrdma_write_chunk *cur_wchunk;
575 char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
577 i = be32_to_cpu(**iptrp);
578 if (i > max)
579 return -1;
580 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
581 total_len = 0;
582 while (i--) {
583 struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
584 ifdebug(FACILITY) {
585 u64 off;
586 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
587 dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
588 __func__,
589 be32_to_cpu(seg->rs_length),
590 (unsigned long long)off,
591 be32_to_cpu(seg->rs_handle));
593 total_len += be32_to_cpu(seg->rs_length);
594 ++cur_wchunk;
596 /* check and adjust for properly terminated write chunk */
597 if (wrchunk) {
598 __be32 *w = (__be32 *) cur_wchunk;
599 if (*w++ != xdr_zero)
600 return -1;
601 cur_wchunk = (struct rpcrdma_write_chunk *) w;
603 if ((char *)cur_wchunk > base + rep->rr_len)
604 return -1;
606 *iptrp = (__be32 *) cur_wchunk;
607 return total_len;
611 * Scatter inline received data back into provided iov's.
613 static void
614 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
616 int i, npages, curlen, olen;
617 char *destp;
618 struct page **ppages;
619 int page_base;
621 curlen = rqst->rq_rcv_buf.head[0].iov_len;
622 if (curlen > copy_len) { /* write chunk header fixup */
623 curlen = copy_len;
624 rqst->rq_rcv_buf.head[0].iov_len = curlen;
627 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
628 __func__, srcp, copy_len, curlen);
630 /* Shift pointer for first receive segment only */
631 rqst->rq_rcv_buf.head[0].iov_base = srcp;
632 srcp += curlen;
633 copy_len -= curlen;
635 olen = copy_len;
636 i = 0;
637 rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
638 page_base = rqst->rq_rcv_buf.page_base;
639 ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
640 page_base &= ~PAGE_MASK;
642 if (copy_len && rqst->rq_rcv_buf.page_len) {
643 npages = PAGE_ALIGN(page_base +
644 rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
645 for (; i < npages; i++) {
646 curlen = PAGE_SIZE - page_base;
647 if (curlen > copy_len)
648 curlen = copy_len;
649 dprintk("RPC: %s: page %d"
650 " srcp 0x%p len %d curlen %d\n",
651 __func__, i, srcp, copy_len, curlen);
652 destp = kmap_atomic(ppages[i]);
653 memcpy(destp + page_base, srcp, curlen);
654 flush_dcache_page(ppages[i]);
655 kunmap_atomic(destp);
656 srcp += curlen;
657 copy_len -= curlen;
658 if (copy_len == 0)
659 break;
660 page_base = 0;
664 if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
665 curlen = copy_len;
666 if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
667 curlen = rqst->rq_rcv_buf.tail[0].iov_len;
668 if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
669 memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
670 dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
671 __func__, srcp, copy_len, curlen);
672 rqst->rq_rcv_buf.tail[0].iov_len = curlen;
673 copy_len -= curlen; ++i;
674 } else
675 rqst->rq_rcv_buf.tail[0].iov_len = 0;
677 if (pad) {
678 /* implicit padding on terminal chunk */
679 unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
680 while (pad--)
681 p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
684 if (copy_len)
685 dprintk("RPC: %s: %d bytes in"
686 " %d extra segments (%d lost)\n",
687 __func__, olen, i, copy_len);
689 /* TBD avoid a warning from call_decode() */
690 rqst->rq_private_buf = rqst->rq_rcv_buf;
693 void
694 rpcrdma_connect_worker(struct work_struct *work)
696 struct rpcrdma_ep *ep =
697 container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
698 struct rpcrdma_xprt *r_xprt =
699 container_of(ep, struct rpcrdma_xprt, rx_ep);
700 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
702 spin_lock_bh(&xprt->transport_lock);
703 if (++xprt->connect_cookie == 0) /* maintain a reserved value */
704 ++xprt->connect_cookie;
705 if (ep->rep_connected > 0) {
706 if (!xprt_test_and_set_connected(xprt))
707 xprt_wake_pending_tasks(xprt, 0);
708 } else {
709 if (xprt_test_and_clear_connected(xprt))
710 xprt_wake_pending_tasks(xprt, -ENOTCONN);
712 spin_unlock_bh(&xprt->transport_lock);
716 * This function is called when an async event is posted to
717 * the connection which changes the connection state. All it
718 * does at this point is mark the connection up/down, the rpc
719 * timers do the rest.
721 void
722 rpcrdma_conn_func(struct rpcrdma_ep *ep)
724 schedule_delayed_work(&ep->rep_connect_worker, 0);
728 * Called as a tasklet to do req/reply match and complete a request
729 * Errors must result in the RPC task either being awakened, or
730 * allowed to timeout, to discover the errors at that time.
