2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
107 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
108 anon_vma_lock_write(anon_vma
);
109 anon_vma_unlock_write(anon_vma
);
112 kmem_cache_free(anon_vma_cachep
, anon_vma
);
115 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
117 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
120 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
122 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
125 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
126 struct anon_vma_chain
*avc
,
127 struct anon_vma
*anon_vma
)
130 avc
->anon_vma
= anon_vma
;
131 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
132 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
160 * This must be called with the mmap_sem held for reading.
162 int anon_vma_prepare(struct vm_area_struct
*vma
)
164 struct anon_vma
*anon_vma
= vma
->anon_vma
;
165 struct anon_vma_chain
*avc
;
168 if (unlikely(!anon_vma
)) {
169 struct mm_struct
*mm
= vma
->vm_mm
;
170 struct anon_vma
*allocated
;
172 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
176 anon_vma
= find_mergeable_anon_vma(vma
);
179 anon_vma
= anon_vma_alloc();
180 if (unlikely(!anon_vma
))
181 goto out_enomem_free_avc
;
182 allocated
= anon_vma
;
185 anon_vma_lock_write(anon_vma
);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm
->page_table_lock
);
188 if (likely(!vma
->anon_vma
)) {
189 vma
->anon_vma
= anon_vma
;
190 anon_vma_chain_link(vma
, avc
, anon_vma
);
194 spin_unlock(&mm
->page_table_lock
);
195 anon_vma_unlock_write(anon_vma
);
197 if (unlikely(allocated
))
198 put_anon_vma(allocated
);
200 anon_vma_chain_free(avc
);
205 anon_vma_chain_free(avc
);
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
218 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
220 struct anon_vma
*new_root
= anon_vma
->root
;
221 if (new_root
!= root
) {
222 if (WARN_ON_ONCE(root
))
223 up_write(&root
->rwsem
);
225 down_write(&root
->rwsem
);
230 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
233 up_write(&root
->rwsem
);
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
240 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
242 struct anon_vma_chain
*avc
, *pavc
;
243 struct anon_vma
*root
= NULL
;
245 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
246 struct anon_vma
*anon_vma
;
248 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
249 if (unlikely(!avc
)) {
250 unlock_anon_vma_root(root
);
252 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
256 anon_vma
= pavc
->anon_vma
;
257 root
= lock_anon_vma_root(root
, anon_vma
);
258 anon_vma_chain_link(dst
, avc
, anon_vma
);
260 unlock_anon_vma_root(root
);
264 unlink_anon_vmas(dst
);
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
273 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
275 struct anon_vma_chain
*avc
;
276 struct anon_vma
*anon_vma
;
279 /* Don't bother if the parent process has no anon_vma here. */
284 * First, attach the new VMA to the parent VMA's anon_vmas,
285 * so rmap can find non-COWed pages in child processes.
287 error
= anon_vma_clone(vma
, pvma
);
291 /* Then add our own anon_vma. */
292 anon_vma
= anon_vma_alloc();
295 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
297 goto out_error_free_anon_vma
;
300 * The root anon_vma's spinlock is the lock actually used when we
301 * lock any of the anon_vmas in this anon_vma tree.
303 anon_vma
->root
= pvma
->anon_vma
->root
;
305 * With refcounts, an anon_vma can stay around longer than the
306 * process it belongs to. The root anon_vma needs to be pinned until
307 * this anon_vma is freed, because the lock lives in the root.
309 get_anon_vma(anon_vma
->root
);
310 /* Mark this anon_vma as the one where our new (COWed) pages go. */
311 vma
->anon_vma
= anon_vma
;
312 anon_vma_lock_write(anon_vma
);
313 anon_vma_chain_link(vma
, avc
, anon_vma
);
314 anon_vma_unlock_write(anon_vma
);
318 out_error_free_anon_vma
:
319 put_anon_vma(anon_vma
);
321 unlink_anon_vmas(vma
);
325 void unlink_anon_vmas(struct vm_area_struct
*vma
)
327 struct anon_vma_chain
*avc
, *next
;
328 struct anon_vma
*root
= NULL
;
331 * Unlink each anon_vma chained to the VMA. This list is ordered
332 * from newest to oldest, ensuring the root anon_vma gets freed last.
334 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
335 struct anon_vma
*anon_vma
= avc
->anon_vma
;
337 root
= lock_anon_vma_root(root
, anon_vma
);
338 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
341 * Leave empty anon_vmas on the list - we'll need
342 * to free them outside the lock.
344 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
347 list_del(&avc
->same_vma
);
348 anon_vma_chain_free(avc
);
350 unlock_anon_vma_root(root
);
353 * Iterate the list once more, it now only contains empty and unlinked
354 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355 * needing to write-acquire the anon_vma->root->rwsem.
