4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
40 /* How many pages do we try to swap or page in/out together? */
43 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
44 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
45 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
51 static void __page_cache_release(struct page
*page
)
54 struct zone
*zone
= page_zone(page
);
55 struct lruvec
*lruvec
;
58 spin_lock_irqsave(&zone
->lru_lock
, flags
);
59 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
60 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
62 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
63 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
65 mem_cgroup_uncharge(page
);
68 static void __put_single_page(struct page
*page
)
70 __page_cache_release(page
);
71 free_hot_cold_page(page
, false);
74 static void __put_compound_page(struct page
*page
)
76 compound_page_dtor
*dtor
;
78 __page_cache_release(page
);
79 dtor
= get_compound_page_dtor(page
);
84 * Two special cases here: we could avoid taking compound_lock_irqsave
85 * and could skip the tail refcounting(in _mapcount).
89 * PageHeadHuge will remain true until the compound page
90 * is released and enters the buddy allocator, and it could
91 * not be split by __split_huge_page_refcount().
93 * So if we see PageHeadHuge set, and we have the tail page pin,
94 * then we could safely put head page.
98 * PG_slab is cleared before the slab frees the head page, and
99 * tail pin cannot be the last reference left on the head page,
100 * because the slab code is free to reuse the compound page
101 * after a kfree/kmem_cache_free without having to check if
102 * there's any tail pin left. In turn all tail pinsmust be always
103 * released while the head is still pinned by the slab code
104 * and so we know PG_slab will be still set too.
106 * So if we see PageSlab set, and we have the tail page pin,
107 * then we could safely put head page.
109 static __always_inline
110 void put_unrefcounted_compound_page(struct page
*page_head
, struct page
*page
)
113 * If @page is a THP tail, we must read the tail page
114 * flags after the head page flags. The
115 * __split_huge_page_refcount side enforces write memory barriers
116 * between clearing PageTail and before the head page
117 * can be freed and reallocated.
120 if (likely(PageTail(page
))) {
122 * __split_huge_page_refcount cannot race
123 * here, see the comment above this function.
125 VM_BUG_ON_PAGE(!PageHead(page_head
), page_head
);
126 VM_BUG_ON_PAGE(page_mapcount(page
) != 0, page
);
127 if (put_page_testzero(page_head
)) {
129 * If this is the tail of a slab THP page,
130 * the tail pin must not be the last reference
131 * held on the page, because the PG_slab cannot
132 * be cleared before all tail pins (which skips
133 * the _mapcount tail refcounting) have been
136 * If this is the tail of a hugetlbfs page,
137 * the tail pin may be the last reference on
138 * the page instead, because PageHeadHuge will
139 * not go away until the compound page enters
140 * the buddy allocator.
142 VM_BUG_ON_PAGE(PageSlab(page_head
), page_head
);
143 __put_compound_page(page_head
);
147 * __split_huge_page_refcount run before us,
148 * @page was a THP tail. The split @page_head
149 * has been freed and reallocated as slab or
150 * hugetlbfs page of smaller order (only
151 * possible if reallocated as slab on x86).
153 if (put_page_testzero(page
))
154 __put_single_page(page
);
157 static __always_inline
158 void put_refcounted_compound_page(struct page
*page_head
, struct page
*page
)
160 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
164 * @page_head wasn't a dangling pointer but it may not
165 * be a head page anymore by the time we obtain the
166 * lock. That is ok as long as it can't be freed from
169 flags
= compound_lock_irqsave(page_head
);
170 if (unlikely(!PageTail(page
))) {
171 /* __split_huge_page_refcount run before us */
172 compound_unlock_irqrestore(page_head
, flags
);
173 if (put_page_testzero(page_head
)) {
175 * The @page_head may have been freed
176 * and reallocated as a compound page
177 * of smaller order and then freed
178 * again. All we know is that it
179 * cannot have become: a THP page, a
180 * compound page of higher order, a
181 * tail page. That is because we
182 * still hold the refcount of the
183 * split THP tail and page_head was
184 * the THP head before the split.
