1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "amd64_edac.h"
3 #include <asm/amd_nb.h>
5 static struct edac_pci_ctl_info
*pci_ctl
;
7 static int report_gart_errors
;
8 module_param(report_gart_errors
, int, 0644);
11 * Set by command line parameter. If BIOS has enabled the ECC, this override is
12 * cleared to prevent re-enabling the hardware by this driver.
14 static int ecc_enable_override
;
15 module_param(ecc_enable_override
, int, 0644);
17 static struct msr __percpu
*msrs
;
20 static struct ecc_settings
**ecc_stngs
;
22 /* Number of Unified Memory Controllers */
26 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
27 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 *FIXME: Produce a better mapping/linearisation.
32 static const struct scrubrate
{
33 u32 scrubval
; /* bit pattern for scrub rate */
34 u32 bandwidth
; /* bandwidth consumed (bytes/sec) */
36 { 0x01, 1600000000UL},
58 { 0x00, 0UL}, /* scrubbing off */
61 int __amd64_read_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
62 u32
*val
, const char *func
)
66 err
= pci_read_config_dword(pdev
, offset
, val
);
68 amd64_warn("%s: error reading F%dx%03x.\n",
69 func
, PCI_FUNC(pdev
->devfn
), offset
);
74 int __amd64_write_pci_cfg_dword(struct pci_dev
*pdev
, int offset
,
75 u32 val
, const char *func
)
79 err
= pci_write_config_dword(pdev
, offset
, val
);
81 amd64_warn("%s: error writing to F%dx%03x.\n",
82 func
, PCI_FUNC(pdev
->devfn
), offset
);
88 * Select DCT to which PCI cfg accesses are routed
90 static void f15h_select_dct(struct amd64_pvt
*pvt
, u8 dct
)
94 amd64_read_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, ®
);
95 reg
&= (pvt
->model
== 0x30) ? ~3 : ~1;
97 amd64_write_pci_cfg(pvt
->F1
, DCT_CFG_SEL
, reg
);
102 * Depending on the family, F2 DCT reads need special handling:
104 * K8: has a single DCT only and no address offsets >= 0x100
106 * F10h: each DCT has its own set of regs
110 * F16h: has only 1 DCT
112 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
114 static inline int amd64_read_dct_pci_cfg(struct amd64_pvt
*pvt
, u8 dct
,
115 int offset
, u32
*val
)
119 if (dct
|| offset
>= 0x100)
126 * Note: If ganging is enabled, barring the regs
127 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
128 * return 0. (cf. Section 2.8.1 F10h BKDG)
130 if (dct_ganging_enabled(pvt
))
139 * F15h: F2x1xx addresses do not map explicitly to DCT1.
140 * We should select which DCT we access using F1x10C[DctCfgSel]
142 dct
= (dct
&& pvt
->model
== 0x30) ? 3 : dct
;
143 f15h_select_dct(pvt
, dct
);
154 return amd64_read_pci_cfg(pvt
->F2
, offset
, val
);
158 * Memory scrubber control interface. For K8, memory scrubbing is handled by
159 * hardware and can involve L2 cache, dcache as well as the main memory. With
160 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
163 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
164 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
165 * bytes/sec for the setting.
167 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
168 * other archs, we might not have access to the caches directly.
171 static inline void __f17h_set_scrubval(struct amd64_pvt
*pvt
, u32 scrubval
)
174 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
175 * are shifted down by 0x5, so scrubval 0x5 is written to the register
176 * as 0x0, scrubval 0x6 as 0x1, etc.
178 if (scrubval
>= 0x5 && scrubval
<= 0x14) {
180 pci_write_bits32(pvt
->F6
, F17H_SCR_LIMIT_ADDR
, scrubval
, 0xF);
181 pci_write_bits32(pvt
->F6
, F17H_SCR_BASE_ADDR
, 1, 0x1);
183 pci_write_bits32(pvt
->F6
, F17H_SCR_BASE_ADDR
, 0, 0x1);
187 * Scan the scrub rate mapping table for a close or matching bandwidth value to
188 * issue. If requested is too big, then use last maximum value found.
190 static int __set_scrub_rate(struct amd64_pvt
*pvt
, u32 new_bw
, u32 min_rate
)
196 * map the configured rate (new_bw) to a value specific to the AMD64
197 * memory controller and apply to register. Search for the first
198 * bandwidth entry that is greater or equal than the setting requested
199 * and program that. If at last entry, turn off DRAM scrubbing.
201 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
202 * by falling back to the last element in scrubrates[].
204 for (i
= 0; i
< ARRAY_SIZE(scrubrates
) - 1; i
++) {
206 * skip scrub rates which aren't recommended
207 * (see F10 BKDG, F3x58)
209 if (scrubrates
[i
].scrubval
< min_rate
)
212 if (scrubrates
[i
].bandwidth
<= new_bw
)
216 scrubval
= scrubrates
[i
].scrubval
;
218 if (pvt
->fam
== 0x17 || pvt
->fam
== 0x18) {
219 __f17h_set_scrubval(pvt
, scrubval
);
220 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x60) {
221 f15h_select_dct(pvt
, 0);
222 pci_write_bits32(pvt
->F2
, F15H_M60H_SCRCTRL
, scrubval
, 0x001F);
223 f15h_select_dct(pvt
, 1);
224 pci_write_bits32(pvt
->F2
, F15H_M60H_SCRCTRL
, scrubval
, 0x001F);
226 pci_write_bits32(pvt
->F3
, SCRCTRL
, scrubval
, 0x001F);
230 return scrubrates
[i
].bandwidth
;
235 static int set_scrub_rate(struct mem_ctl_info
*mci
, u32 bw
)
237 struct amd64_pvt
*pvt
= mci
->pvt_info
;
238 u32 min_scrubrate
= 0x5;
243 if (pvt
->fam
== 0x15) {
245 if (pvt
->model
< 0x10)
246 f15h_select_dct(pvt
, 0);
248 if (pvt
->model
== 0x60)
251 return __set_scrub_rate(pvt
, bw
, min_scrubrate
);
254 static int get_scrub_rate(struct mem_ctl_info
*mci
)
256 struct amd64_pvt
*pvt
= mci
->pvt_info
;
257 int i
, retval
= -EINVAL
;
263 if (pvt
->model
< 0x10)
264 f15h_select_dct(pvt
, 0);
266 if (pvt
->model
== 0x60)
267 amd64_read_pci_cfg(pvt
->F2
, F15H_M60H_SCRCTRL
, &scrubval
);
269 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
274 amd64_read_pci_cfg(pvt
->F6
, F17H_SCR_BASE_ADDR
, &scrubval
);
275 if (scrubval
& BIT(0)) {
276 amd64_read_pci_cfg(pvt
->F6
, F17H_SCR_LIMIT_ADDR
, &scrubval
);
285 amd64_read_pci_cfg(pvt
->F3
, SCRCTRL
, &scrubval
);
289 scrubval
= scrubval
& 0x001F;
291 for (i
= 0; i
< ARRAY_SIZE(scrubrates
); i
++) {
292 if (scrubrates
[i
].scrubval
== scrubval
) {
293 retval
= scrubrates
[i
].bandwidth
;
301 * returns true if the SysAddr given by sys_addr matches the
302 * DRAM base/limit associated with node_id
304 static bool base_limit_match(struct amd64_pvt
*pvt
, u64 sys_addr
, u8 nid
)
308 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
309 * all ones if the most significant implemented address bit is 1.
310 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
311 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
312 * Application Programming.
314 addr
= sys_addr
& 0x000000ffffffffffull
;
316 return ((addr
>= get_dram_base(pvt
, nid
)) &&
317 (addr
<= get_dram_limit(pvt
, nid
)));
321 * Attempt to map a SysAddr to a node. On success, return a pointer to the
322 * mem_ctl_info structure for the node that the SysAddr maps to.
324 * On failure, return NULL.
326 static struct mem_ctl_info
*find_mc_by_sys_addr(struct mem_ctl_info
*mci
,
329 struct amd64_pvt
*pvt
;
334 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
335 * 3.4.4.2) registers to map the SysAddr to a node ID.
340 * The value of this field should be the same for all DRAM Base
341 * registers. Therefore we arbitrarily choose to read it from the
342 * register for node 0.
344 intlv_en
= dram_intlv_en(pvt
, 0);
347 for (node_id
= 0; node_id
< DRAM_RANGES
; node_id
++) {
348 if (base_limit_match(pvt
, sys_addr
, node_id
))
354 if (unlikely((intlv_en
!= 0x01) &&
355 (intlv_en
!= 0x03) &&
356 (intlv_en
!= 0x07))) {
357 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en
);
361 bits
= (((u32
) sys_addr
) >> 12) & intlv_en
;
363 for (node_id
= 0; ; ) {
364 if ((dram_intlv_sel(pvt
, node_id
) & intlv_en
) == bits
)
365 break; /* intlv_sel field matches */
367 if (++node_id
>= DRAM_RANGES
)
371 /* sanity test for sys_addr */
372 if (unlikely(!base_limit_match(pvt
, sys_addr
, node_id
))) {
373 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
374 "range for node %d with node interleaving enabled.\n",
375 __func__
, sys_addr
, node_id
);
380 return edac_mc_find((int)node_id
);
383 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
384 (unsigned long)sys_addr
);
390 * compute the CS base address of the @csrow on the DRAM controller @dct.
391 * For details see F2x[5C:40] in the processor's BKDG
393 static void get_cs_base_and_mask(struct amd64_pvt
*pvt
, int csrow
, u8 dct
,
394 u64
*base
, u64
*mask
)
396 u64 csbase
, csmask
, base_bits
, mask_bits
;
399 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
400 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
401 csmask
= pvt
->csels
[dct
].csmasks
[csrow
];
402 base_bits
= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
403 mask_bits
= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
407 * F16h and F15h, models 30h and later need two addr_shift values:
408 * 8 for high and 6 for low (cf. F16h BKDG).
410 } else if (pvt
->fam
== 0x16 ||
411 (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)) {
412 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
413 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
415 *base
= (csbase
& GENMASK_ULL(15, 5)) << 6;
416 *base
|= (csbase
& GENMASK_ULL(30, 19)) << 8;
419 /* poke holes for the csmask */
420 *mask
&= ~((GENMASK_ULL(15, 5) << 6) |
421 (GENMASK_ULL(30, 19) << 8));
423 *mask
|= (csmask
& GENMASK_ULL(15, 5)) << 6;
424 *mask
|= (csmask
& GENMASK_ULL(30, 19)) << 8;
428 csbase
= pvt
->csels
[dct
].csbases
[csrow
];
429 csmask
= pvt
->csels
[dct
].csmasks
[csrow
>> 1];
432 if (pvt
->fam
== 0x15)
433 base_bits
= mask_bits
=
434 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
436 base_bits
= mask_bits
=
437 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
440 *base
= (csbase
& base_bits
) << addr_shift
;
443 /* poke holes for the csmask */
444 *mask
&= ~(mask_bits
<< addr_shift
);
446 *mask
|= (csmask
& mask_bits
) << addr_shift
;
449 #define for_each_chip_select(i, dct, pvt) \
450 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
452 #define chip_select_base(i, dct, pvt) \
453 pvt->csels[dct].csbases[i]
455 #define for_each_chip_select_mask(i, dct, pvt) \
456 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
458 #define for_each_umc(i) \
459 for (i = 0; i < num_umcs; i++)
462 * @input_addr is an InputAddr associated with the node given by mci. Return the
463 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
465 static int input_addr_to_csrow(struct mem_ctl_info
*mci
, u64 input_addr
)
467 struct amd64_pvt
*pvt
;
473 for_each_chip_select(csrow
, 0, pvt
) {
474 if (!csrow_enabled(csrow
, 0, pvt
))
477 get_cs_base_and_mask(pvt
, csrow
, 0, &base
, &mask
);
481 if ((input_addr
& mask
) == (base
& mask
)) {
482 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
483 (unsigned long)input_addr
, csrow
,
489 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
490 (unsigned long)input_addr
, pvt
->mc_node_id
);
496 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
497 * for the node represented by mci. Info is passed back in *hole_base,
498 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
499 * info is invalid. Info may be invalid for either of the following reasons:
501 * - The revision of the node is not E or greater. In this case, the DRAM Hole
502 * Address Register does not exist.
504 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
505 * indicating that its contents are not valid.
507 * The values passed back in *hole_base, *hole_offset, and *hole_size are
508 * complete 32-bit values despite the fact that the bitfields in the DHAR
509 * only represent bits 31-24 of the base and offset values.
511 int amd64_get_dram_hole_info(struct mem_ctl_info
*mci
, u64
*hole_base
,
512 u64
*hole_offset
, u64
*hole_size
)
514 struct amd64_pvt
*pvt
= mci
->pvt_info
;
516 /* only revE and later have the DRAM Hole Address Register */
517 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_E
) {
518 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
519 pvt
->ext_model
, pvt
->mc_node_id
);
523 /* valid for Fam10h and above */
524 if (pvt
->fam
>= 0x10 && !dhar_mem_hoist_valid(pvt
)) {
525 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
529 if (!dhar_valid(pvt
)) {
530 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
535 /* This node has Memory Hoisting */
537 /* +------------------+--------------------+--------------------+-----
538 * | memory | DRAM hole | relocated |
539 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
541 * | | | [0x100000000, |
542 * | | | (0x100000000+ |
543 * | | | (0xffffffff-x))] |
544 * +------------------+--------------------+--------------------+-----
546 * Above is a diagram of physical memory showing the DRAM hole and the
547 * relocated addresses from the DRAM hole. As shown, the DRAM hole
548 * starts at address x (the base address) and extends through address
549 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
550 * addresses in the hole so that they start at 0x100000000.