357 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
358 struct anon_vma
*anon_vma
= avc
->anon_vma
;
360 put_anon_vma(anon_vma
);
362 list_del(&avc
->same_vma
);
363 anon_vma_chain_free(avc
);
367 static void anon_vma_ctor(void *data
)
369 struct anon_vma
*anon_vma
= data
;
371 init_rwsem(&anon_vma
->rwsem
);
372 atomic_set(&anon_vma
->refcount
, 0);
373 anon_vma
->rb_root
= RB_ROOT
;
376 void __init
anon_vma_init(void)
378 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
379 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
380 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
406 struct anon_vma
*page_get_anon_vma(struct page
*page
)
408 struct anon_vma
*anon_vma
= NULL
;
409 unsigned long anon_mapping
;
412 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
413 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
415 if (!page_mapped(page
))
418 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
419 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
425 * If this page is still mapped, then its anon_vma cannot have been
426 * freed. But if it has been unmapped, we have no security against the
427 * anon_vma structure being freed and reused (for another anon_vma:
428 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 * above cannot corrupt).
431 if (!page_mapped(page
)) {
433 put_anon_vma(anon_vma
);
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
449 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
451 struct anon_vma
*anon_vma
= NULL
;
452 struct anon_vma
*root_anon_vma
;
453 unsigned long anon_mapping
;
456 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
457 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
459 if (!page_mapped(page
))
462 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
463 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
464 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
468 * not go away, see anon_vma_free().
470 if (!page_mapped(page
)) {
471 up_read(&root_anon_vma
->rwsem
);
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
483 if (!page_mapped(page
)) {
485 put_anon_vma(anon_vma
);
489 /* we pinned the anon_vma, its safe to sleep */
491 anon_vma_lock_read(anon_vma
);
493 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock_write() recursion.
499 anon_vma_unlock_read(anon_vma
);
500 __put_anon_vma(anon_vma
);
511 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
513 anon_vma_unlock_read(anon_vma
);
517 * At what user virtual address is page expected in @vma?
519 static inline unsigned long
520 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
522 pgoff_t pgoff
= page_to_pgoff(page
);
523 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
527 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
529 unsigned long address
= __vma_address(page
, vma
);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
543 unsigned long address
;
544 if (PageAnon(page
)) {
545 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma
->anon_vma
|| !page__anon_vma
||
551 vma
->anon_vma
->root
!= page__anon_vma
->root
)
553 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
555 vma
->vm_file
->f_mapping
!= page
->mapping
)
559 address
= __vma_address(page
, vma
);
560 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
565 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
572 pgd
= pgd_offset(mm
, address
);
573 if (!pgd_present(*pgd
))
576 pud
= pud_offset(pgd
, address
);
577 if (!pud_present(*pud
))
580 pmd
= pmd_offset(pud
, address
);
582 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
583 * without holding anon_vma lock for write. So when looking for a
584 * genuine pmde (in which to find pte), test present and !THP together.
588 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
595 * Check that @page is mapped at @address into @mm.
597 * If @sync is false, page_check_address may perform a racy check to avoid
598 * the page table lock when the pte is not present (helpful when reclaiming
599 * highly shared pages).
601 * On success returns with pte mapped and locked.
603 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
604 unsigned long address
, spinlock_t
**ptlp
, int sync
)
610 if (unlikely(PageHuge(page
))) {
611 /* when pud is not present, pte will be NULL */
612 pte
= huge_pte_offset(mm
, address
);
616 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
620 pmd
= mm_find_pmd(mm
, address
);
624 pte
= pte_offset_map(pmd
, address
);
625 /* Make a quick check before getting the lock */
626 if (!sync
&& !pte_present(*pte
)) {
631 ptl
= pte_lockptr(mm
, pmd
);
634 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
638 pte_unmap_unlock(pte
, ptl
);
643 * page_mapped_in_vma - check whether a page is really mapped in a VMA
644 * @page: the page to test
645 * @vma: the VMA to test
647 * Returns 1 if the page is mapped into the page tables of the VMA, 0
648 * if the page is not mapped into the page tables of this VMA. Only
649 * valid for normal file or anonymous VMAs.
651 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
653 unsigned long address
;
657 address
= __vma_address(page
, vma
);
658 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
660 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
661 if (!pte
) /* the page is not in this mm */
663 pte_unmap_unlock(pte
, ptl
);
668 struct page_referenced_arg
{
671 unsigned long vm_flags
;
672 struct mem_cgroup
*memcg
;
675 * arg: page_referenced_arg will be passed
677 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
678 unsigned long address
, void *arg
)
680 struct mm_struct
*mm
= vma
->vm_mm
;
683 struct page_referenced_arg
*pra
= arg
;
685 if (unlikely(PageTransHuge(page
))) {
689 * rmap might return false positives; we must filter
690 * these out using page_check_address_pmd().