186 if (PageHead(page_head
))
187 __put_compound_page(page_head
);
189 __put_single_page(page_head
);
192 if (put_page_testzero(page
))
193 __put_single_page(page
);
196 VM_BUG_ON_PAGE(page_head
!= page
->first_page
, page
);
198 * We can release the refcount taken by
199 * get_page_unless_zero() now that
200 * __split_huge_page_refcount() is blocked on the
203 if (put_page_testzero(page_head
))
204 VM_BUG_ON_PAGE(1, page_head
);
205 /* __split_huge_page_refcount will wait now */
206 VM_BUG_ON_PAGE(page_mapcount(page
) <= 0, page
);
207 atomic_dec(&page
->_mapcount
);
208 VM_BUG_ON_PAGE(atomic_read(&page_head
->_count
) <= 0, page_head
);
209 VM_BUG_ON_PAGE(atomic_read(&page
->_count
) != 0, page
);
210 compound_unlock_irqrestore(page_head
, flags
);
212 if (put_page_testzero(page_head
)) {
213 if (PageHead(page_head
))
214 __put_compound_page(page_head
);
216 __put_single_page(page_head
);
219 /* @page_head is a dangling pointer */
220 VM_BUG_ON_PAGE(PageTail(page
), page
);
225 static void put_compound_page(struct page
*page
)
227 struct page
*page_head
;
230 * We see the PageCompound set and PageTail not set, so @page maybe:
231 * 1. hugetlbfs head page, or
234 if (likely(!PageTail(page
))) {
235 if (put_page_testzero(page
)) {
237 * By the time all refcounts have been released
238 * split_huge_page cannot run anymore from under us.
241 __put_compound_page(page
);
243 __put_single_page(page
);
249 * We see the PageCompound set and PageTail set, so @page maybe:
250 * 1. a tail hugetlbfs page, or
251 * 2. a tail THP page, or
252 * 3. a split THP page.
254 * Case 3 is possible, as we may race with
255 * __split_huge_page_refcount tearing down a THP page.
257 page_head
= compound_head_by_tail(page
);
258 if (!__compound_tail_refcounted(page_head
))
259 put_unrefcounted_compound_page(page_head
, page
);
261 put_refcounted_compound_page(page_head
, page
);
264 void put_page(struct page
*page
)
266 if (unlikely(PageCompound(page
)))
267 put_compound_page(page
);
268 else if (put_page_testzero(page
))
269 __put_single_page(page
);
271 EXPORT_SYMBOL(put_page
);
274 * This function is exported but must not be called by anything other
275 * than get_page(). It implements the slow path of get_page().
277 bool __get_page_tail(struct page
*page
)
280 * This takes care of get_page() if run on a tail page
281 * returned by one of the get_user_pages/follow_page variants.
282 * get_user_pages/follow_page itself doesn't need the compound
283 * lock because it runs __get_page_tail_foll() under the
284 * proper PT lock that already serializes against
289 struct page
*page_head
= compound_head(page
);
291 /* Ref to put_compound_page() comment. */
292 if (!__compound_tail_refcounted(page_head
)) {
294 if (likely(PageTail(page
))) {
296 * This is a hugetlbfs page or a slab
297 * page. __split_huge_page_refcount
300 VM_BUG_ON_PAGE(!PageHead(page_head
), page_head
);
301 __get_page_tail_foll(page
, true);
305 * __split_huge_page_refcount run
306 * before us, "page" was a THP
307 * tail. The split page_head has been
308 * freed and reallocated as slab or
309 * hugetlbfs page of smaller order
310 * (only possible if reallocated as
318 if (likely(page
!= page_head
&& get_page_unless_zero(page_head
))) {
320 * page_head wasn't a dangling pointer but it
321 * may not be a head page anymore by the time
322 * we obtain the lock. That is ok as long as it
323 * can't be freed from under us.
325 flags
= compound_lock_irqsave(page_head
);
326 /* here __split_huge_page_refcount won't run anymore */
327 if (likely(PageTail(page
))) {
328 __get_page_tail_foll(page
, false);
331 compound_unlock_irqrestore(page_head
, flags
);
337 EXPORT_SYMBOL(__get_page_tail
);
340 * put_pages_list() - release a list of pages
341 * @pages: list of pages threaded on page->lru
343 * Release a list of pages which are strung together on page.lru. Currently
344 * used by read_cache_pages() and related error recovery code.
346 void put_pages_list(struct list_head
*pages
)
348 while (!list_empty(pages
)) {
351 victim
= list_entry(pages
->prev
, struct page
, lru
);
352 list_del(&victim
->lru
);
353 page_cache_release(victim
);
356 EXPORT_SYMBOL(put_pages_list
);
359 * get_kernel_pages() - pin kernel pages in memory
360 * @kiov: An array of struct kvec structures
361 * @nr_segs: number of segments to pin
362 * @write: pinning for read/write, currently ignored
363 * @pages: array that receives pointers to the pages pinned.
364 * Should be at least nr_segs long.