553 *hole_base
= dhar_base(pvt
);
554 *hole_size
= (1ULL << 32) - *hole_base
;
556 *hole_offset
= (pvt
->fam
> 0xf) ? f10_dhar_offset(pvt
)
557 : k8_dhar_offset(pvt
);
559 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
560 pvt
->mc_node_id
, (unsigned long)*hole_base
,
561 (unsigned long)*hole_offset
, (unsigned long)*hole_size
);
565 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info
);
568 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
569 * assumed that sys_addr maps to the node given by mci.
571 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
572 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
573 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
574 * then it is also involved in translating a SysAddr to a DramAddr. Sections
575 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
576 * These parts of the documentation are unclear. I interpret them as follows:
578 * When node n receives a SysAddr, it processes the SysAddr as follows:
580 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
581 * Limit registers for node n. If the SysAddr is not within the range
582 * specified by the base and limit values, then node n ignores the Sysaddr
583 * (since it does not map to node n). Otherwise continue to step 2 below.
585 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
586 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
587 * the range of relocated addresses (starting at 0x100000000) from the DRAM
588 * hole. If not, skip to step 3 below. Else get the value of the
589 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
590 * offset defined by this value from the SysAddr.
592 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
593 * Base register for node n. To obtain the DramAddr, subtract the base
594 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
596 static u64
sys_addr_to_dram_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
598 struct amd64_pvt
*pvt
= mci
->pvt_info
;
599 u64 dram_base
, hole_base
, hole_offset
, hole_size
, dram_addr
;
602 dram_base
= get_dram_base(pvt
, pvt
->mc_node_id
);
604 ret
= amd64_get_dram_hole_info(mci
, &hole_base
, &hole_offset
,
607 if ((sys_addr
>= (1ULL << 32)) &&
608 (sys_addr
< ((1ULL << 32) + hole_size
))) {
609 /* use DHAR to translate SysAddr to DramAddr */
610 dram_addr
= sys_addr
- hole_offset
;
612 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
613 (unsigned long)sys_addr
,
614 (unsigned long)dram_addr
);
621 * Translate the SysAddr to a DramAddr as shown near the start of
622 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
623 * only deals with 40-bit values. Therefore we discard bits 63-40 of
624 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
625 * discard are all 1s. Otherwise the bits we discard are all 0s. See
626 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
627 * Programmer's Manual Volume 1 Application Programming.
629 dram_addr
= (sys_addr
& GENMASK_ULL(39, 0)) - dram_base
;
631 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
632 (unsigned long)sys_addr
, (unsigned long)dram_addr
);
637 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
638 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
639 * for node interleaving.
641 static int num_node_interleave_bits(unsigned intlv_en
)
643 static const int intlv_shift_table
[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
646 BUG_ON(intlv_en
> 7);
647 n
= intlv_shift_table
[intlv_en
];
651 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
652 static u64
dram_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 dram_addr
)
654 struct amd64_pvt
*pvt
;
661 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
662 * concerning translating a DramAddr to an InputAddr.
664 intlv_shift
= num_node_interleave_bits(dram_intlv_en(pvt
, 0));
665 input_addr
= ((dram_addr
>> intlv_shift
) & GENMASK_ULL(35, 12)) +
668 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
669 intlv_shift
, (unsigned long)dram_addr
,
670 (unsigned long)input_addr
);
676 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
677 * assumed that @sys_addr maps to the node given by mci.
679 static u64
sys_addr_to_input_addr(struct mem_ctl_info
*mci
, u64 sys_addr
)
684 dram_addr_to_input_addr(mci
, sys_addr_to_dram_addr(mci
, sys_addr
));
686 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
687 (unsigned long)sys_addr
, (unsigned long)input_addr
);
692 /* Map the Error address to a PAGE and PAGE OFFSET. */
693 static inline void error_address_to_page_and_offset(u64 error_address
,
694 struct err_info
*err
)
696 err
->page
= (u32
) (error_address
>> PAGE_SHIFT
);
697 err
->offset
= ((u32
) error_address
) & ~PAGE_MASK
;
701 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
702 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
703 * of a node that detected an ECC memory error. mci represents the node that
704 * the error address maps to (possibly different from the node that detected
705 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
708 static int sys_addr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
)
712 csrow
= input_addr_to_csrow(mci
, sys_addr_to_input_addr(mci
, sys_addr
));
715 amd64_mc_err(mci
, "Failed to translate InputAddr to csrow for "
716 "address 0x%lx\n", (unsigned long)sys_addr
);
720 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*, u16
);
723 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
726 static unsigned long determine_edac_cap(struct amd64_pvt
*pvt
)
728 unsigned long edac_cap
= EDAC_FLAG_NONE
;
732 u8 i
, umc_en_mask
= 0, dimm_ecc_en_mask
= 0;
735 if (!(pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
))
738 umc_en_mask
|= BIT(i
);
740 /* UMC Configuration bit 12 (DimmEccEn) */
741 if (pvt
->umc
[i
].umc_cfg
& BIT(12))
742 dimm_ecc_en_mask
|= BIT(i
);
745 if (umc_en_mask
== dimm_ecc_en_mask
)
746 edac_cap
= EDAC_FLAG_SECDED
;
748 bit
= (pvt
->fam
> 0xf || pvt
->ext_model
>= K8_REV_F
)
752 if (pvt
->dclr0
& BIT(bit
))
753 edac_cap
= EDAC_FLAG_SECDED
;
759 static void debug_display_dimm_sizes(struct amd64_pvt
*, u8
);
761 static void debug_dump_dramcfg_low(struct amd64_pvt
*pvt
, u32 dclr
, int chan
)
763 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan
, dclr
);
765 if (pvt
->dram_type
== MEM_LRDDR3
) {
766 u32 dcsm
= pvt
->csels
[chan
].csmasks
[0];
768 * It's assumed all LRDIMMs in a DCT are going to be of
769 * same 'type' until proven otherwise. So, use a cs
770 * value of '0' here to get dcsm value.
772 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm
& 0x3));
775 edac_dbg(1, "All DIMMs support ECC:%s\n",
776 (dclr
& BIT(19)) ? "yes" : "no");
779 edac_dbg(1, " PAR/ERR parity: %s\n",
780 (dclr
& BIT(8)) ? "enabled" : "disabled");
782 if (pvt
->fam
== 0x10)
783 edac_dbg(1, " DCT 128bit mode width: %s\n",
784 (dclr
& BIT(11)) ? "128b" : "64b");
786 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
787 (dclr
& BIT(12)) ? "yes" : "no",
788 (dclr
& BIT(13)) ? "yes" : "no",
789 (dclr
& BIT(14)) ? "yes" : "no",
790 (dclr
& BIT(15)) ? "yes" : "no");
793 #define CS_EVEN_PRIMARY BIT(0)
794 #define CS_ODD_PRIMARY BIT(1)
795 #define CS_EVEN_SECONDARY BIT(2)
796 #define CS_ODD_SECONDARY BIT(3)
798 #define CS_EVEN (CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
799 #define CS_ODD (CS_ODD_PRIMARY | CS_ODD_SECONDARY)
801 static int f17_get_cs_mode(int dimm
, u8 ctrl
, struct amd64_pvt
*pvt
)
805 if (csrow_enabled(2 * dimm
, ctrl
, pvt
))
806 cs_mode
|= CS_EVEN_PRIMARY
;
808 if (csrow_enabled(2 * dimm
+ 1, ctrl
, pvt
))
809 cs_mode
|= CS_ODD_PRIMARY
;
811 /* Asymmetric dual-rank DIMM support. */
812 if (csrow_sec_enabled(2 * dimm
+ 1, ctrl
, pvt
))
813 cs_mode
|= CS_ODD_SECONDARY
;
818 static void debug_display_dimm_sizes_df(struct amd64_pvt
*pvt
, u8 ctrl
)
820 int dimm
, size0
, size1
, cs0
, cs1
, cs_mode
;
822 edac_printk(KERN_DEBUG
, EDAC_MC
, "UMC%d chip selects:\n", ctrl
);
824 for (dimm
= 0; dimm
< 2; dimm
++) {
828 cs_mode
= f17_get_cs_mode(dimm
, ctrl
, pvt
);
830 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
, cs_mode
, cs0
);
831 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
, cs_mode
, cs1
);
833 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
839 static void __dump_misc_regs_df(struct amd64_pvt
*pvt
)
841 struct amd64_umc
*umc
;
842 u32 i
, tmp
, umc_base
;
845 umc_base
= get_umc_base(i
);
848 edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i
, umc
->dimm_cfg
);
849 edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i
, umc
->umc_cfg
);
850 edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i
, umc
->sdp_ctrl
);
851 edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i
, umc
->ecc_ctrl
);
853 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_ECC_BAD_SYMBOL
, &tmp
);
854 edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i
, tmp
);
856 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_UMC_CAP
, &tmp
);
857 edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i
, tmp
);
858 edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i
, umc
->umc_cap_hi
);
860 edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
861 i
, (umc
->umc_cap_hi
& BIT(30)) ? "yes" : "no",
862 (umc
->umc_cap_hi
& BIT(31)) ? "yes" : "no");
863 edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
864 i
, (umc
->umc_cfg
& BIT(12)) ? "yes" : "no");
865 edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
866 i
, (umc
->dimm_cfg
& BIT(6)) ? "yes" : "no");
867 edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
868 i
, (umc
->dimm_cfg
& BIT(7)) ? "yes" : "no");
870 if (pvt
->dram_type
== MEM_LRDDR4
) {
871 amd_smn_read(pvt
->mc_node_id
, umc_base
+ UMCCH_ADDR_CFG
, &tmp
);
872 edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
873 i
, 1 << ((tmp
>> 4) & 0x3));
876 debug_display_dimm_sizes_df(pvt
, i
);
879 edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
880 pvt
->dhar
, dhar_base(pvt
));
883 /* Display and decode various NB registers for debug purposes. */
884 static void __dump_misc_regs(struct amd64_pvt
*pvt
)
886 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt
->nbcap
);
888 edac_dbg(1, " NB two channel DRAM capable: %s\n",
889 (pvt
->nbcap
& NBCAP_DCT_DUAL
) ? "yes" : "no");
891 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
892 (pvt
->nbcap
& NBCAP_SECDED
) ? "yes" : "no",
893 (pvt
->nbcap
& NBCAP_CHIPKILL
) ? "yes" : "no");
895 debug_dump_dramcfg_low(pvt
, pvt
->dclr0
, 0);
897 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt
->online_spare
);
899 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
900 pvt
->dhar
, dhar_base(pvt
),
901 (pvt
->fam
== 0xf) ? k8_dhar_offset(pvt
)
902 : f10_dhar_offset(pvt
));
904 debug_display_dimm_sizes(pvt
, 0);
906 /* everything below this point is Fam10h and above */
910 debug_display_dimm_sizes(pvt
, 1);
912 /* Only if NOT ganged does dclr1 have valid info */
913 if (!dct_ganging_enabled(pvt
))
914 debug_dump_dramcfg_low(pvt
, pvt
->dclr1
, 1);
917 /* Display and decode various NB registers for debug purposes. */
918 static void dump_misc_regs(struct amd64_pvt
*pvt
)
921 __dump_misc_regs_df(pvt
);
923 __dump_misc_regs(pvt
);
925 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt
) ? "yes" : "no");
927 amd64_info("using x%u syndromes.\n", pvt
->ecc_sym_sz
);
931 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
933 static void prep_chip_selects(struct amd64_pvt
*pvt
)
935 if (pvt
->fam
== 0xf && pvt
->ext_model
< K8_REV_F
) {
936 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
937 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 8;
938 } else if (pvt
->fam
== 0x15 && pvt
->model
== 0x30) {
939 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 4;
940 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 2;
941 } else if (pvt
->fam
>= 0x17) {
945 pvt
->csels
[umc
].b_cnt
= 4;
946 pvt
->csels
[umc
].m_cnt
= 2;
950 pvt
->csels
[0].b_cnt
= pvt
->csels
[1].b_cnt
= 8;
951 pvt
->csels
[0].m_cnt
= pvt
->csels
[1].m_cnt
= 4;
955 static void read_umc_base_mask(struct amd64_pvt
*pvt
)
957 u32 umc_base_reg
, umc_base_reg_sec
;
958 u32 umc_mask_reg
, umc_mask_reg_sec
;
959 u32 base_reg
, base_reg_sec
;
960 u32 mask_reg
, mask_reg_sec
;
961 u32
*base
, *base_sec
;
962 u32
*mask
, *mask_sec
;
966 umc_base_reg
= get_umc_base(umc
) + UMCCH_BASE_ADDR
;
967 umc_base_reg_sec
= get_umc_base(umc
) + UMCCH_BASE_ADDR_SEC
;
969 for_each_chip_select(cs
, umc
, pvt
) {
970 base
= &pvt
->csels
[umc
].csbases
[cs
];
971 base_sec
= &pvt
->csels
[umc
].csbases_sec
[cs
];
973 base_reg
= umc_base_reg
+ (cs
* 4);
974 base_reg_sec
= umc_base_reg_sec
+ (cs
* 4);
976 if (!amd_smn_read(pvt
->mc_node_id
, base_reg
, base
))
977 edac_dbg(0, " DCSB%d[%d]=0x%08x reg: 0x%x\n",
978 umc
, cs
, *base
, base_reg
);
980 if (!amd_smn_read(pvt
->mc_node_id
, base_reg_sec
, base_sec
))
981 edac_dbg(0, " DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
982 umc
, cs
, *base_sec
, base_reg_sec
);
985 umc_mask_reg
= get_umc_base(umc
) + UMCCH_ADDR_MASK
;
986 umc_mask_reg_sec
= get_umc_base(umc
) + UMCCH_ADDR_MASK_SEC
;
988 for_each_chip_select_mask(cs
, umc
, pvt
) {
989 mask
= &pvt
->csels
[umc
].csmasks
[cs
];
990 mask_sec
= &pvt
->csels
[umc
].csmasks_sec
[cs
];
992 mask_reg
= umc_mask_reg
+ (cs
* 4);
993 mask_reg_sec
= umc_mask_reg_sec
+ (cs
* 4);
995 if (!amd_smn_read(pvt
->mc_node_id
, mask_reg
, mask
))
996 edac_dbg(0, " DCSM%d[%d]=0x%08x reg: 0x%x\n",
997 umc
, cs
, *mask
, mask_reg
);
999 if (!amd_smn_read(pvt
->mc_node_id
, mask_reg_sec
, mask_sec
))
1000 edac_dbg(0, " DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
1001 umc
, cs
, *mask_sec
, mask_reg_sec
);
1007 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1009 static void read_dct_base_mask(struct amd64_pvt
*pvt
)
1013 prep_chip_selects(pvt
);
1016 return read_umc_base_mask(pvt
);
1018 for_each_chip_select(cs
, 0, pvt
) {
1019 int reg0
= DCSB0
+ (cs
* 4);
1020 int reg1
= DCSB1
+ (cs
* 4);
1021 u32
*base0
= &pvt
->csels
[0].csbases
[cs
];
1022 u32
*base1
= &pvt
->csels
[1].csbases
[cs
];
1024 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, base0
))
1025 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
1028 if (pvt
->fam
== 0xf)
1031 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, base1
))
1032 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
1033 cs
, *base1
, (pvt
->fam
== 0x10) ? reg1
1037 for_each_chip_select_mask(cs
, 0, pvt
) {
1038 int reg0
= DCSM0
+ (cs
* 4);
1039 int reg1
= DCSM1
+ (cs
* 4);
1040 u32
*mask0
= &pvt
->csels
[0].csmasks
[cs
];
1041 u32
*mask1
= &pvt
->csels
[1].csmasks
[cs
];
1043 if (!amd64_read_dct_pci_cfg(pvt
, 0, reg0
, mask0
))
1044 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
1047 if (pvt
->fam
== 0xf)
1050 if (!amd64_read_dct_pci_cfg(pvt
, 1, reg0
, mask1
))
1051 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
1052 cs
, *mask1
, (pvt
->fam
== 0x10) ? reg1
1057 static void determine_memory_type(struct amd64_pvt
*pvt
)
1059 u32 dram_ctrl
, dcsm
;
1063 if (pvt
->ext_model
>= K8_REV_F
)
1066 pvt
->dram_type
= (pvt
->dclr0
& BIT(18)) ? MEM_DDR
: MEM_RDDR
;
1070 if (pvt
->dchr0
& DDR3_MODE
)
1073 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR2
: MEM_RDDR2
;
1077 if (pvt
->model
< 0x60)
1081 * Model 0x60h needs special handling:
1083 * We use a Chip Select value of '0' to obtain dcsm.