692 pmd
= page_check_address_pmd(page
, mm
, address
,
693 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
697 if (vma
->vm_flags
& VM_LOCKED
) {
699 pra
->vm_flags
|= VM_LOCKED
;
700 return SWAP_FAIL
; /* To break the loop */
703 /* go ahead even if the pmd is pmd_trans_splitting() */
704 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
711 * rmap might return false positives; we must filter
712 * these out using page_check_address().
714 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
718 if (vma
->vm_flags
& VM_LOCKED
) {
719 pte_unmap_unlock(pte
, ptl
);
720 pra
->vm_flags
|= VM_LOCKED
;
721 return SWAP_FAIL
; /* To break the loop */
724 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
726 * Don't treat a reference through a sequentially read
727 * mapping as such. If the page has been used in
728 * another mapping, we will catch it; if this other
729 * mapping is already gone, the unmap path will have
730 * set PG_referenced or activated the page.
732 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
735 pte_unmap_unlock(pte
, ptl
);
740 pra
->vm_flags
|= vma
->vm_flags
;
745 return SWAP_SUCCESS
; /* To break the loop */
750 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
752 struct page_referenced_arg
*pra
= arg
;
753 struct mem_cgroup
*memcg
= pra
->memcg
;
755 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
762 * page_referenced - test if the page was referenced
763 * @page: the page to test
764 * @is_locked: caller holds lock on the page
765 * @memcg: target memory cgroup
766 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
768 * Quick test_and_clear_referenced for all mappings to a page,
769 * returns the number of ptes which referenced the page.
771 int page_referenced(struct page
*page
,
773 struct mem_cgroup
*memcg
,
774 unsigned long *vm_flags
)
778 struct page_referenced_arg pra
= {
779 .mapcount
= page_mapcount(page
),
782 struct rmap_walk_control rwc
= {
783 .rmap_one
= page_referenced_one
,
785 .anon_lock
= page_lock_anon_vma_read
,
789 if (!page_mapped(page
))
792 if (!page_rmapping(page
))
795 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
796 we_locked
= trylock_page(page
);
802 * If we are reclaiming on behalf of a cgroup, skip
803 * counting on behalf of references from different
807 rwc
.invalid_vma
= invalid_page_referenced_vma
;
810 ret
= rmap_walk(page
, &rwc
);
811 *vm_flags
= pra
.vm_flags
;
816 return pra
.referenced
;
819 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
820 unsigned long address
, void *arg
)
822 struct mm_struct
*mm
= vma
->vm_mm
;
828 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
832 if (pte_dirty(*pte
) || pte_write(*pte
)) {
835 flush_cache_page(vma
, address
, pte_pfn(*pte
));
836 entry
= ptep_clear_flush(vma
, address
, pte
);
837 entry
= pte_wrprotect(entry
);
838 entry
= pte_mkclean(entry
);
839 set_pte_at(mm
, address
, pte
, entry
);
843 pte_unmap_unlock(pte
, ptl
);
846 mmu_notifier_invalidate_page(mm
, address
);
853 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
855 if (vma
->vm_flags
& VM_SHARED
)
861 int page_mkclean(struct page
*page
)
864 struct address_space
*mapping
;
865 struct rmap_walk_control rwc
= {
866 .arg
= (void *)&cleaned
,
867 .rmap_one
= page_mkclean_one
,
868 .invalid_vma
= invalid_mkclean_vma
,
871 BUG_ON(!PageLocked(page
));
873 if (!page_mapped(page
))
876 mapping
= page_mapping(page
);
880 rmap_walk(page
, &rwc
);
884 EXPORT_SYMBOL_GPL(page_mkclean
);
887 * page_move_anon_rmap - move a page to our anon_vma
888 * @page: the page to move to our anon_vma
889 * @vma: the vma the page belongs to
890 * @address: the user virtual address mapped
892 * When a page belongs exclusively to one process after a COW event,
893 * that page can be moved into the anon_vma that belongs to just that
894 * process, so the rmap code will not search the parent or sibling
897 void page_move_anon_rmap(struct page
*page
,
898 struct vm_area_struct
*vma
, unsigned long address
)
900 struct anon_vma
*anon_vma
= vma
->anon_vma
;
902 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
903 VM_BUG_ON_VMA(!anon_vma
, vma
);
904 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
906 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
907 page
->mapping
= (struct address_space
*) anon_vma
;
911 * __page_set_anon_rmap - set up new anonymous rmap
912 * @page: Page to add to rmap
913 * @vma: VM area to add page to.