732 void
733 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
735 struct rpcrdma_msg *headerp;
736 struct rpcrdma_req *req;
737 struct rpc_rqst *rqst;
738 struct rpc_xprt *xprt = rep->rr_xprt;
739 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
740 __be32 *iptr;
741 int rdmalen, status;
742 unsigned long cwnd;
743 u32 credits;
745 /* Check status. If bad, signal disconnect and return rep to pool */
746 if (rep->rr_len == ~0U) {
747 rpcrdma_recv_buffer_put(rep);
748 if (r_xprt->rx_ep.rep_connected == 1) {
749 r_xprt->rx_ep.rep_connected = -EIO;
750 rpcrdma_conn_func(&r_xprt->rx_ep);
752 return;
754 if (rep->rr_len < RPCRDMA_HDRLEN_MIN) {
755 dprintk("RPC: %s: short/invalid reply\n", __func__);
756 goto repost;
758 headerp = rdmab_to_msg(rep->rr_rdmabuf);
759 if (headerp->rm_vers != rpcrdma_version) {
760 dprintk("RPC: %s: invalid version %d\n",
761 __func__, be32_to_cpu(headerp->rm_vers));
762 goto repost;
765 /* Get XID and try for a match. */
766 spin_lock(&xprt->transport_lock);
767 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
768 if (rqst == NULL) {
769 spin_unlock(&xprt->transport_lock);
770 dprintk("RPC: %s: reply 0x%p failed "
771 "to match any request xid 0x%08x len %d\n",
772 __func__, rep, be32_to_cpu(headerp->rm_xid),
773 rep->rr_len);
774 repost:
775 r_xprt->rx_stats.bad_reply_count++;
776 rep->rr_func = rpcrdma_reply_handler;
777 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
778 rpcrdma_recv_buffer_put(rep);
780 return;
783 /* get request object */
784 req = rpcr_to_rdmar(rqst);
785 if (req->rl_reply) {
786 spin_unlock(&xprt->transport_lock);
787 dprintk("RPC: %s: duplicate reply 0x%p to RPC "
788 "request 0x%p: xid 0x%08x\n", __func__, rep, req,
789 be32_to_cpu(headerp->rm_xid));
790 goto repost;
793 dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
794 " RPC request 0x%p xid 0x%08x\n",
795 __func__, rep, req, rqst,
796 be32_to_cpu(headerp->rm_xid));
798 /* from here on, the reply is no longer an orphan */
799 req->rl_reply = rep;
800 xprt->reestablish_timeout = 0;
802 /* check for expected message types */
803 /* The order of some of these tests is important. */
804 switch (headerp->rm_type) {
805 case rdma_msg:
806 /* never expect read chunks */
807 /* never expect reply chunks (two ways to check) */
808 /* never expect write chunks without having offered RDMA */
809 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
810 (headerp->rm_body.rm_chunks[1] == xdr_zero &&
811 headerp->rm_body.rm_chunks[2] != xdr_zero) ||
812 (headerp->rm_body.rm_chunks[1] != xdr_zero &&
813 req->rl_nchunks == 0))
814 goto badheader;
815 if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
816 /* count any expected write chunks in read reply */
817 /* start at write chunk array count */
818 iptr = &headerp->rm_body.rm_chunks[2];
819 rdmalen = rpcrdma_count_chunks(rep,
820 req->rl_nchunks, 1, &iptr);
821 /* check for validity, and no reply chunk after */
822 if (rdmalen < 0 || *iptr++ != xdr_zero)
823 goto badheader;
824 rep->rr_len -=
825 ((unsigned char *)iptr - (unsigned char *)headerp);
826 status = rep->rr_len + rdmalen;
827 r_xprt->rx_stats.total_rdma_reply += rdmalen;
828 /* special case - last chunk may omit padding */
829 if (rdmalen &= 3) {
830 rdmalen = 4 - rdmalen;
831 status += rdmalen;
833 } else {
834 /* else ordinary inline */
835 rdmalen = 0;
836 iptr = (__be32 *)((unsigned char *)headerp +
837 RPCRDMA_HDRLEN_MIN);
838 rep->rr_len -= RPCRDMA_HDRLEN_MIN;
839 status = rep->rr_len;
841 /* Fix up the rpc results for upper layer */
842 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
843 break;
845 case rdma_nomsg:
846 /* never expect read or write chunks, always reply chunks */
847 if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
848 headerp->rm_body.rm_chunks[1] != xdr_zero ||
849 headerp->rm_body.rm_chunks[2] != xdr_one ||
850 req->rl_nchunks == 0)
851 goto badheader;
852 iptr = (__be32 *)((unsigned char *)headerp +
853 RPCRDMA_HDRLEN_MIN);
854 rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
855 if (rdmalen < 0)
856 goto badheader;
857 r_xprt->rx_stats.total_rdma_reply += rdmalen;
858 /* Reply chunk buffer already is the reply vector - no fixup. */
859 status = rdmalen;
860 break;
862 badheader:
863 default:
864 dprintk("%s: invalid rpcrdma reply header (type %d):"
865 " chunks[012] == %d %d %d"
866 " expected chunks <= %d\n",
867 __func__, be32_to_cpu(headerp->rm_type),
868 headerp->rm_body.rm_chunks[0],
869 headerp->rm_body.rm_chunks[1],
870 headerp->rm_body.rm_chunks[2],
871 req->rl_nchunks);
872 status = -EIO;
873 r_xprt->rx_stats.bad_reply_count++;
874 break;
877 credits = be32_to_cpu(headerp->rm_credit);
878 if (credits == 0)
879 credits = 1; /* don't deadlock */
880 else if (credits > r_xprt->rx_buf.rb_max_requests)
881 credits = r_xprt->rx_buf.rb_max_requests;
883 cwnd = xprt->cwnd;
884 xprt->cwnd = credits << RPC_CWNDSHIFT;
885 if (xprt->cwnd > cwnd)
886 xprt_release_rqst_cong(rqst->rq_task);
888 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
889 __func__, xprt, rqst, status);
890 xprt_complete_rqst(rqst->rq_task, status);
891 spin_unlock(&xprt->transport_lock);