1084 * Theoretically, it is possible to populate LRDIMMs of different
1085 * 'Rank' value on a DCT. But this is not the common case. So,
1086 * it's reasonable to assume all DIMMs are going to be of same
1087 * 'type' until proven otherwise.
1089 amd64_read_dct_pci_cfg(pvt
, 0, DRAM_CONTROL
, &dram_ctrl
);
1090 dcsm
= pvt
->csels
[0].csmasks
[0];
1092 if (((dram_ctrl
>> 8) & 0x7) == 0x2)
1093 pvt
->dram_type
= MEM_DDR4
;
1094 else if (pvt
->dclr0
& BIT(16))
1095 pvt
->dram_type
= MEM_DDR3
;
1096 else if (dcsm
& 0x3)
1097 pvt
->dram_type
= MEM_LRDDR3
;
1099 pvt
->dram_type
= MEM_RDDR3
;
1108 if ((pvt
->umc
[0].dimm_cfg
| pvt
->umc
[1].dimm_cfg
) & BIT(5))
1109 pvt
->dram_type
= MEM_LRDDR4
;
1110 else if ((pvt
->umc
[0].dimm_cfg
| pvt
->umc
[1].dimm_cfg
) & BIT(4))
1111 pvt
->dram_type
= MEM_RDDR4
;
1113 pvt
->dram_type
= MEM_DDR4
;
1117 WARN(1, KERN_ERR
"%s: Family??? 0x%x\n", __func__
, pvt
->fam
);
1118 pvt
->dram_type
= MEM_EMPTY
;
1123 pvt
->dram_type
= (pvt
->dclr0
& BIT(16)) ? MEM_DDR3
: MEM_RDDR3
;
1126 /* Get the number of DCT channels the memory controller is using. */
1127 static int k8_early_channel_count(struct amd64_pvt
*pvt
)
1131 if (pvt
->ext_model
>= K8_REV_F
)
1132 /* RevF (NPT) and later */
1133 flag
= pvt
->dclr0
& WIDTH_128
;
1135 /* RevE and earlier */
1136 flag
= pvt
->dclr0
& REVE_WIDTH_128
;
1141 return (flag
) ? 2 : 1;
1144 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1145 static u64
get_error_address(struct amd64_pvt
*pvt
, struct mce
*m
)
1147 u16 mce_nid
= amd_get_nb_id(m
->extcpu
);
1148 struct mem_ctl_info
*mci
;
1153 mci
= edac_mc_find(mce_nid
);
1157 pvt
= mci
->pvt_info
;
1159 if (pvt
->fam
== 0xf) {
1164 addr
= m
->addr
& GENMASK_ULL(end_bit
, start_bit
);
1167 * Erratum 637 workaround
1169 if (pvt
->fam
== 0x15) {
1170 u64 cc6_base
, tmp_addr
;
1174 if ((addr
& GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1178 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_LIM
, &tmp
);
1179 intlv_en
= tmp
>> 21 & 0x7;
1181 /* add [47:27] + 3 trailing bits */
1182 cc6_base
= (tmp
& GENMASK_ULL(20, 0)) << 3;
1184 /* reverse and add DramIntlvEn */
1185 cc6_base
|= intlv_en
^ 0x7;
1187 /* pin at [47:24] */
1191 return cc6_base
| (addr
& GENMASK_ULL(23, 0));
1193 amd64_read_pci_cfg(pvt
->F1
, DRAM_LOCAL_NODE_BASE
, &tmp
);
1196 tmp_addr
= (addr
& GENMASK_ULL(23, 12)) << __fls(intlv_en
+ 1);
1198 /* OR DramIntlvSel into bits [14:12] */
1199 tmp_addr
|= (tmp
& GENMASK_ULL(23, 21)) >> 9;
1201 /* add remaining [11:0] bits from original MC4_ADDR */
1202 tmp_addr
|= addr
& GENMASK_ULL(11, 0);
1204 return cc6_base
| tmp_addr
;
1210 static struct pci_dev
*pci_get_related_function(unsigned int vendor
,
1211 unsigned int device
,
1212 struct pci_dev
*related
)
1214 struct pci_dev
*dev
= NULL
;
1216 while ((dev
= pci_get_device(vendor
, device
, dev
))) {
1217 if (pci_domain_nr(dev
->bus
) == pci_domain_nr(related
->bus
) &&
1218 (dev
->bus
->number
== related
->bus
->number
) &&
1219 (PCI_SLOT(dev
->devfn
) == PCI_SLOT(related
->devfn
)))
1226 static void read_dram_base_limit_regs(struct amd64_pvt
*pvt
, unsigned range
)
1228 struct amd_northbridge
*nb
;
1229 struct pci_dev
*f1
= NULL
;
1230 unsigned int pci_func
;
1231 int off
= range
<< 3;
1234 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_LO
+ off
, &pvt
->ranges
[range
].base
.lo
);
1235 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_LO
+ off
, &pvt
->ranges
[range
].lim
.lo
);
1237 if (pvt
->fam
== 0xf)
1240 if (!dram_rw(pvt
, range
))
1243 amd64_read_pci_cfg(pvt
->F1
, DRAM_BASE_HI
+ off
, &pvt
->ranges
[range
].base
.hi
);
1244 amd64_read_pci_cfg(pvt
->F1
, DRAM_LIMIT_HI
+ off
, &pvt
->ranges
[range
].lim
.hi
);
1246 /* F15h: factor in CC6 save area by reading dst node's limit reg */
1247 if (pvt
->fam
!= 0x15)
1250 nb
= node_to_amd_nb(dram_dst_node(pvt
, range
));
1254 if (pvt
->model
== 0x60)
1255 pci_func
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
;
1256 else if (pvt
->model
== 0x30)
1257 pci_func
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
;
1259 pci_func
= PCI_DEVICE_ID_AMD_15H_NB_F1
;
1261 f1
= pci_get_related_function(nb
->misc
->vendor
, pci_func
, nb
->misc
);
1265 amd64_read_pci_cfg(f1
, DRAM_LOCAL_NODE_LIM
, &llim
);
1267 pvt
->ranges
[range
].lim
.lo
&= GENMASK_ULL(15, 0);
1269 /* {[39:27],111b} */
1270 pvt
->ranges
[range
].lim
.lo
|= ((llim
& 0x1fff) << 3 | 0x7) << 16;
1272 pvt
->ranges
[range
].lim
.hi
&= GENMASK_ULL(7, 0);
1275 pvt
->ranges
[range
].lim
.hi
|= llim
>> 13;
1280 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
1281 struct err_info
*err
)
1283 struct amd64_pvt
*pvt
= mci
->pvt_info
;
1285 error_address_to_page_and_offset(sys_addr
, err
);
1288 * Find out which node the error address belongs to. This may be
1289 * different from the node that detected the error.
1291 err
->src_mci
= find_mc_by_sys_addr(mci
, sys_addr
);
1292 if (!err
->src_mci
) {
1293 amd64_mc_err(mci
, "failed to map error addr 0x%lx to a node\n",
1294 (unsigned long)sys_addr
);
1295 err
->err_code
= ERR_NODE
;
1299 /* Now map the sys_addr to a CSROW */
1300 err
->csrow
= sys_addr_to_csrow(err
->src_mci
, sys_addr
);
1301 if (err
->csrow
< 0) {
1302 err
->err_code
= ERR_CSROW
;
1306 /* CHIPKILL enabled */
1307 if (pvt
->nbcfg
& NBCFG_CHIPKILL
) {
1308 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
1309 if (err
->channel
< 0) {
1311 * Syndrome didn't map, so we don't know which of the
1312 * 2 DIMMs is in error. So we need to ID 'both' of them
1315 amd64_mc_warn(err
->src_mci
, "unknown syndrome 0x%04x - "
1316 "possible error reporting race\n",
1318 err
->err_code
= ERR_CHANNEL
;
1323 * non-chipkill ecc mode
1325 * The k8 documentation is unclear about how to determine the
1326 * channel number when using non-chipkill memory. This method
1327 * was obtained from email communication with someone at AMD.
1328 * (Wish the email was placed in this comment - norsk)
1330 err
->channel
= ((sys_addr
& BIT(3)) != 0);
1334 static int ddr2_cs_size(unsigned i
, bool dct_width
)
1340 else if (!(i
& 0x1))
1343 shift
= (i
+ 1) >> 1;
1345 return 128 << (shift
+ !!dct_width
);
1348 static int k8_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1349 unsigned cs_mode
, int cs_mask_nr
)
1351 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1353 if (pvt
->ext_model
>= K8_REV_F
) {
1354 WARN_ON(cs_mode
> 11);
1355 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1357 else if (pvt
->ext_model
>= K8_REV_D
) {
1359 WARN_ON(cs_mode
> 10);
1362 * the below calculation, besides trying to win an obfuscated C
1363 * contest, maps cs_mode values to DIMM chip select sizes. The
1366 * cs_mode CS size (mb)
1367 * ======= ============
1380 * Basically, it calculates a value with which to shift the
1381 * smallest CS size of 32MB.
1383 * ddr[23]_cs_size have a similar purpose.
1385 diff
= cs_mode
/3 + (unsigned)(cs_mode
> 5);
1387 return 32 << (cs_mode
- diff
);
1390 WARN_ON(cs_mode
> 6);
1391 return 32 << cs_mode
;
1396 * Get the number of DCT channels in use.
1399 * number of Memory Channels in operation
1401 * contents of the DCL0_LOW register
1403 static int f1x_early_channel_count(struct amd64_pvt
*pvt
)
1405 int i
, j
, channels
= 0;
1407 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1408 if (pvt
->fam
== 0x10 && (pvt
->dclr0
& WIDTH_128
))
1412 * Need to check if in unganged mode: In such, there are 2 channels,
1413 * but they are not in 128 bit mode and thus the above 'dclr0' status
1416 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1417 * their CSEnable bit on. If so, then SINGLE DIMM case.
1419 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1422 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1423 * is more than just one DIMM present in unganged mode. Need to check
1424 * both controllers since DIMMs can be placed in either one.