914 * @address: User virtual address of the mapping
915 * @exclusive: the page is exclusively owned by the current process
917 static void __page_set_anon_rmap(struct page
*page
,
918 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
920 struct anon_vma
*anon_vma
= vma
->anon_vma
;
928 * If the page isn't exclusively mapped into this vma,
929 * we must use the _oldest_ possible anon_vma for the
933 anon_vma
= anon_vma
->root
;
935 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
936 page
->mapping
= (struct address_space
*) anon_vma
;
937 page
->index
= linear_page_index(vma
, address
);
941 * __page_check_anon_rmap - sanity check anonymous rmap addition
942 * @page: the page to add the mapping to
943 * @vma: the vm area in which the mapping is added
944 * @address: the user virtual address mapped
946 static void __page_check_anon_rmap(struct page
*page
,
947 struct vm_area_struct
*vma
, unsigned long address
)
949 #ifdef CONFIG_DEBUG_VM
951 * The page's anon-rmap details (mapping and index) are guaranteed to
952 * be set up correctly at this point.
954 * We have exclusion against page_add_anon_rmap because the caller
955 * always holds the page locked, except if called from page_dup_rmap,
956 * in which case the page is already known to be setup.
958 * We have exclusion against page_add_new_anon_rmap because those pages
959 * are initially only visible via the pagetables, and the pte is locked
960 * over the call to page_add_new_anon_rmap.
962 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
963 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
968 * page_add_anon_rmap - add pte mapping to an anonymous page
969 * @page: the page to add the mapping to
970 * @vma: the vm area in which the mapping is added
971 * @address: the user virtual address mapped
973 * The caller needs to hold the pte lock, and the page must be locked in
974 * the anon_vma case: to serialize mapping,index checking after setting,
975 * and to ensure that PageAnon is not being upgraded racily to PageKsm
976 * (but PageKsm is never downgraded to PageAnon).
978 void page_add_anon_rmap(struct page
*page
,
979 struct vm_area_struct
*vma
, unsigned long address
)
981 do_page_add_anon_rmap(page
, vma
, address
, 0);
985 * Special version of the above for do_swap_page, which often runs
986 * into pages that are exclusively owned by the current process.
987 * Everybody else should continue to use page_add_anon_rmap above.
989 void do_page_add_anon_rmap(struct page
*page
,
990 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
992 int first
= atomic_inc_and_test(&page
->_mapcount
);
995 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
996 * these counters are not modified in interrupt context, and
997 * pte lock(a spinlock) is held, which implies preemption
1000 if (PageTransHuge(page
))
1001 __inc_zone_page_state(page
,
1002 NR_ANON_TRANSPARENT_HUGEPAGES
);
1003 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1004 hpage_nr_pages(page
));
1006 if (unlikely(PageKsm(page
)))
1009 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1010 /* address might be in next vma when migration races vma_adjust */
1012 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1014 __page_check_anon_rmap(page
, vma
, address
);
1018 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1019 * @page: the page to add the mapping to
1020 * @vma: the vm area in which the mapping is added
1021 * @address: the user virtual address mapped
1023 * Same as page_add_anon_rmap but must only be called on *new* pages.
1024 * This means the inc-and-test can be bypassed.
1025 * Page does not have to be locked.
1027 void page_add_new_anon_rmap(struct page
*page
,
1028 struct vm_area_struct
*vma
, unsigned long address
)
1030 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1031 SetPageSwapBacked(page
);
1032 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1033 if (PageTransHuge(page
))
1034 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1035 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1036 hpage_nr_pages(page
));
1037 __page_set_anon_rmap(page
, vma
, address
, 1);
1041 * page_add_file_rmap - add pte mapping to a file page
1042 * @page: the page to add the mapping to
1044 * The caller needs to hold the pte lock.
1046 void page_add_file_rmap(struct page
*page
)
1048 struct mem_cgroup
*memcg
;
1049 unsigned long flags
;
1052 memcg
= mem_cgroup_begin_page_stat(page
, &locked
, &flags
);
1053 if (atomic_inc_and_test(&page
->_mapcount
)) {
1054 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1055 mem_cgroup_inc_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1057 mem_cgroup_end_page_stat(memcg
, &locked
, &flags
);
1060 static void page_remove_file_rmap(struct page
*page
)
1062 struct mem_cgroup
*memcg
;
1063 unsigned long flags
;
1066 memcg
= mem_cgroup_begin_page_stat(page
, &locked
, &flags
);
1068 /* page still mapped by someone else? */
1069 if (!atomic_add_negative(-1, &page
->_mapcount
))
1072 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1073 if (unlikely(PageHuge(page
)))
1077 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1078 * these counters are not modified in interrupt context, and
1079 * pte lock(a spinlock) is held, which implies preemption disabled.