366 * Returns number of pages pinned. This may be fewer than the number
367 * requested. If nr_pages is 0 or negative, returns 0. If no pages
368 * were pinned, returns -errno. Each page returned must be released
369 * with a put_page() call when it is finished with.
371 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
376 for (seg
= 0; seg
< nr_segs
; seg
++) {
377 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
380 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
381 page_cache_get(pages
[seg
]);
386 EXPORT_SYMBOL_GPL(get_kernel_pages
);
389 * get_kernel_page() - pin a kernel page in memory
390 * @start: starting kernel address
391 * @write: pinning for read/write, currently ignored
392 * @pages: array that receives pointer to the page pinned.
393 * Must be at least nr_segs long.
395 * Returns 1 if page is pinned. If the page was not pinned, returns
396 * -errno. The page returned must be released with a put_page() call
397 * when it is finished with.
399 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
401 const struct kvec kiov
= {
402 .iov_base
= (void *)start
,
406 return get_kernel_pages(&kiov
, 1, write
, pages
);
408 EXPORT_SYMBOL_GPL(get_kernel_page
);
410 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
411 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
415 struct zone
*zone
= NULL
;
416 struct lruvec
*lruvec
;
417 unsigned long flags
= 0;
419 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
420 struct page
*page
= pvec
->pages
[i
];
421 struct zone
*pagezone
= page_zone(page
);
423 if (pagezone
!= zone
) {
425 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
427 spin_lock_irqsave(&zone
->lru_lock
, flags
);
430 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
431 (*move_fn
)(page
, lruvec
, arg
);
434 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
435 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
436 pagevec_reinit(pvec
);
439 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
444 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
445 enum lru_list lru
= page_lru_base_type(page
);
446 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
452 * pagevec_move_tail() must be called with IRQ disabled.
453 * Otherwise this may cause nasty races.
455 static void pagevec_move_tail(struct pagevec
*pvec
)
459 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
460 __count_vm_events(PGROTATED
, pgmoved
);
464 * Writeback is about to end against a page which has been marked for immediate
465 * reclaim. If it still appears to be reclaimable, move it to the tail of the
468 void rotate_reclaimable_page(struct page
*page
)
470 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
471 !PageUnevictable(page
) && PageLRU(page
)) {
472 struct pagevec
*pvec
;
475 page_cache_get(page
);
476 local_irq_save(flags
);
477 pvec
= this_cpu_ptr(&lru_rotate_pvecs
);
478 if (!pagevec_add(pvec
, page
))
479 pagevec_move_tail(pvec
);
480 local_irq_restore(flags
);
484 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
485 int file
, int rotated
)
487 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
489 reclaim_stat
->recent_scanned
[file
]++;
491 reclaim_stat
->recent_rotated
[file
]++;
494 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
497 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
498 int file
= page_is_file_cache(page
);
499 int lru
= page_lru_base_type(page
);
501 del_page_from_lru_list(page
, lruvec
, lru
);
504 add_page_to_lru_list(page
, lruvec
, lru
);
505 trace_mm_lru_activate(page
);
507 __count_vm_event(PGACTIVATE
);
508 update_page_reclaim_stat(lruvec
, file
, 1);
513 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
515 static void activate_page_drain(int cpu
)
517 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
519 if (pagevec_count(pvec
))
520 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
523 static bool need_activate_page_drain(int cpu
)
525 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
528 void activate_page(struct page
*page
)
530 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
531 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
533 page_cache_get(page
);
534 if (!pagevec_add(pvec
, page
))
535 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
536 put_cpu_var(activate_page_pvecs
);
541 static inline void activate_page_drain(int cpu
)
545 static bool need_activate_page_drain(int cpu
)
550 void activate_page(struct page
*page
)
552 struct zone
*zone
= page_zone(page
);
554 spin_lock_irq(&zone
->lru_lock
);
555 __activate_page(page
, mem_cgroup_page_lruvec(page
, zone
), NULL
);
556 spin_unlock_irq(&zone
->lru_lock
);
560 static void __lru_cache_activate_page(struct page
*page
)
562 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
566 * Search backwards on the optimistic assumption that the page being
567 * activated has just been added to this pagevec. Note that only
568 * the local pagevec is examined as a !PageLRU page could be in the
569 * process of being released, reclaimed, migrated or on a remote
570 * pagevec that is currently being drained. Furthermore, marking
571 * a remote pagevec's page PageActive potentially hits a race where
572 * a page is marked PageActive just after it is added to the inactive
573 * list causing accounting errors and BUG_ON checks to trigger.