1426 for (i
= 0; i
< 2; i
++) {
1427 u32 dbam
= (i
? pvt
->dbam1
: pvt
->dbam0
);
1429 for (j
= 0; j
< 4; j
++) {
1430 if (DBAM_DIMM(j
, dbam
) > 0) {
1440 amd64_info("MCT channel count: %d\n", channels
);
1445 static int f17_early_channel_count(struct amd64_pvt
*pvt
)
1447 int i
, channels
= 0;
1449 /* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1451 channels
+= !!(pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
);
1453 amd64_info("MCT channel count: %d\n", channels
);
1458 static int ddr3_cs_size(unsigned i
, bool dct_width
)
1463 if (i
== 0 || i
== 3 || i
== 4)
1469 else if (!(i
& 0x1))
1472 shift
= (i
+ 1) >> 1;
1475 cs_size
= (128 * (1 << !!dct_width
)) << shift
;
1480 static int ddr3_lrdimm_cs_size(unsigned i
, unsigned rank_multiply
)
1485 if (i
< 4 || i
== 6)
1489 else if (!(i
& 0x1))
1492 shift
= (i
+ 1) >> 1;
1495 cs_size
= rank_multiply
* (128 << shift
);
1500 static int ddr4_cs_size(unsigned i
)
1509 /* Min cs_size = 1G */
1510 cs_size
= 1024 * (1 << (i
>> 1));
1515 static int f10_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1516 unsigned cs_mode
, int cs_mask_nr
)
1518 u32 dclr
= dct
? pvt
->dclr1
: pvt
->dclr0
;
1520 WARN_ON(cs_mode
> 11);
1522 if (pvt
->dchr0
& DDR3_MODE
|| pvt
->dchr1
& DDR3_MODE
)
1523 return ddr3_cs_size(cs_mode
, dclr
& WIDTH_128
);
1525 return ddr2_cs_size(cs_mode
, dclr
& WIDTH_128
);
1529 * F15h supports only 64bit DCT interfaces
1531 static int f15_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1532 unsigned cs_mode
, int cs_mask_nr
)
1534 WARN_ON(cs_mode
> 12);
1536 return ddr3_cs_size(cs_mode
, false);
1539 /* F15h M60h supports DDR4 mapping as well.. */
1540 static int f15_m60h_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1541 unsigned cs_mode
, int cs_mask_nr
)
1544 u32 dcsm
= pvt
->csels
[dct
].csmasks
[cs_mask_nr
];
1546 WARN_ON(cs_mode
> 12);
1548 if (pvt
->dram_type
== MEM_DDR4
) {
1552 cs_size
= ddr4_cs_size(cs_mode
);
1553 } else if (pvt
->dram_type
== MEM_LRDDR3
) {
1554 unsigned rank_multiply
= dcsm
& 0xf;
1556 if (rank_multiply
== 3)
1558 cs_size
= ddr3_lrdimm_cs_size(cs_mode
, rank_multiply
);
1560 /* Minimum cs size is 512mb for F15hM60h*/
1564 cs_size
= ddr3_cs_size(cs_mode
, false);
1571 * F16h and F15h model 30h have only limited cs_modes.
1573 static int f16_dbam_to_chip_select(struct amd64_pvt
*pvt
, u8 dct
,
1574 unsigned cs_mode
, int cs_mask_nr
)
1576 WARN_ON(cs_mode
> 12);
1578 if (cs_mode
== 6 || cs_mode
== 8 ||
1579 cs_mode
== 9 || cs_mode
== 12)
1582 return ddr3_cs_size(cs_mode
, false);
1585 static int f17_addr_mask_to_cs_size(struct amd64_pvt
*pvt
, u8 umc
,
1586 unsigned int cs_mode
, int csrow_nr
)
1588 u32 addr_mask_orig
, addr_mask_deinterleaved
;
1589 u32 msb
, weight
, num_zero_bits
;
1592 /* No Chip Selects are enabled. */
1596 /* Requested size of an even CS but none are enabled. */
1597 if (!(cs_mode
& CS_EVEN
) && !(csrow_nr
& 1))
1600 /* Requested size of an odd CS but none are enabled. */
1601 if (!(cs_mode
& CS_ODD
) && (csrow_nr
& 1))
1605 * There is one mask per DIMM, and two Chip Selects per DIMM.
1606 * CS0 and CS1 -> DIMM0
1607 * CS2 and CS3 -> DIMM1
1609 dimm
= csrow_nr
>> 1;
1611 /* Asymmetric dual-rank DIMM support. */
1612 if ((csrow_nr
& 1) && (cs_mode
& CS_ODD_SECONDARY
))
1613 addr_mask_orig
= pvt
->csels
[umc
].csmasks_sec
[dimm
];
1615 addr_mask_orig
= pvt
->csels
[umc
].csmasks
[dimm
];
1618 * The number of zero bits in the mask is equal to the number of bits
1619 * in a full mask minus the number of bits in the current mask.
1621 * The MSB is the number of bits in the full mask because BIT[0] is
1624 msb
= fls(addr_mask_orig
) - 1;
1625 weight
= hweight_long(addr_mask_orig
);
1626 num_zero_bits
= msb
- weight
;
1628 /* Take the number of zero bits off from the top of the mask. */
1629 addr_mask_deinterleaved
= GENMASK_ULL(msb
- num_zero_bits
, 1);
1631 edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr
, dimm
);
1632 edac_dbg(1, " Original AddrMask: 0x%x\n", addr_mask_orig
);
1633 edac_dbg(1, " Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved
);
1635 /* Register [31:1] = Address [39:9]. Size is in kBs here. */
1636 size
= (addr_mask_deinterleaved
>> 2) + 1;
1638 /* Return size in MBs. */
1642 static void read_dram_ctl_register(struct amd64_pvt
*pvt
)
1645 if (pvt
->fam
== 0xf)
1648 if (!amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_LO
, &pvt
->dct_sel_lo
)) {
1649 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1650 pvt
->dct_sel_lo
, dct_sel_baseaddr(pvt
));
1652 edac_dbg(0, " DCTs operate in %s mode\n",
1653 (dct_ganging_enabled(pvt
) ? "ganged" : "unganged"));
1655 if (!dct_ganging_enabled(pvt
))
1656 edac_dbg(0, " Address range split per DCT: %s\n",
1657 (dct_high_range_enabled(pvt
) ? "yes" : "no"));
1659 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1660 (dct_data_intlv_enabled(pvt
) ? "enabled" : "disabled"),
1661 (dct_memory_cleared(pvt
) ? "yes" : "no"));
1663 edac_dbg(0, " channel interleave: %s, "
1664 "interleave bits selector: 0x%x\n",
1665 (dct_interleave_enabled(pvt
) ? "enabled" : "disabled"),
1666 dct_sel_interleave_addr(pvt
));
1669 amd64_read_pci_cfg(pvt
->F2
, DCT_SEL_HI
, &pvt
->dct_sel_hi
);
1673 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1674 * 2.10.12 Memory Interleaving Modes).
1676 static u8
f15_m30h_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1677 u8 intlv_en
, int num_dcts_intlv
,
1684 return (u8
)(dct_sel
);
1686 if (num_dcts_intlv
== 2) {
1687 select
= (sys_addr
>> 8) & 0x3;
1688 channel
= select
? 0x3 : 0;
1689 } else if (num_dcts_intlv
== 4) {
1690 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1691 switch (intlv_addr
) {
1693 channel
= (sys_addr
>> 8) & 0x3;
1696 channel
= (sys_addr
>> 9) & 0x3;
1704 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1705 * Interleaving Modes.
1707 static u8
f1x_determine_channel(struct amd64_pvt
*pvt
, u64 sys_addr
,
1708 bool hi_range_sel
, u8 intlv_en
)
1710 u8 dct_sel_high
= (pvt
->dct_sel_lo
>> 1) & 1;
1712 if (dct_ganging_enabled(pvt
))
1716 return dct_sel_high
;
1719 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1721 if (dct_interleave_enabled(pvt
)) {
1722 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1724 /* return DCT select function: 0=DCT0, 1=DCT1 */
1726 return sys_addr
>> 6 & 1;
1728 if (intlv_addr
& 0x2) {
1729 u8 shift
= intlv_addr
& 0x1 ? 9 : 6;
1730 u32 temp
= hweight_long((u32
) ((sys_addr
>> 16) & 0x1F)) & 1;
1732 return ((sys_addr
>> shift
) & 1) ^ temp
;
1735 if (intlv_addr
& 0x4) {
1736 u8 shift
= intlv_addr
& 0x1 ? 9 : 8;
1738 return (sys_addr
>> shift
) & 1;
1741 return (sys_addr
>> (12 + hweight8(intlv_en
))) & 1;
1744 if (dct_high_range_enabled(pvt
))
1745 return ~dct_sel_high
& 1;
1750 /* Convert the sys_addr to the normalized DCT address */
1751 static u64
f1x_get_norm_dct_addr(struct amd64_pvt
*pvt
, u8 range
,
1752 u64 sys_addr
, bool hi_rng
,
1753 u32 dct_sel_base_addr
)
1756 u64 dram_base
= get_dram_base(pvt
, range
);
1757 u64 hole_off
= f10_dhar_offset(pvt
);
1758 u64 dct_sel_base_off
= (u64
)(pvt
->dct_sel_hi
& 0xFFFFFC00) << 16;
1763 * base address of high range is below 4Gb
1764 * (bits [47:27] at [31:11])
1765 * DRAM address space on this DCT is hoisted above 4Gb &&
1768 * remove hole offset from sys_addr
1770 * remove high range offset from sys_addr
1772 if ((!(dct_sel_base_addr
>> 16) ||
1773 dct_sel_base_addr
< dhar_base(pvt
)) &&
1775 (sys_addr
>= BIT_64(32)))
1776 chan_off
= hole_off
;
1778 chan_off
= dct_sel_base_off
;
1782 * we have a valid hole &&
1787 * remove dram base to normalize to DCT address
1789 if (dhar_valid(pvt
) && (sys_addr
>= BIT_64(32)))
1790 chan_off
= hole_off
;
1792 chan_off
= dram_base
;
1795 return (sys_addr
& GENMASK_ULL(47,6)) - (chan_off
& GENMASK_ULL(47,23));
1799 * checks if the csrow passed in is marked as SPARED, if so returns the new
1802 static int f10_process_possible_spare(struct amd64_pvt
*pvt
, u8 dct
, int csrow
)
1806 if (online_spare_swap_done(pvt
, dct
) &&
1807 csrow
== online_spare_bad_dramcs(pvt
, dct
)) {
1809 for_each_chip_select(tmp_cs
, dct
, pvt
) {
1810 if (chip_select_base(tmp_cs
, dct
, pvt
) & 0x2) {
1820 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1821 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1824 * -EINVAL: NOT FOUND
1825 * 0..csrow = Chip-Select Row
1827 static int f1x_lookup_addr_in_dct(u64 in_addr
, u8 nid
, u8 dct
)
1829 struct mem_ctl_info
*mci
;
1830 struct amd64_pvt
*pvt
;
1831 u64 cs_base
, cs_mask
;
1832 int cs_found
= -EINVAL
;
1835 mci
= edac_mc_find(nid
);
1839 pvt
= mci
->pvt_info
;
1841 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr
, dct
);
1843 for_each_chip_select(csrow
, dct
, pvt
) {
1844 if (!csrow_enabled(csrow
, dct
, pvt
))
1847 get_cs_base_and_mask(pvt
, csrow
, dct
, &cs_base
, &cs_mask
);
1849 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1850 csrow
, cs_base
, cs_mask
);
1854 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1855 (in_addr
& cs_mask
), (cs_base
& cs_mask
));
1857 if ((in_addr
& cs_mask
) == (cs_base
& cs_mask
)) {
1858 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30) {
1862 cs_found
= f10_process_possible_spare(pvt
, dct
, csrow
);
1864 edac_dbg(1, " MATCH csrow=%d\n", cs_found
);
1872 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1873 * swapped with a region located at the bottom of memory so that the GPU can use
1874 * the interleaved region and thus two channels.
1876 static u64
f1x_swap_interleaved_region(struct amd64_pvt
*pvt
, u64 sys_addr
)
1878 u32 swap_reg
, swap_base
, swap_limit
, rgn_size
, tmp_addr
;
1880 if (pvt
->fam
== 0x10) {
1881 /* only revC3 and revE have that feature */
1882 if (pvt
->model
< 4 || (pvt
->model
< 0xa && pvt
->stepping
< 3))
1886 amd64_read_pci_cfg(pvt
->F2
, SWAP_INTLV_REG
, &swap_reg
);
1888 if (!(swap_reg
& 0x1))
1891 swap_base
= (swap_reg
>> 3) & 0x7f;
1892 swap_limit
= (swap_reg
>> 11) & 0x7f;
1893 rgn_size
= (swap_reg
>> 20) & 0x7f;
1894 tmp_addr
= sys_addr
>> 27;
1896 if (!(sys_addr
>> 34) &&
1897 (((tmp_addr
>= swap_base
) &&
1898 (tmp_addr
<= swap_limit
)) ||
1899 (tmp_addr
< rgn_size
)))
1900 return sys_addr
^ (u64
)swap_base
<< 27;
1905 /* For a given @dram_range, check if @sys_addr falls within it. */
1906 static int f1x_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1907 u64 sys_addr
, int *chan_sel
)
1909 int cs_found
= -EINVAL
;
1913 bool high_range
= false;
1915 u8 node_id
= dram_dst_node(pvt
, range
);
1916 u8 intlv_en
= dram_intlv_en(pvt
, range
);
1917 u32 intlv_sel
= dram_intlv_sel(pvt
, range
);
1919 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1920 range
, sys_addr
, get_dram_limit(pvt
, range
));
1922 if (dhar_valid(pvt
) &&
1923 dhar_base(pvt
) <= sys_addr
&&
1924 sys_addr
< BIT_64(32)) {
1925 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1930 if (intlv_en
&& (intlv_sel
!= ((sys_addr
>> 12) & intlv_en
)))
1933 sys_addr
= f1x_swap_interleaved_region(pvt
, sys_addr
);
1935 dct_sel_base
= dct_sel_baseaddr(pvt
);
1938 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1939 * select between DCT0 and DCT1.