1081 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1082 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1084 if (unlikely(PageMlocked(page
)))
1085 clear_page_mlock(page
);
1087 mem_cgroup_end_page_stat(memcg
, &locked
, &flags
);
1091 * page_remove_rmap - take down pte mapping from a page
1092 * @page: page to remove mapping from
1094 * The caller needs to hold the pte lock.
1096 void page_remove_rmap(struct page
*page
)
1098 if (!PageAnon(page
)) {
1099 page_remove_file_rmap(page
);
1103 /* page still mapped by someone else? */
1104 if (!atomic_add_negative(-1, &page
->_mapcount
))
1107 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1108 if (unlikely(PageHuge(page
)))
1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 * these counters are not modified in interrupt context, and
1114 * pte lock(a spinlock) is held, which implies preemption disabled.
1116 if (PageTransHuge(page
))
1117 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1119 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1120 -hpage_nr_pages(page
));
1122 if (unlikely(PageMlocked(page
)))
1123 clear_page_mlock(page
);
1126 * It would be tidy to reset the PageAnon mapping here,
1127 * but that might overwrite a racing page_add_anon_rmap
1128 * which increments mapcount after us but sets mapping
1129 * before us: so leave the reset to free_hot_cold_page,
1130 * and remember that it's only reliable while mapped.
1131 * Leaving it set also helps swapoff to reinstate ptes
1132 * faster for those pages still in swapcache.
1137 * @arg: enum ttu_flags will be passed to this argument
1139 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1140 unsigned long address
, void *arg
)
1142 struct mm_struct
*mm
= vma
->vm_mm
;
1146 int ret
= SWAP_AGAIN
;
1147 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1149 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1154 * If the page is mlock()d, we cannot swap it out.
1155 * If it's recently referenced (perhaps page_referenced
1156 * skipped over this mm) then we should reactivate it.
1158 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1159 if (vma
->vm_flags
& VM_LOCKED
)
1162 if (flags
& TTU_MUNLOCK
)
1165 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1166 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1172 /* Nuke the page table entry. */
1173 flush_cache_page(vma
, address
, page_to_pfn(page
));
1174 pteval
= ptep_clear_flush(vma
, address
, pte
);
1176 /* Move the dirty bit to the physical page now the pte is gone. */
1177 if (pte_dirty(pteval
))
1178 set_page_dirty(page
);
1180 /* Update high watermark before we lower rss */
1181 update_hiwater_rss(mm
);
1183 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1184 if (!PageHuge(page
)) {
1186 dec_mm_counter(mm
, MM_ANONPAGES
);
1188 dec_mm_counter(mm
, MM_FILEPAGES
);
1190 set_pte_at(mm
, address
, pte
,
1191 swp_entry_to_pte(make_hwpoison_entry(page
)));
1192 } else if (pte_unused(pteval
)) {
1194 * The guest indicated that the page content is of no
1195 * interest anymore. Simply discard the pte, vmscan
1196 * will take care of the rest.
1199 dec_mm_counter(mm
, MM_ANONPAGES
);
1201 dec_mm_counter(mm
, MM_FILEPAGES
);
1202 } else if (PageAnon(page
)) {
1203 swp_entry_t entry
= { .val
= page_private(page
) };
1206 if (PageSwapCache(page
)) {
1208 * Store the swap location in the pte.
1209 * See handle_pte_fault() ...
1211 if (swap_duplicate(entry
) < 0) {
1212 set_pte_at(mm
, address
, pte
, pteval
);
1216 if (list_empty(&mm
->mmlist
)) {
1217 spin_lock(&mmlist_lock
);
1218 if (list_empty(&mm
->mmlist
))
1219 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1220 spin_unlock(&mmlist_lock
);
1222 dec_mm_counter(mm
, MM_ANONPAGES
);
1223 inc_mm_counter(mm
, MM_SWAPENTS
);
1224 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1226 * Store the pfn of the page in a special migration
1227 * pte. do_swap_page() will wait until the migration
1228 * pte is removed and then restart fault handling.
1230 BUG_ON(!(flags
& TTU_MIGRATION
));
1231 entry
= make_migration_entry(page
, pte_write(pteval
));
1233 swp_pte
= swp_entry_to_pte(entry
);
1234 if (pte_soft_dirty(pteval
))
1235 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1236 set_pte_at(mm
, address
, pte
, swp_pte
);
1237 BUG_ON(pte_file(*pte
));
1238 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1239 (flags
& TTU_MIGRATION
)) {
1240 /* Establish migration entry for a file page */
1242 entry
= make_migration_entry(page
, pte_write(pteval
));
1243 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1245 dec_mm_counter(mm
, MM_FILEPAGES
);
1247 page_remove_rmap(page
);
1248 page_cache_release(page
);
1251 pte_unmap_unlock(pte
, ptl
);
1252 if (ret
!= SWAP_FAIL
&& !(flags
& TTU_MUNLOCK
))
1253 mmu_notifier_invalidate_page(mm
, address
);
1258 pte_unmap_unlock(pte
, ptl
);
1262 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1263 * unstable result and race. Plus, We can't wait here because
1264 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1265 * if trylock failed, the page remain in evictable lru and later
1266 * vmscan could retry to move the page to unevictable lru if the
1267 * page is actually mlocked.
1269 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1270 if (vma
->vm_flags
& VM_LOCKED
) {
1271 mlock_vma_page(page
);
1274 up_read(&vma
->vm_mm
->mmap_sem
);
1280 * objrmap doesn't work for nonlinear VMAs because the assumption that
1281 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1282 * Consequently, given a particular page and its ->index, we cannot locate the
1283 * ptes which are mapping that page without an exhaustive linear search.
1285 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1286 * maps the file to which the target page belongs. The ->vm_private_data field
1287 * holds the current cursor into that scan. Successive searches will circulate
1288 * around the vma's virtual address space.
1290 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1291 * more scanning pressure is placed against them as well. Eventually pages
1292 * will become fully unmapped and are eligible for eviction.
1294 * For very sparsely populated VMAs this is a little inefficient - chances are
1295 * there there won't be many ptes located within the scan cluster. In this case
1296 * maybe we could scan further - to the end of the pte page, perhaps.
1298 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1299 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1300 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1301 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1303 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1304 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1306 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1307 struct vm_area_struct
*vma
, struct page
*check_page
)
1309 struct mm_struct
*mm
= vma
->vm_mm
;
1315 unsigned long address
;
1316 unsigned long mmun_start
; /* For mmu_notifiers */
1317 unsigned long mmun_end
; /* For mmu_notifiers */
1319 int ret
= SWAP_AGAIN
;
1322 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1323 end
= address
+ CLUSTER_SIZE
;
1324 if (address
< vma
->vm_start
)
1325 address
= vma
->vm_start
;
1326 if (end
> vma
->vm_end
)
1329 pmd
= mm_find_pmd(mm
, address
);
1333 mmun_start
= address
;
1335 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1338 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1339 * keep the sem while scanning the cluster for mlocking pages.
1341 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1342 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1344 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1347 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1349 /* Update high watermark before we lower rss */
1350 update_hiwater_rss(mm
);
1352 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1353 if (!pte_present(*pte
))
1355 page
= vm_normal_page(vma
, address
, *pte
);
1356 BUG_ON(!page
|| PageAnon(page
));
1359 if (page
== check_page
) {
1360 /* we know we have check_page locked */
1361 mlock_vma_page(page
);
1363 } else if (trylock_page(page
)) {
1365 * If we can lock the page, perform mlock.
1366 * Otherwise leave the page alone, it will be
1367 * eventually encountered again later.
1369 mlock_vma_page(page
);
1372 continue; /* don't unmap */
1376 * No need for _notify because we're within an
1377 * mmu_notifier_invalidate_range_ {start|end} scope.
1379 if (ptep_clear_flush_young(vma
, address
, pte
))
1382 /* Nuke the page table entry. */
1383 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1384 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1386 /* If nonlinear, store the file page offset in the pte. */
1387 if (page
->index
!= linear_page_index(vma
, address
)) {
1388 pte_t ptfile
= pgoff_to_pte(page
->index
);
1389 if (pte_soft_dirty(pteval
))
1390 ptfile
= pte_file_mksoft_dirty(ptfile
);
1391 set_pte_at(mm
, address
, pte
, ptfile
);
1394 /* Move the dirty bit to the physical page now the pte is gone. */
1395 if (pte_dirty(pteval
))
1396 set_page_dirty(page
);
1398 page_remove_rmap(page
);
1399 page_cache_release(page
);
1400 dec_mm_counter(mm
, MM_FILEPAGES
);
1403 pte_unmap_unlock(pte
- 1, ptl
);
1404 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1406 up_read(&vma
->vm_mm
->mmap_sem
);
1410 static int try_to_unmap_nonlinear(struct page
*page
,
1411 struct address_space
*mapping
, void *arg
)
1413 struct vm_area_struct
*vma
;
1414 int ret
= SWAP_AGAIN
;
1415 unsigned long cursor
;
1416 unsigned long max_nl_cursor
= 0;
1417 unsigned long max_nl_size
= 0;
1418 unsigned int mapcount
;
1420 list_for_each_entry(vma
,
1421 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1423 cursor
= (unsigned long) vma
->vm_private_data
;
1424 if (cursor
> max_nl_cursor
)
1425 max_nl_cursor
= cursor
;
1426 cursor
= vma
->vm_end
- vma
->vm_start
;
1427 if (cursor
> max_nl_size
)
1428 max_nl_size
= cursor
;
1431 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1436 * We don't try to search for this page in the nonlinear vmas,
1437 * and page_referenced wouldn't have found it anyway. Instead
1438 * just walk the nonlinear vmas trying to age and unmap some.