1941 if (dct_high_range_enabled(pvt
) &&
1942 !dct_ganging_enabled(pvt
) &&
1943 ((sys_addr
>> 27) >= (dct_sel_base
>> 11)))
1946 channel
= f1x_determine_channel(pvt
, sys_addr
, high_range
, intlv_en
);
1948 chan_addr
= f1x_get_norm_dct_addr(pvt
, range
, sys_addr
,
1949 high_range
, dct_sel_base
);
1951 /* Remove node interleaving, see F1x120 */
1953 chan_addr
= ((chan_addr
>> (12 + hweight8(intlv_en
))) << 12) |
1954 (chan_addr
& 0xfff);
1956 /* remove channel interleave */
1957 if (dct_interleave_enabled(pvt
) &&
1958 !dct_high_range_enabled(pvt
) &&
1959 !dct_ganging_enabled(pvt
)) {
1961 if (dct_sel_interleave_addr(pvt
) != 1) {
1962 if (dct_sel_interleave_addr(pvt
) == 0x3)
1964 chan_addr
= ((chan_addr
>> 10) << 9) |
1965 (chan_addr
& 0x1ff);
1967 /* A[6] or hash 6 */
1968 chan_addr
= ((chan_addr
>> 7) << 6) |
1972 chan_addr
= ((chan_addr
>> 13) << 12) |
1973 (chan_addr
& 0xfff);
1976 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
1978 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, channel
);
1981 *chan_sel
= channel
;
1986 static int f15_m30h_match_to_this_node(struct amd64_pvt
*pvt
, unsigned range
,
1987 u64 sys_addr
, int *chan_sel
)
1989 int cs_found
= -EINVAL
;
1990 int num_dcts_intlv
= 0;
1991 u64 chan_addr
, chan_offset
;
1992 u64 dct_base
, dct_limit
;
1993 u32 dct_cont_base_reg
, dct_cont_limit_reg
, tmp
;
1994 u8 channel
, alias_channel
, leg_mmio_hole
, dct_sel
, dct_offset_en
;
1996 u64 dhar_offset
= f10_dhar_offset(pvt
);
1997 u8 intlv_addr
= dct_sel_interleave_addr(pvt
);
1998 u8 node_id
= dram_dst_node(pvt
, range
);
1999 u8 intlv_en
= dram_intlv_en(pvt
, range
);
2001 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_BASE
, &dct_cont_base_reg
);
2002 amd64_read_pci_cfg(pvt
->F1
, DRAM_CONT_LIMIT
, &dct_cont_limit_reg
);
2004 dct_offset_en
= (u8
) ((dct_cont_base_reg
>> 3) & BIT(0));
2005 dct_sel
= (u8
) ((dct_cont_base_reg
>> 4) & 0x7);
2007 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
2008 range
, sys_addr
, get_dram_limit(pvt
, range
));
2010 if (!(get_dram_base(pvt
, range
) <= sys_addr
) &&
2011 !(get_dram_limit(pvt
, range
) >= sys_addr
))
2014 if (dhar_valid(pvt
) &&
2015 dhar_base(pvt
) <= sys_addr
&&
2016 sys_addr
< BIT_64(32)) {
2017 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
2022 /* Verify sys_addr is within DCT Range. */
2023 dct_base
= (u64
) dct_sel_baseaddr(pvt
);
2024 dct_limit
= (dct_cont_limit_reg
>> 11) & 0x1FFF;
2026 if (!(dct_cont_base_reg
& BIT(0)) &&
2027 !(dct_base
<= (sys_addr
>> 27) &&
2028 dct_limit
>= (sys_addr
>> 27)))
2031 /* Verify number of dct's that participate in channel interleaving. */
2032 num_dcts_intlv
= (int) hweight8(intlv_en
);
2034 if (!(num_dcts_intlv
% 2 == 0) || (num_dcts_intlv
> 4))
2037 if (pvt
->model
>= 0x60)
2038 channel
= f1x_determine_channel(pvt
, sys_addr
, false, intlv_en
);
2040 channel
= f15_m30h_determine_channel(pvt
, sys_addr
, intlv_en
,
2041 num_dcts_intlv
, dct_sel
);
2043 /* Verify we stay within the MAX number of channels allowed */
2047 leg_mmio_hole
= (u8
) (dct_cont_base_reg
>> 1 & BIT(0));
2049 /* Get normalized DCT addr */
2050 if (leg_mmio_hole
&& (sys_addr
>= BIT_64(32)))
2051 chan_offset
= dhar_offset
;
2053 chan_offset
= dct_base
<< 27;
2055 chan_addr
= sys_addr
- chan_offset
;
2057 /* remove channel interleave */
2058 if (num_dcts_intlv
== 2) {
2059 if (intlv_addr
== 0x4)
2060 chan_addr
= ((chan_addr
>> 9) << 8) |
2062 else if (intlv_addr
== 0x5)
2063 chan_addr
= ((chan_addr
>> 10) << 9) |
2064 (chan_addr
& 0x1ff);
2068 } else if (num_dcts_intlv
== 4) {
2069 if (intlv_addr
== 0x4)
2070 chan_addr
= ((chan_addr
>> 10) << 8) |
2072 else if (intlv_addr
== 0x5)
2073 chan_addr
= ((chan_addr
>> 11) << 9) |
2074 (chan_addr
& 0x1ff);
2079 if (dct_offset_en
) {
2080 amd64_read_pci_cfg(pvt
->F1
,
2081 DRAM_CONT_HIGH_OFF
+ (int) channel
* 4,
2083 chan_addr
+= (u64
) ((tmp
>> 11) & 0xfff) << 27;
2086 f15h_select_dct(pvt
, channel
);
2088 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr
);
2092 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
2093 * there is support for 4 DCT's, but only 2 are currently functional.
2094 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
2095 * pvt->csels[1]. So we need to use '1' here to get correct info.
2096 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
2098 alias_channel
= (channel
== 3) ? 1 : channel
;
2100 cs_found
= f1x_lookup_addr_in_dct(chan_addr
, node_id
, alias_channel
);
2103 *chan_sel
= alias_channel
;
2108 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt
*pvt
,
2112 int cs_found
= -EINVAL
;
2115 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2116 if (!dram_rw(pvt
, range
))
2119 if (pvt
->fam
== 0x15 && pvt
->model
>= 0x30)
2120 cs_found
= f15_m30h_match_to_this_node(pvt
, range
,
2124 else if ((get_dram_base(pvt
, range
) <= sys_addr
) &&
2125 (get_dram_limit(pvt
, range
) >= sys_addr
)) {
2126 cs_found
= f1x_match_to_this_node(pvt
, range
,
2127 sys_addr
, chan_sel
);
2136 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
2137 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2139 * The @sys_addr is usually an error address received from the hardware
2142 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info
*mci
, u64 sys_addr
,
2143 struct err_info
*err
)
2145 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2147 error_address_to_page_and_offset(sys_addr
, err
);
2149 err
->csrow
= f1x_translate_sysaddr_to_cs(pvt
, sys_addr
, &err
->channel
);
2150 if (err
->csrow
< 0) {
2151 err
->err_code
= ERR_CSROW
;
2156 * We need the syndromes for channel detection only when we're
2157 * ganged. Otherwise @chan should already contain the channel at
2160 if (dct_ganging_enabled(pvt
))
2161 err
->channel
= get_channel_from_ecc_syndrome(mci
, err
->syndrome
);
2165 * debug routine to display the memory sizes of all logical DIMMs and its
2168 static void debug_display_dimm_sizes(struct amd64_pvt
*pvt
, u8 ctrl
)
2170 int dimm
, size0
, size1
;
2171 u32
*dcsb
= ctrl
? pvt
->csels
[1].csbases
: pvt
->csels
[0].csbases
;
2172 u32 dbam
= ctrl
? pvt
->dbam1
: pvt
->dbam0
;
2174 if (pvt
->fam
== 0xf) {
2175 /* K8 families < revF not supported yet */
2176 if (pvt
->ext_model
< K8_REV_F
)
2182 if (pvt
->fam
== 0x10) {
2183 dbam
= (ctrl
&& !dct_ganging_enabled(pvt
)) ? pvt
->dbam1
2185 dcsb
= (ctrl
&& !dct_ganging_enabled(pvt
)) ?
2186 pvt
->csels
[1].csbases
:
2187 pvt
->csels
[0].csbases
;
2190 dcsb
= pvt
->csels
[1].csbases
;
2192 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
2195 edac_printk(KERN_DEBUG
, EDAC_MC
, "DCT%d chip selects:\n", ctrl
);
2197 /* Dump memory sizes for DIMM and its CSROWs */
2198 for (dimm
= 0; dimm
< 4; dimm
++) {
2201 if (dcsb
[dimm
*2] & DCSB_CS_ENABLE
)
2203 * For F15m60h, we need multiplier for LRDIMM cs_size
2204 * calculation. We pass dimm value to the dbam_to_cs
2205 * mapper so we can find the multiplier from the
2206 * corresponding DCSM.
2208 size0
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
2209 DBAM_DIMM(dimm
, dbam
),
2213 if (dcsb
[dimm
*2 + 1] & DCSB_CS_ENABLE
)
2214 size1
= pvt
->ops
->dbam_to_cs(pvt
, ctrl
,
2215 DBAM_DIMM(dimm
, dbam
),
2218 amd64_info(EDAC_MC
": %d: %5dMB %d: %5dMB\n",
2220 dimm
* 2 + 1, size1
);
2224 static struct amd64_family_type family_types
[] = {
2227 .f1_id
= PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP
,
2228 .f2_id
= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL
,
2230 .early_channel_count
= k8_early_channel_count
,
2231 .map_sysaddr_to_csrow
= k8_map_sysaddr_to_csrow
,
2232 .dbam_to_cs
= k8_dbam_to_chip_select
,
2237 .f1_id
= PCI_DEVICE_ID_AMD_10H_NB_MAP
,
2238 .f2_id
= PCI_DEVICE_ID_AMD_10H_NB_DRAM
,
2240 .early_channel_count
= f1x_early_channel_count
,
2241 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2242 .dbam_to_cs
= f10_dbam_to_chip_select
,
2247 .f1_id
= PCI_DEVICE_ID_AMD_15H_NB_F1
,
2248 .f2_id
= PCI_DEVICE_ID_AMD_15H_NB_F2
,
2250 .early_channel_count
= f1x_early_channel_count
,
2251 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2252 .dbam_to_cs
= f15_dbam_to_chip_select
,
2256 .ctl_name
= "F15h_M30h",
2257 .f1_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
,
2258 .f2_id
= PCI_DEVICE_ID_AMD_15H_M30H_NB_F2
,
2260 .early_channel_count
= f1x_early_channel_count
,
2261 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2262 .dbam_to_cs
= f16_dbam_to_chip_select
,
2266 .ctl_name
= "F15h_M60h",
2267 .f1_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F1
,
2268 .f2_id
= PCI_DEVICE_ID_AMD_15H_M60H_NB_F2
,
2270 .early_channel_count
= f1x_early_channel_count
,
2271 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2272 .dbam_to_cs
= f15_m60h_dbam_to_chip_select
,
2277 .f1_id
= PCI_DEVICE_ID_AMD_16H_NB_F1
,
2278 .f2_id
= PCI_DEVICE_ID_AMD_16H_NB_F2
,
2280 .early_channel_count
= f1x_early_channel_count
,
2281 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2282 .dbam_to_cs
= f16_dbam_to_chip_select
,
2286 .ctl_name
= "F16h_M30h",
2287 .f1_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F1
,
2288 .f2_id
= PCI_DEVICE_ID_AMD_16H_M30H_NB_F2
,
2290 .early_channel_count
= f1x_early_channel_count
,
2291 .map_sysaddr_to_csrow
= f1x_map_sysaddr_to_csrow
,
2292 .dbam_to_cs
= f16_dbam_to_chip_select
,
2297 .f0_id
= PCI_DEVICE_ID_AMD_17H_DF_F0
,
2298 .f6_id
= PCI_DEVICE_ID_AMD_17H_DF_F6
,
2300 .early_channel_count
= f17_early_channel_count
,
2301 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2305 .ctl_name
= "F17h_M10h",
2306 .f0_id
= PCI_DEVICE_ID_AMD_17H_M10H_DF_F0
,
2307 .f6_id
= PCI_DEVICE_ID_AMD_17H_M10H_DF_F6
,
2309 .early_channel_count
= f17_early_channel_count
,
2310 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2314 .ctl_name
= "F17h_M30h",
2315 .f0_id
= PCI_DEVICE_ID_AMD_17H_M30H_DF_F0
,
2316 .f6_id
= PCI_DEVICE_ID_AMD_17H_M30H_DF_F6
,
2318 .early_channel_count
= f17_early_channel_count
,
2319 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2323 .ctl_name
= "F17h_M60h",
2324 .f0_id
= PCI_DEVICE_ID_AMD_17H_M60H_DF_F0
,
2325 .f6_id
= PCI_DEVICE_ID_AMD_17H_M60H_DF_F6
,
2327 .early_channel_count
= f17_early_channel_count
,
2328 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2332 .ctl_name
= "F17h_M70h",
2333 .f0_id
= PCI_DEVICE_ID_AMD_17H_M70H_DF_F0
,
2334 .f6_id
= PCI_DEVICE_ID_AMD_17H_M70H_DF_F6
,
2336 .early_channel_count
= f17_early_channel_count
,
2337 .dbam_to_cs
= f17_addr_mask_to_cs_size
,
2343 * These are tables of eigenvectors (one per line) which can be used for the
2344 * construction of the syndrome tables. The modified syndrome search algorithm
2345 * uses those to find the symbol in error and thus the DIMM.
2347 * Algorithm courtesy of Ross LaFetra from AMD.
2349 static const u16 x4_vectors
[] = {
2350 0x2f57, 0x1afe, 0x66cc, 0xdd88,
2351 0x11eb, 0x3396, 0x7f4c, 0xeac8,
2352 0x0001, 0x0002, 0x0004, 0x0008,
2353 0x1013, 0x3032, 0x4044, 0x8088,
2354 0x106b, 0x30d6, 0x70fc, 0xe0a8,
2355 0x4857, 0xc4fe, 0x13cc, 0x3288,
2356 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2357 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2358 0x15c1, 0x2a42, 0x89ac, 0x4758,
2359 0x2b03, 0x1602, 0x4f0c, 0xca08,
2360 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2361 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2362 0x2b87, 0x164e, 0x642c, 0xdc18,
2363 0x40b9, 0x80de, 0x1094, 0x20e8,
2364 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2365 0x11c1, 0x2242, 0x84ac, 0x4c58,
2366 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2367 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2368 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2369 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2370 0x16b3, 0x3d62, 0x4f34, 0x8518,
2371 0x1e2f, 0x391a, 0x5cac, 0xf858,
2372 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2373 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2374 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2375 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2376 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2377 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2378 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2379 0x185d, 0x2ca6, 0x7914, 0x9e28,
2380 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2381 0x4199, 0x82ee, 0x19f4, 0x2e58,
2382 0x4807, 0xc40e, 0x130c, 0x3208,
2383 0x1905, 0x2e0a, 0x5804, 0xac08,
2384 0x213f, 0x132a, 0xadfc, 0x5ba8,
2385 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2388 static const u16 x8_vectors
[] = {
2389 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2390 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2391 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2392 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2393 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2394 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2395 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2396 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2397 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2398 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2399 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2400 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2401 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2402 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2403 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2404 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2405 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2406 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2407 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2410 static int decode_syndrome(u16 syndrome
, const u16
*vectors
, unsigned num_vecs
,
2413 unsigned int i
, err_sym
;
2415 for (err_sym
= 0; err_sym
< num_vecs
/ v_dim
; err_sym
++) {
2417 unsigned v_idx
= err_sym
* v_dim
;
2418 unsigned v_end
= (err_sym
+ 1) * v_dim
;
2420 /* walk over all 16 bits of the syndrome */
2421 for (i
= 1; i
< (1U << 16); i
<<= 1) {
2423 /* if bit is set in that eigenvector... */
2424 if (v_idx
< v_end
&& vectors
[v_idx
] & i
) {
2425 u16 ev_comp
= vectors
[v_idx
++];
2427 /* ... and bit set in the modified syndrome, */
2437 /* can't get to zero, move to next symbol */
2442 edac_dbg(0, "syndrome(%x) not found\n", syndrome
);
2446 static int map_err_sym_to_channel(int err_sym
, int sym_size
)
2459 return err_sym
>> 4;
2465 /* imaginary bits not in a DIMM */
2467 WARN(1, KERN_ERR
"Invalid error symbol: 0x%x\n",
2479 return err_sym
>> 3;
2485 static int get_channel_from_ecc_syndrome(struct mem_ctl_info
*mci
, u16 syndrome
)
2487 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2490 if (pvt
->ecc_sym_sz
== 8)
2491 err_sym
= decode_syndrome(syndrome
, x8_vectors
,
2492 ARRAY_SIZE(x8_vectors
),
2494 else if (pvt
->ecc_sym_sz
== 4)
2495 err_sym
= decode_syndrome(syndrome
, x4_vectors
,
2496 ARRAY_SIZE(x4_vectors
),
2499 amd64_warn("Illegal syndrome type: %u\n", pvt
->ecc_sym_sz
);
2503 return map_err_sym_to_channel(err_sym
, pvt
->ecc_sym_sz
);
2506 static void __log_ecc_error(struct mem_ctl_info
*mci
, struct err_info
*err
,
2509 enum hw_event_mc_err_type err_type
;
2513 err_type
= HW_EVENT_ERR_CORRECTED
;
2514 else if (ecc_type
== 1)
2515 err_type
= HW_EVENT_ERR_UNCORRECTED
;
2516 else if (ecc_type
== 3)
2517 err_type
= HW_EVENT_ERR_DEFERRED
;
2519 WARN(1, "Something is rotten in the state of Denmark.\n");
2523 switch (err
->err_code
) {
2528 string
= "Failed to map error addr to a node";
2531 string
= "Failed to map error addr to a csrow";
2534 string
= "Unknown syndrome - possible error reporting race";
2537 string
= "MCA_SYND not valid - unknown syndrome and csrow";
2540 string
= "Cannot decode normalized address";
2543 string
= "WTF error";
2547 edac_mc_handle_error(err_type
, mci
, 1,
2548 err
->page
, err
->offset
, err
->syndrome
,
2549 err
->csrow
, err
->channel
, -1,
2553 static inline void decode_bus_error(int node_id
, struct mce
*m
)
2555 struct mem_ctl_info
*mci
;
2556 struct amd64_pvt
*pvt
;
2557 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2558 u8 xec
= XEC(m
->status
, 0x1f);
2559 u16 ec
= EC(m
->status
);
2561 struct err_info err
;
2563 mci
= edac_mc_find(node_id
);
2567 pvt
= mci
->pvt_info
;
2569 /* Bail out early if this was an 'observed' error */
2570 if (PP(ec
) == NBSL_PP_OBS
)
2573 /* Do only ECC errors */
2574 if (xec
&& xec
!= F10_NBSL_EXT_ERR_ECC
)
2577 memset(&err
, 0, sizeof(err
));
2579 sys_addr
= get_error_address(pvt
, m
);
2582 err
.syndrome
= extract_syndrome(m
->status
);
2584 pvt
->ops
->map_sysaddr_to_csrow(mci
, sys_addr
, &err
);
2586 __log_ecc_error(mci
, &err
, ecc_type
);
2590 * To find the UMC channel represented by this bank we need to match on its
2591 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
2594 * Currently, we can derive the channel number by looking at the 6th nibble in
2595 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
2598 static int find_umc_channel(struct mce
*m
)
2600 return (m
->ipid
& GENMASK(31, 0)) >> 20;
2603 static void decode_umc_error(int node_id
, struct mce
*m
)
2605 u8 ecc_type
= (m
->status
>> 45) & 0x3;
2606 struct mem_ctl_info
*mci
;
2607 struct amd64_pvt
*pvt
;
2608 struct err_info err
;
2611 mci
= edac_mc_find(node_id
);
2615 pvt
= mci
->pvt_info
;
2617 memset(&err
, 0, sizeof(err
));
2619 if (m
->status
& MCI_STATUS_DEFERRED
)
2622 err
.channel
= find_umc_channel(m
);
2624 if (!(m
->status
& MCI_STATUS_SYNDV
)) {
2625 err
.err_code
= ERR_SYND
;
2629 if (ecc_type
== 2) {
2630 u8 length
= (m
->synd
>> 18) & 0x3f;
2633 err
.syndrome
= (m
->synd
>> 32) & GENMASK(length
- 1, 0);
2635 err
.err_code
= ERR_CHANNEL
;
2638 err
.csrow
= m
->synd
& 0x7;
2640 if (umc_normaddr_to_sysaddr(m
->addr
, pvt
->mc_node_id
, err
.channel
, &sys_addr
)) {
2641 err
.err_code
= ERR_NORM_ADDR
;
2645 error_address_to_page_and_offset(sys_addr
, &err
);
2648 __log_ecc_error(mci
, &err
, ecc_type
);
2652 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2653 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2654 * Reserve F0 and F6 on systems with a UMC.
2657 reserve_mc_sibling_devs(struct amd64_pvt
*pvt
, u16 pci_id1
, u16 pci_id2
)
2660 pvt
->F0
= pci_get_related_function(pvt
->F3
->vendor
, pci_id1
, pvt
->F3
);
2662 amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1
);
2666 pvt
->F6
= pci_get_related_function(pvt
->F3
->vendor
, pci_id2
, pvt
->F3
);
2668 pci_dev_put(pvt
->F0
);
2671 amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2
);
2675 edac_dbg(1, "F0: %s\n", pci_name(pvt
->F0
));
2676 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2677 edac_dbg(1, "F6: %s\n", pci_name(pvt
->F6
));
2682 /* Reserve the ADDRESS MAP Device */
2683 pvt
->F1
= pci_get_related_function(pvt
->F3
->vendor
, pci_id1
, pvt
->F3
);
2685 amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1
);
2689 /* Reserve the DCT Device */
2690 pvt
->F2
= pci_get_related_function(pvt
->F3
->vendor
, pci_id2
, pvt
->F3
);
2692 pci_dev_put(pvt
->F1
);
2695 amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2
);
2699 edac_dbg(1, "F1: %s\n", pci_name(pvt
->F1
));
2700 edac_dbg(1, "F2: %s\n", pci_name(pvt
->F2
));
2701 edac_dbg(1, "F3: %s\n", pci_name(pvt
->F3
));
2706 static void free_mc_sibling_devs(struct amd64_pvt
*pvt
)
2709 pci_dev_put(pvt
->F0
);
2710 pci_dev_put(pvt
->F6
);
2712 pci_dev_put(pvt
->F1
);
2713 pci_dev_put(pvt
->F2
);
2717 static void determine_ecc_sym_sz(struct amd64_pvt
*pvt
)
2719 pvt
->ecc_sym_sz
= 4;
2725 /* Check enabled channels only: */
2726 if (pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
) {
2727 if (pvt
->umc
[i
].ecc_ctrl
& BIT(9)) {
2728 pvt
->ecc_sym_sz
= 16;
2730 } else if (pvt
->umc
[i
].ecc_ctrl
& BIT(7)) {
2731 pvt
->ecc_sym_sz
= 8;
2736 } else if (pvt
->fam
>= 0x10) {
2739 amd64_read_pci_cfg(pvt
->F3
, EXT_NB_MCA_CFG
, &tmp
);
2740 /* F16h has only DCT0, so no need to read dbam1. */
2741 if (pvt
->fam
!= 0x16)
2742 amd64_read_dct_pci_cfg(pvt
, 1, DBAM0
, &pvt
->dbam1
);
2744 /* F10h, revD and later can do x8 ECC too. */
2745 if ((pvt
->fam
> 0x10 || pvt
->model
> 7) && tmp
& BIT(25))
2746 pvt
->ecc_sym_sz
= 8;
2751 * Retrieve the hardware registers of the memory controller.
2753 static void __read_mc_regs_df(struct amd64_pvt
*pvt
)
2755 u8 nid
= pvt
->mc_node_id
;
2756 struct amd64_umc
*umc
;
2759 /* Read registers from each UMC */
2762 umc_base
= get_umc_base(i
);
2765 amd_smn_read(nid
, umc_base
+ UMCCH_DIMM_CFG
, &umc
->dimm_cfg
);
2766 amd_smn_read(nid
, umc_base
+ UMCCH_UMC_CFG
, &umc
->umc_cfg
);
2767 amd_smn_read(nid
, umc_base
+ UMCCH_SDP_CTRL
, &umc
->sdp_ctrl
);
2768 amd_smn_read(nid
, umc_base
+ UMCCH_ECC_CTRL
, &umc
->ecc_ctrl
);
2769 amd_smn_read(nid
, umc_base
+ UMCCH_UMC_CAP_HI
, &umc
->umc_cap_hi
);
2774 * Retrieve the hardware registers of the memory controller (this includes the
2775 * 'Address Map' and 'Misc' device regs)
2777 static void read_mc_regs(struct amd64_pvt
*pvt
)
2783 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2784 * those are Read-As-Zero.