1439 * The mapcount of the page we came in with is irrelevant,
1440 * but even so use it as a guide to how hard we should try?
1442 mapcount
= page_mapcount(page
);
1448 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1449 if (max_nl_cursor
== 0)
1450 max_nl_cursor
= CLUSTER_SIZE
;
1453 list_for_each_entry(vma
,
1454 &mapping
->i_mmap_nonlinear
, shared
.nonlinear
) {
1456 cursor
= (unsigned long) vma
->vm_private_data
;
1457 while (cursor
< max_nl_cursor
&&
1458 cursor
< vma
->vm_end
- vma
->vm_start
) {
1459 if (try_to_unmap_cluster(cursor
, &mapcount
,
1460 vma
, page
) == SWAP_MLOCK
)
1462 cursor
+= CLUSTER_SIZE
;
1463 vma
->vm_private_data
= (void *) cursor
;
1464 if ((int)mapcount
<= 0)
1467 vma
->vm_private_data
= (void *) max_nl_cursor
;
1470 max_nl_cursor
+= CLUSTER_SIZE
;
1471 } while (max_nl_cursor
<= max_nl_size
);
1474 * Don't loop forever (perhaps all the remaining pages are
1475 * in locked vmas). Reset cursor on all unreserved nonlinear
1476 * vmas, now forgetting on which ones it had fallen behind.
1478 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1479 vma
->vm_private_data
= NULL
;
1484 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1486 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1491 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1492 VM_STACK_INCOMPLETE_SETUP
)
1498 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1500 return is_vma_temporary_stack(vma
);
1503 static int page_not_mapped(struct page
*page
)
1505 return !page_mapped(page
);
1509 * try_to_unmap - try to remove all page table mappings to a page
1510 * @page: the page to get unmapped
1511 * @flags: action and flags
1513 * Tries to remove all the page table entries which are mapping this
1514 * page, used in the pageout path. Caller must hold the page lock.
1515 * Return values are:
1517 * SWAP_SUCCESS - we succeeded in removing all mappings
1518 * SWAP_AGAIN - we missed a mapping, try again later
1519 * SWAP_FAIL - the page is unswappable
1520 * SWAP_MLOCK - page is mlocked.
1522 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1525 struct rmap_walk_control rwc
= {
1526 .rmap_one
= try_to_unmap_one
,
1527 .arg
= (void *)flags
,
1528 .done
= page_not_mapped
,
1529 .file_nonlinear
= try_to_unmap_nonlinear
,
1530 .anon_lock
= page_lock_anon_vma_read
,
1533 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1536 * During exec, a temporary VMA is setup and later moved.
1537 * The VMA is moved under the anon_vma lock but not the
1538 * page tables leading to a race where migration cannot
1539 * find the migration ptes. Rather than increasing the
1540 * locking requirements of exec(), migration skips
1541 * temporary VMAs until after exec() completes.
1543 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1544 rwc
.invalid_vma
= invalid_migration_vma
;
1546 ret
= rmap_walk(page
, &rwc
);
1548 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1554 * try_to_munlock - try to munlock a page
1555 * @page: the page to be munlocked
1557 * Called from munlock code. Checks all of the VMAs mapping the page
1558 * to make sure nobody else has this page mlocked. The page will be
1559 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1561 * Return values are:
1563 * SWAP_AGAIN - no vma is holding page mlocked, or,
1564 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1565 * SWAP_FAIL - page cannot be located at present
1566 * SWAP_MLOCK - page is now mlocked.
1568 int try_to_munlock(struct page
*page
)
1571 struct rmap_walk_control rwc
= {
1572 .rmap_one
= try_to_unmap_one
,
1573 .arg
= (void *)TTU_MUNLOCK
,
1574 .done
= page_not_mapped
,
1576 * We don't bother to try to find the munlocked page in
1577 * nonlinears. It's costly. Instead, later, page reclaim logic
1578 * may call try_to_unmap() and recover PG_mlocked lazily.