2786 rdmsrl(MSR_K8_TOP_MEM1
, pvt
->top_mem
);
2787 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt
->top_mem
);
2789 /* Check first whether TOP_MEM2 is enabled: */
2790 rdmsrl(MSR_K8_SYSCFG
, msr_val
);
2791 if (msr_val
& BIT(21)) {
2792 rdmsrl(MSR_K8_TOP_MEM2
, pvt
->top_mem2
);
2793 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt
->top_mem2
);
2795 edac_dbg(0, " TOP_MEM2 disabled\n");
2799 __read_mc_regs_df(pvt
);
2800 amd64_read_pci_cfg(pvt
->F0
, DF_DHAR
, &pvt
->dhar
);
2805 amd64_read_pci_cfg(pvt
->F3
, NBCAP
, &pvt
->nbcap
);
2807 read_dram_ctl_register(pvt
);
2809 for (range
= 0; range
< DRAM_RANGES
; range
++) {
2812 /* read settings for this DRAM range */
2813 read_dram_base_limit_regs(pvt
, range
);
2815 rw
= dram_rw(pvt
, range
);
2819 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2821 get_dram_base(pvt
, range
),
2822 get_dram_limit(pvt
, range
));
2824 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2825 dram_intlv_en(pvt
, range
) ? "Enabled" : "Disabled",
2826 (rw
& 0x1) ? "R" : "-",
2827 (rw
& 0x2) ? "W" : "-",
2828 dram_intlv_sel(pvt
, range
),
2829 dram_dst_node(pvt
, range
));
2832 amd64_read_pci_cfg(pvt
->F1
, DHAR
, &pvt
->dhar
);
2833 amd64_read_dct_pci_cfg(pvt
, 0, DBAM0
, &pvt
->dbam0
);
2835 amd64_read_pci_cfg(pvt
->F3
, F10_ONLINE_SPARE
, &pvt
->online_spare
);
2837 amd64_read_dct_pci_cfg(pvt
, 0, DCLR0
, &pvt
->dclr0
);
2838 amd64_read_dct_pci_cfg(pvt
, 0, DCHR0
, &pvt
->dchr0
);
2840 if (!dct_ganging_enabled(pvt
)) {
2841 amd64_read_dct_pci_cfg(pvt
, 1, DCLR0
, &pvt
->dclr1
);
2842 amd64_read_dct_pci_cfg(pvt
, 1, DCHR0
, &pvt
->dchr1
);
2846 read_dct_base_mask(pvt
);
2848 determine_memory_type(pvt
);
2849 edac_dbg(1, " DIMM type: %s\n", edac_mem_types
[pvt
->dram_type
]);
2851 determine_ecc_sym_sz(pvt
);
2853 dump_misc_regs(pvt
);
2857 * NOTE: CPU Revision Dependent code
2860 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2861 * k8 private pointer to -->
2862 * DRAM Bank Address mapping register
2864 * DCL register where dual_channel_active is
2866 * The DBAM register consists of 4 sets of 4 bits each definitions:
2869 * 0-3 CSROWs 0 and 1
2870 * 4-7 CSROWs 2 and 3
2871 * 8-11 CSROWs 4 and 5
2872 * 12-15 CSROWs 6 and 7
2874 * Values range from: 0 to 15
2875 * The meaning of the values depends on CPU revision and dual-channel state,
2876 * see relevant BKDG more info.
2878 * The memory controller provides for total of only 8 CSROWs in its current
2879 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2880 * single channel or two (2) DIMMs in dual channel mode.
2882 * The following code logic collapses the various tables for CSROW based on CPU
2886 * The number of PAGE_SIZE pages on the specified CSROW number it
2890 static u32
get_csrow_nr_pages(struct amd64_pvt
*pvt
, u8 dct
, int csrow_nr_orig
)
2892 u32 dbam
= dct
? pvt
->dbam1
: pvt
->dbam0
;
2893 int csrow_nr
= csrow_nr_orig
;
2894 u32 cs_mode
, nr_pages
;
2898 cs_mode
= DBAM_DIMM(csrow_nr
, dbam
);
2900 cs_mode
= f17_get_cs_mode(csrow_nr
>> 1, dct
, pvt
);
2903 nr_pages
= pvt
->ops
->dbam_to_cs(pvt
, dct
, cs_mode
, csrow_nr
);
2904 nr_pages
<<= 20 - PAGE_SHIFT
;
2906 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2907 csrow_nr_orig
, dct
, cs_mode
);
2908 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages
);
2913 static int init_csrows_df(struct mem_ctl_info
*mci
)
2915 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2916 enum edac_type edac_mode
= EDAC_NONE
;
2917 enum dev_type dev_type
= DEV_UNKNOWN
;
2918 struct dimm_info
*dimm
;
2922 if (mci
->edac_ctl_cap
& EDAC_FLAG_S16ECD16ED
) {
2923 edac_mode
= EDAC_S16ECD16ED
;
2925 } else if (mci
->edac_ctl_cap
& EDAC_FLAG_S8ECD8ED
) {
2926 edac_mode
= EDAC_S8ECD8ED
;
2928 } else if (mci
->edac_ctl_cap
& EDAC_FLAG_S4ECD4ED
) {
2929 edac_mode
= EDAC_S4ECD4ED
;
2931 } else if (mci
->edac_ctl_cap
& EDAC_FLAG_SECDED
) {
2932 edac_mode
= EDAC_SECDED
;
2936 for_each_chip_select(cs
, umc
, pvt
) {
2937 if (!csrow_enabled(cs
, umc
, pvt
))
2941 dimm
= mci
->csrows
[cs
]->channels
[umc
]->dimm
;
2943 edac_dbg(1, "MC node: %d, csrow: %d\n",
2944 pvt
->mc_node_id
, cs
);
2946 dimm
->nr_pages
= get_csrow_nr_pages(pvt
, umc
, cs
);
2947 dimm
->mtype
= pvt
->dram_type
;
2948 dimm
->edac_mode
= edac_mode
;
2949 dimm
->dtype
= dev_type
;
2958 * Initialize the array of csrow attribute instances, based on the values
2959 * from pci config hardware registers.
2961 static int init_csrows(struct mem_ctl_info
*mci
)
2963 struct amd64_pvt
*pvt
= mci
->pvt_info
;
2964 enum edac_type edac_mode
= EDAC_NONE
;
2965 struct csrow_info
*csrow
;
2966 struct dimm_info
*dimm
;
2967 int i
, j
, empty
= 1;
2972 return init_csrows_df(mci
);
2974 amd64_read_pci_cfg(pvt
->F3
, NBCFG
, &val
);
2978 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2979 pvt
->mc_node_id
, val
,
2980 !!(val
& NBCFG_CHIPKILL
), !!(val
& NBCFG_ECC_ENABLE
));
2983 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2985 for_each_chip_select(i
, 0, pvt
) {
2986 bool row_dct0
= !!csrow_enabled(i
, 0, pvt
);
2987 bool row_dct1
= false;
2989 if (pvt
->fam
!= 0xf)
2990 row_dct1
= !!csrow_enabled(i
, 1, pvt
);
2992 if (!row_dct0
&& !row_dct1
)
2995 csrow
= mci
->csrows
[i
];
2998 edac_dbg(1, "MC node: %d, csrow: %d\n",
2999 pvt
->mc_node_id
, i
);
3002 nr_pages
= get_csrow_nr_pages(pvt
, 0, i
);
3003 csrow
->channels
[0]->dimm
->nr_pages
= nr_pages
;
3006 /* K8 has only one DCT */
3007 if (pvt
->fam
!= 0xf && row_dct1
) {
3008 int row_dct1_pages
= get_csrow_nr_pages(pvt
, 1, i
);
3010 csrow
->channels
[1]->dimm
->nr_pages
= row_dct1_pages
;
3011 nr_pages
+= row_dct1_pages
;
3014 edac_dbg(1, "Total csrow%d pages: %u\n", i
, nr_pages
);
3016 /* Determine DIMM ECC mode: */
3017 if (pvt
->nbcfg
& NBCFG_ECC_ENABLE
) {
3018 edac_mode
= (pvt
->nbcfg
& NBCFG_CHIPKILL
)
3023 for (j
= 0; j
< pvt
->channel_count
; j
++) {
3024 dimm
= csrow
->channels
[j
]->dimm
;
3025 dimm
->mtype
= pvt
->dram_type
;
3026 dimm
->edac_mode
= edac_mode
;
3034 /* get all cores on this DCT */
3035 static void get_cpus_on_this_dct_cpumask(struct cpumask
*mask
, u16 nid
)
3039 for_each_online_cpu(cpu
)
3040 if (amd_get_nb_id(cpu
) == nid
)
3041 cpumask_set_cpu(cpu
, mask
);
3044 /* check MCG_CTL on all the cpus on this node */
3045 static bool nb_mce_bank_enabled_on_node(u16 nid
)
3051 if (!zalloc_cpumask_var(&mask
, GFP_KERNEL
)) {
3052 amd64_warn("%s: Error allocating mask\n", __func__
);
3056 get_cpus_on_this_dct_cpumask(mask
, nid
);
3058 rdmsr_on_cpus(mask
, MSR_IA32_MCG_CTL
, msrs
);
3060 for_each_cpu(cpu
, mask
) {
3061 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
3062 nbe
= reg
->l
& MSR_MCGCTL_NBE
;
3064 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
3066 (nbe
? "enabled" : "disabled"));
3074 free_cpumask_var(mask
);
3078 static int toggle_ecc_err_reporting(struct ecc_settings
*s
, u16 nid
, bool on
)
3080 cpumask_var_t cmask
;
3083 if (!zalloc_cpumask_var(&cmask
, GFP_KERNEL
)) {
3084 amd64_warn("%s: error allocating mask\n", __func__
);
3088 get_cpus_on_this_dct_cpumask(cmask
, nid
);
3090 rdmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
3092 for_each_cpu(cpu
, cmask
) {
3094 struct msr
*reg
= per_cpu_ptr(msrs
, cpu
);
3097 if (reg
->l
& MSR_MCGCTL_NBE
)
3098 s
->flags
.nb_mce_enable
= 1;
3100 reg
->l
|= MSR_MCGCTL_NBE
;
3103 * Turn off NB MCE reporting only when it was off before
3105 if (!s
->flags
.nb_mce_enable
)
3106 reg
->l
&= ~MSR_MCGCTL_NBE
;
3109 wrmsr_on_cpus(cmask
, MSR_IA32_MCG_CTL
, msrs
);
3111 free_cpumask_var(cmask
);
3116 static bool enable_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
3120 u32 value
, mask
= 0x3; /* UECC/CECC enable */
3122 if (toggle_ecc_err_reporting(s
, nid
, ON
)) {
3123 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
3127 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
3129 s
->old_nbctl
= value
& mask
;
3130 s
->nbctl_valid
= true;
3133 amd64_write_pci_cfg(F3
, NBCTL
, value
);
3135 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3137 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3138 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
3140 if (!(value
& NBCFG_ECC_ENABLE
)) {
3141 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3143 s
->flags
.nb_ecc_prev
= 0;
3145 /* Attempt to turn on DRAM ECC Enable */
3146 value
|= NBCFG_ECC_ENABLE
;
3147 amd64_write_pci_cfg(F3
, NBCFG
, value
);
3149 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3151 if (!(value
& NBCFG_ECC_ENABLE
)) {
3152 amd64_warn("Hardware rejected DRAM ECC enable,"
3153 "check memory DIMM configuration.\n");
3156 amd64_info("Hardware accepted DRAM ECC Enable\n");
3159 s
->flags
.nb_ecc_prev
= 1;
3162 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
3163 nid
, value
, !!(value
& NBCFG_ECC_ENABLE
));
3168 static void restore_ecc_error_reporting(struct ecc_settings
*s
, u16 nid
,
3171 u32 value
, mask
= 0x3; /* UECC/CECC enable */
3173 if (!s
->nbctl_valid
)
3176 amd64_read_pci_cfg(F3
, NBCTL
, &value
);
3178 value
|= s
->old_nbctl
;
3180 amd64_write_pci_cfg(F3
, NBCTL
, value
);
3182 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
3183 if (!s
->flags
.nb_ecc_prev
) {
3184 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3185 value
&= ~NBCFG_ECC_ENABLE
;
3186 amd64_write_pci_cfg(F3
, NBCFG
, value
);
3189 /* restore the NB Enable MCGCTL bit */
3190 if (toggle_ecc_err_reporting(s
, nid
, OFF
))
3191 amd64_warn("Error restoring NB MCGCTL settings!\n");
3195 * EDAC requires that the BIOS have ECC enabled before
3196 * taking over the processing of ECC errors. A command line
3197 * option allows to force-enable hardware ECC later in
3198 * enable_ecc_error_reporting().
3200 static const char *ecc_msg
=
3201 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
3202 " Either enable ECC checking or force module loading by setting "
3203 "'ecc_enable_override'.\n"
3204 " (Note that use of the override may cause unknown side effects.)\n";
3206 static bool ecc_enabled(struct pci_dev
*F3
, u16 nid
)
3208 bool nb_mce_en
= false;
3212 if (boot_cpu_data
.x86
>= 0x17) {
3213 u8 umc_en_mask
= 0, ecc_en_mask
= 0;
3216 u32 base
= get_umc_base(i
);
3218 /* Only check enabled UMCs. */
3219 if (amd_smn_read(nid
, base
+ UMCCH_SDP_CTRL
, &value
))
3222 if (!(value
& UMC_SDP_INIT
))
3225 umc_en_mask
|= BIT(i
);
3227 if (amd_smn_read(nid
, base
+ UMCCH_UMC_CAP_HI
, &value
))
3230 if (value
& UMC_ECC_ENABLED
)
3231 ecc_en_mask
|= BIT(i
);
3234 /* Check whether at least one UMC is enabled: */
3236 ecc_en
= umc_en_mask
== ecc_en_mask
;
3238 edac_dbg(0, "Node %d: No enabled UMCs.\n", nid
);
3240 /* Assume UMC MCA banks are enabled. */
3243 amd64_read_pci_cfg(F3
, NBCFG
, &value
);
3245 ecc_en
= !!(value
& NBCFG_ECC_ENABLE
);
3247 nb_mce_en
= nb_mce_bank_enabled_on_node(nid
);
3249 edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3250 MSR_IA32_MCG_CTL
, nid
);
3253 amd64_info("Node %d: DRAM ECC %s.\n",
3254 nid
, (ecc_en
? "enabled" : "disabled"));
3256 if (!ecc_en
|| !nb_mce_en
) {
3257 amd64_info("%s", ecc_msg
);
3264 f17h_determine_edac_ctl_cap(struct mem_ctl_info
*mci
, struct amd64_pvt
*pvt
)
3266 u8 i
, ecc_en
= 1, cpk_en
= 1, dev_x4
= 1, dev_x16
= 1;
3269 if (pvt
->umc
[i
].sdp_ctrl
& UMC_SDP_INIT
) {
3270 ecc_en
&= !!(pvt
->umc
[i
].umc_cap_hi
& UMC_ECC_ENABLED
);
3271 cpk_en
&= !!(pvt
->umc
[i
].umc_cap_hi
& UMC_ECC_CHIPKILL_CAP
);
3273 dev_x4
&= !!(pvt
->umc
[i
].dimm_cfg
& BIT(6));
3274 dev_x16
&= !!(pvt
->umc
[i
].dimm_cfg
& BIT(7));
3278 /* Set chipkill only if ECC is enabled: */
3280 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
3286 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
3288 mci
->edac_ctl_cap
|= EDAC_FLAG_S16ECD16ED
;
3290 mci
->edac_ctl_cap
|= EDAC_FLAG_S8ECD8ED
;
3294 static void setup_mci_misc_attrs(struct mem_ctl_info
*mci
,
3295 struct amd64_family_type
*fam
)
3297 struct amd64_pvt
*pvt
= mci
->pvt_info
;
3299 mci
->mtype_cap
= MEM_FLAG_DDR2
| MEM_FLAG_RDDR2
;
3300 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3303 f17h_determine_edac_ctl_cap(mci
, pvt
);
3305 if (pvt
->nbcap
& NBCAP_SECDED
)
3306 mci
->edac_ctl_cap
|= EDAC_FLAG_SECDED
;
3308 if (pvt
->nbcap
& NBCAP_CHIPKILL
)
3309 mci
->edac_ctl_cap
|= EDAC_FLAG_S4ECD4ED
;
3312 mci
->edac_cap
= determine_edac_cap(pvt
);
3313 mci
->mod_name
= EDAC_MOD_STR
;
3314 mci
->ctl_name
= fam
->ctl_name
;
3315 mci
->dev_name
= pci_name(pvt
->F3
);
3316 mci
->ctl_page_to_phys
= NULL
;
3318 /* memory scrubber interface */
3319 mci
->set_sdram_scrub_rate
= set_scrub_rate
;
3320 mci
->get_sdram_scrub_rate
= get_scrub_rate
;
3324 * returns a pointer to the family descriptor on success, NULL otherwise.
3326 static struct amd64_family_type
*per_family_init(struct amd64_pvt
*pvt
)
3328 struct amd64_family_type
*fam_type
= NULL
;
3330 pvt
->ext_model
= boot_cpu_data
.x86_model
>> 4;
3331 pvt
->stepping
= boot_cpu_data
.x86_stepping
;
3332 pvt
->model
= boot_cpu_data
.x86_model
;
3333 pvt
->fam
= boot_cpu_data
.x86
;
3337 fam_type
= &family_types
[K8_CPUS
];
3338 pvt
->ops
= &family_types
[K8_CPUS
].ops
;
3342 fam_type
= &family_types
[F10_CPUS
];
3343 pvt
->ops
= &family_types
[F10_CPUS
].ops
;
3347 if (pvt
->model
== 0x30) {
3348 fam_type
= &family_types
[F15_M30H_CPUS
];
3349 pvt
->ops
= &family_types
[F15_M30H_CPUS
].ops
;
3351 } else if (pvt
->model
== 0x60) {
3352 fam_type
= &family_types
[F15_M60H_CPUS
];
3353 pvt
->ops
= &family_types
[F15_M60H_CPUS
].ops
;
3357 fam_type
= &family_types
[F15_CPUS
];
3358 pvt
->ops
= &family_types
[F15_CPUS
].ops
;
3362 if (pvt
->model
== 0x30) {
3363 fam_type
= &family_types
[F16_M30H_CPUS
];
3364 pvt
->ops
= &family_types
[F16_M30H_CPUS
].ops
;
3367 fam_type
= &family_types
[F16_CPUS
];
3368 pvt
->ops
= &family_types
[F16_CPUS
].ops
;
3372 if (pvt
->model
>= 0x10 && pvt
->model
<= 0x2f) {
3373 fam_type
= &family_types
[F17_M10H_CPUS
];
3374 pvt
->ops
= &family_types
[F17_M10H_CPUS
].ops
;
3376 } else if (pvt
->model
>= 0x30 && pvt
->model
<= 0x3f) {
3377 fam_type
= &family_types
[F17_M30H_CPUS
];
3378 pvt
->ops
= &family_types
[F17_M30H_CPUS
].ops
;
3380 } else if (pvt
->model
>= 0x60 && pvt
->model
<= 0x6f) {
3381 fam_type
= &family_types
[F17_M60H_CPUS
];
3382 pvt
->ops
= &family_types
[F17_M60H_CPUS
].ops
;
3384 } else if (pvt
->model
>= 0x70 && pvt
->model
<= 0x7f) {
3385 fam_type
= &family_types
[F17_M70H_CPUS
];
3386 pvt
->ops
= &family_types
[F17_M70H_CPUS
].ops
;
3391 fam_type
= &family_types
[F17_CPUS
];
3392 pvt
->ops
= &family_types
[F17_CPUS
].ops
;
3394 if (pvt
->fam
== 0x18)
3395 family_types
[F17_CPUS
].ctl_name
= "F18h";
3399 amd64_err("Unsupported family!\n");
3403 amd64_info("%s %sdetected (node %d).\n", fam_type
->ctl_name
,
3405 (pvt
->ext_model
>= K8_REV_F
? "revF or later "
3406 : "revE or earlier ")
3407 : ""), pvt
->mc_node_id
);
3411 static const struct attribute_group
*amd64_edac_attr_groups
[] = {
3412 #ifdef CONFIG_EDAC_DEBUG
3413 &amd64_edac_dbg_group
,
3415 #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
3416 &amd64_edac_inj_group
,
3421 /* Set the number of Unified Memory Controllers in the system. */
3422 static void compute_num_umcs(void)
3424 u8 model
= boot_cpu_data
.x86_model
;
3426 if (boot_cpu_data
.x86
< 0x17)
3429 if (model
>= 0x30 && model
<= 0x3f)
3434 edac_dbg(1, "Number of UMCs: %x", num_umcs
);
3437 static int init_one_instance(unsigned int nid
)
3439 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3440 struct amd64_family_type
*fam_type
= NULL
;
3441 struct mem_ctl_info
*mci
= NULL
;
3442 struct edac_mc_layer layers
[2];
3443 struct amd64_pvt
*pvt
= NULL
;
3444 u16 pci_id1
, pci_id2
;
3448 pvt
= kzalloc(sizeof(struct amd64_pvt
), GFP_KERNEL
);
3452 pvt
->mc_node_id
= nid
;
3456 fam_type
= per_family_init(pvt
);
3460 if (pvt
->fam
>= 0x17) {
3461 pvt
->umc
= kcalloc(num_umcs
, sizeof(struct amd64_umc
), GFP_KERNEL
);
3467 pci_id1
= fam_type
->f0_id
;
3468 pci_id2
= fam_type
->f6_id
;
3470 pci_id1
= fam_type
->f1_id
;
3471 pci_id2
= fam_type
->f2_id
;
3474 err
= reserve_mc_sibling_devs(pvt
, pci_id1
, pci_id2
);
3481 * We need to determine how many memory channels there are. Then use
3482 * that information for calculating the size of the dynamic instance
3483 * tables in the 'mci' structure.
3486 pvt
->channel_count
= pvt
->ops
->early_channel_count(pvt
);
3487 if (pvt
->channel_count
< 0)
3491 layers
[0].type
= EDAC_MC_LAYER_CHIP_SELECT
;
3492 layers
[0].size
= pvt
->csels
[0].b_cnt
;
3493 layers
[0].is_virt_csrow
= true;
3494 layers
[1].type
= EDAC_MC_LAYER_CHANNEL
;
3497 * Always allocate two channels since we can have setups with DIMMs on
3498 * only one channel. Also, this simplifies handling later for the price
3499 * of a couple of KBs tops.
3501 * On Fam17h+, the number of controllers may be greater than two. So set
3502 * the size equal to the maximum number of UMCs.
3504 if (pvt
->fam
>= 0x17)
3505 layers
[1].size
= num_umcs
;
3508 layers
[1].is_virt_csrow
= false;
3510 mci
= edac_mc_alloc(nid
, ARRAY_SIZE(layers
), layers
, 0);
3514 mci
->pvt_info
= pvt
;
3515 mci
->pdev
= &pvt
->F3
->dev
;
3517 setup_mci_misc_attrs(mci
, fam_type
);
3519 if (init_csrows(mci
))
3520 mci
->edac_cap
= EDAC_FLAG_NONE
;
3523 if (edac_mc_add_mc_with_groups(mci
, amd64_edac_attr_groups
)) {
3524 edac_dbg(1, "failed edac_mc_add_mc()\n");
3534 free_mc_sibling_devs(pvt
);
3537 if (pvt
->fam
>= 0x17)
3547 static int probe_one_instance(unsigned int nid
)
3549 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3550 struct ecc_settings
*s
;
3554 s
= kzalloc(sizeof(struct ecc_settings
), GFP_KERNEL
);
3560 if (!ecc_enabled(F3
, nid
)) {
3563 if (!ecc_enable_override
)
3566 if (boot_cpu_data
.x86
>= 0x17) {
3567 amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
3570 amd64_warn("Forcing ECC on!\n");
3572 if (!enable_ecc_error_reporting(s
, nid
, F3
))
3576 ret
= init_one_instance(nid
);
3578 amd64_err("Error probing instance: %d\n", nid
);
3580 if (boot_cpu_data
.x86
< 0x17)
3581 restore_ecc_error_reporting(s
, nid
, F3
);
3590 ecc_stngs
[nid
] = NULL
;
3596 static void remove_one_instance(unsigned int nid
)
3598 struct pci_dev
*F3
= node_to_amd_nb(nid
)->misc
;
3599 struct ecc_settings
*s
= ecc_stngs
[nid
];
3600 struct mem_ctl_info
*mci
;
3601 struct amd64_pvt
*pvt
;
3603 mci
= find_mci_by_dev(&F3
->dev
);
3606 /* Remove from EDAC CORE tracking list */
3607 mci
= edac_mc_del_mc(&F3
->dev
);
3611 pvt
= mci
->pvt_info
;
3613 restore_ecc_error_reporting(s
, nid
, F3
);
3615 free_mc_sibling_devs(pvt
);
3617 kfree(ecc_stngs
[nid
]);
3618 ecc_stngs
[nid
] = NULL
;
3620 /* Free the EDAC CORE resources */
3621 mci
->pvt_info
= NULL
;
3627 static void setup_pci_device(void)
3629 struct mem_ctl_info
*mci
;
3630 struct amd64_pvt
*pvt
;
3635 mci
= edac_mc_find(0);
3639 pvt
= mci
->pvt_info
;
3641 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F0
->dev
, EDAC_MOD_STR
);
3643 pci_ctl
= edac_pci_create_generic_ctl(&pvt
->F2
->dev
, EDAC_MOD_STR
);
3645 pr_warn("%s(): Unable to create PCI control\n", __func__
);
3646 pr_warn("%s(): PCI error report via EDAC not set\n", __func__
);
3650 static const struct x86_cpu_id amd64_cpuids
[] = {
3651 { X86_VENDOR_AMD
, 0xF, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3652 { X86_VENDOR_AMD
, 0x10, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3653 { X86_VENDOR_AMD
, 0x15, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3654 { X86_VENDOR_AMD
, 0x16, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3655 { X86_VENDOR_AMD
, 0x17, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3656 { X86_VENDOR_HYGON
, 0x18, X86_MODEL_ANY
, X86_FEATURE_ANY
, 0 },
3659 MODULE_DEVICE_TABLE(x86cpu
, amd64_cpuids
);
3661 static int __init
amd64_edac_init(void)
3667 owner
= edac_get_owner();
3668 if (owner
&& strncmp(owner
, EDAC_MOD_STR
, sizeof(EDAC_MOD_STR
)))
3671 if (!x86_match_cpu(amd64_cpuids
))
3674 if (amd_cache_northbridges() < 0)
3680 ecc_stngs
= kcalloc(amd_nb_num(), sizeof(ecc_stngs
[0]), GFP_KERNEL
);
3684 msrs
= msrs_alloc();
3690 for (i
= 0; i
< amd_nb_num(); i
++) {
3691 err
= probe_one_instance(i
);
3693 /* unwind properly */
3695 remove_one_instance(i
);
3701 if (!edac_has_mcs()) {
3706 /* register stuff with EDAC MCE */
3707 if (report_gart_errors
)
3708 amd_report_gart_errors(true);
3710 if (boot_cpu_data
.x86
>= 0x17)
3711 amd_register_ecc_decoder(decode_umc_error
);
3713 amd_register_ecc_decoder(decode_bus_error
);
3717 #ifdef CONFIG_X86_32
3718 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR
);
3721 printk(KERN_INFO
"AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION
);
3736 static void __exit
amd64_edac_exit(void)
3741 edac_pci_release_generic_ctl(pci_ctl
);
3743 /* unregister from EDAC MCE */
3744 amd_report_gart_errors(false);
3746 if (boot_cpu_data
.x86
>= 0x17)
3747 amd_unregister_ecc_decoder(decode_umc_error
);
3749 amd_unregister_ecc_decoder(decode_bus_error
);
3751 for (i
= 0; i
< amd_nb_num(); i
++)
3752 remove_one_instance(i
);
3761 module_init(amd64_edac_init
);
3762 module_exit(amd64_edac_exit
);
3764 MODULE_LICENSE("GPL");
3765 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3766 "Dave Peterson, Thayne Harbaugh");
3767 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3768 EDAC_AMD64_VERSION
);
3770 module_param(edac_op_state
, int, 0444);
3771 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");