1580 .file_nonlinear
= NULL
,
1581 .anon_lock
= page_lock_anon_vma_read
,
1585 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1587 ret
= rmap_walk(page
, &rwc
);
1591 void __put_anon_vma(struct anon_vma
*anon_vma
)
1593 struct anon_vma
*root
= anon_vma
->root
;
1595 anon_vma_free(anon_vma
);
1596 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1597 anon_vma_free(root
);
1600 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1601 struct rmap_walk_control
*rwc
)
1603 struct anon_vma
*anon_vma
;
1606 return rwc
->anon_lock(page
);
1609 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1610 * because that depends on page_mapped(); but not all its usages
1611 * are holding mmap_sem. Users without mmap_sem are required to
1612 * take a reference count to prevent the anon_vma disappearing
1614 anon_vma
= page_anon_vma(page
);
1618 anon_vma_lock_read(anon_vma
);
1623 * rmap_walk_anon - do something to anonymous page using the object-based
1625 * @page: the page to be handled
1626 * @rwc: control variable according to each walk type
1628 * Find all the mappings of a page using the mapping pointer and the vma chains
1629 * contained in the anon_vma struct it points to.
1631 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1632 * where the page was found will be held for write. So, we won't recheck
1633 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1636 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1638 struct anon_vma
*anon_vma
;
1640 struct anon_vma_chain
*avc
;
1641 int ret
= SWAP_AGAIN
;
1643 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1647 pgoff
= page_to_pgoff(page
);
1648 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1649 struct vm_area_struct
*vma
= avc
->vma
;
1650 unsigned long address
= vma_address(page
, vma
);
1652 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1655 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1656 if (ret
!= SWAP_AGAIN
)
1658 if (rwc
->done
&& rwc
->done(page
))
1661 anon_vma_unlock_read(anon_vma
);
1666 * rmap_walk_file - do something to file page using the object-based rmap method
1667 * @page: the page to be handled
1668 * @rwc: control variable according to each walk type
1670 * Find all the mappings of a page using the mapping pointer and the vma chains
1671 * contained in the address_space struct it points to.
1673 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1674 * where the page was found will be held for write. So, we won't recheck
1675 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1678 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1680 struct address_space
*mapping
= page
->mapping
;
1682 struct vm_area_struct
*vma
;
1683 int ret
= SWAP_AGAIN
;
1686 * The page lock not only makes sure that page->mapping cannot
1687 * suddenly be NULLified by truncation, it makes sure that the
1688 * structure at mapping cannot be freed and reused yet,
1689 * so we can safely take mapping->i_mmap_rwsem.
1691 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1696 pgoff
= page_to_pgoff(page
);
1697 i_mmap_lock_read(mapping
);
1698 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1699 unsigned long address
= vma_address(page
, vma
);
1701 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1704 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1705 if (ret
!= SWAP_AGAIN
)
1707 if (rwc
->done
&& rwc
->done(page
))
1711 if (!rwc
->file_nonlinear
)
1714 if (list_empty(&mapping
->i_mmap_nonlinear
))
1717 ret
= rwc
->file_nonlinear(page
, mapping
, rwc
->arg
);
1719 i_mmap_unlock_read(mapping
);
1723 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1725 if (unlikely(PageKsm(page
)))
1726 return rmap_walk_ksm(page
, rwc
);
1727 else if (PageAnon(page
))
1728 return rmap_walk_anon(page
, rwc
);
1730 return rmap_walk_file(page
, rwc
);
1733 #ifdef CONFIG_HUGETLB_PAGE
1735 * The following three functions are for anonymous (private mapped) hugepages.
1736 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737 * and no lru code, because we handle hugepages differently from common pages.
1739 static void __hugepage_set_anon_rmap(struct page
*page
,
1740 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1742 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1749 anon_vma
= anon_vma
->root
;
1751 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1752 page
->mapping
= (struct address_space
*) anon_vma
;
1753 page
->index
= linear_page_index(vma
, address
);
1756 void hugepage_add_anon_rmap(struct page
*page
,
1757 struct vm_area_struct
*vma
, unsigned long address
)
1759 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1762 BUG_ON(!PageLocked(page
));
1764 /* address might be in next vma when migration races vma_adjust */
1765 first
= atomic_inc_and_test(&page
->_mapcount
);
1767 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1770 void hugepage_add_new_anon_rmap(struct page
*page
,
1771 struct vm_area_struct
*vma
, unsigned long address
)
1773 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1774 atomic_set(&page
->_mapcount
, 0);
1775 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1777 #endif /* CONFIG_HUGETLB_PAGE */