575 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
576 struct page
*pagevec_page
= pvec
->pages
[i
];
578 if (pagevec_page
== page
) {
584 put_cpu_var(lru_add_pvec
);
588 * Mark a page as having seen activity.
590 * inactive,unreferenced -> inactive,referenced
591 * inactive,referenced -> active,unreferenced
592 * active,unreferenced -> active,referenced
594 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
595 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
597 void mark_page_accessed(struct page
*page
)
599 if (!PageActive(page
) && !PageUnevictable(page
) &&
600 PageReferenced(page
)) {
603 * If the page is on the LRU, queue it for activation via
604 * activate_page_pvecs. Otherwise, assume the page is on a
605 * pagevec, mark it active and it'll be moved to the active
606 * LRU on the next drain.
611 __lru_cache_activate_page(page
);
612 ClearPageReferenced(page
);
613 if (page_is_file_cache(page
))
614 workingset_activation(page
);
615 } else if (!PageReferenced(page
)) {
616 SetPageReferenced(page
);
619 EXPORT_SYMBOL(mark_page_accessed
);
621 static void __lru_cache_add(struct page
*page
)
623 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
625 page_cache_get(page
);
626 if (!pagevec_space(pvec
))
627 __pagevec_lru_add(pvec
);
628 pagevec_add(pvec
, page
);
629 put_cpu_var(lru_add_pvec
);
633 * lru_cache_add: add a page to the page lists
634 * @page: the page to add
636 void lru_cache_add_anon(struct page
*page
)
638 if (PageActive(page
))
639 ClearPageActive(page
);
640 __lru_cache_add(page
);
643 void lru_cache_add_file(struct page
*page
)
645 if (PageActive(page
))
646 ClearPageActive(page
);
647 __lru_cache_add(page
);
649 EXPORT_SYMBOL(lru_cache_add_file
);
652 * lru_cache_add - add a page to a page list
653 * @page: the page to be added to the LRU.
655 * Queue the page for addition to the LRU via pagevec. The decision on whether
656 * to add the page to the [in]active [file|anon] list is deferred until the
657 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
658 * have the page added to the active list using mark_page_accessed().
660 void lru_cache_add(struct page
*page
)
662 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
663 VM_BUG_ON_PAGE(PageLRU(page
), page
);
664 __lru_cache_add(page
);
668 * add_page_to_unevictable_list - add a page to the unevictable list
669 * @page: the page to be added to the unevictable list
671 * Add page directly to its zone's unevictable list. To avoid races with
672 * tasks that might be making the page evictable, through eg. munlock,
673 * munmap or exit, while it's not on the lru, we want to add the page
674 * while it's locked or otherwise "invisible" to other tasks. This is
675 * difficult to do when using the pagevec cache, so bypass that.
677 void add_page_to_unevictable_list(struct page
*page
)
679 struct zone
*zone
= page_zone(page
);
680 struct lruvec
*lruvec
;
682 spin_lock_irq(&zone
->lru_lock
);
683 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
684 ClearPageActive(page
);
685 SetPageUnevictable(page
);
687 add_page_to_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
688 spin_unlock_irq(&zone
->lru_lock
);
692 * lru_cache_add_active_or_unevictable
693 * @page: the page to be added to LRU
694 * @vma: vma in which page is mapped for determining reclaimability
696 * Place @page on the active or unevictable LRU list, depending on its
697 * evictability. Note that if the page is not evictable, it goes
698 * directly back onto it's zone's unevictable list, it does NOT use a
701 void lru_cache_add_active_or_unevictable(struct page
*page
,
702 struct vm_area_struct
*vma
)
704 VM_BUG_ON_PAGE(PageLRU(page
), page
);
706 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
)) {
712 if (!TestSetPageMlocked(page
)) {
714 * We use the irq-unsafe __mod_zone_page_stat because this
715 * counter is not modified from interrupt context, and the pte
716 * lock is held(spinlock), which implies preemption disabled.
718 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
719 hpage_nr_pages(page
));
720 count_vm_event(UNEVICTABLE_PGMLOCKED
);
722 add_page_to_unevictable_list(page
);
726 * If the page can not be invalidated, it is moved to the
727 * inactive list to speed up its reclaim. It is moved to the
728 * head of the list, rather than the tail, to give the flusher
729 * threads some time to write it out, as this is much more
730 * effective than the single-page writeout from reclaim.
732 * If the page isn't page_mapped and dirty/writeback, the page
733 * could reclaim asap using PG_reclaim.
735 * 1. active, mapped page -> none
736 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
737 * 3. inactive, mapped page -> none
738 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
739 * 5. inactive, clean -> inactive, tail
742 * In 4, why it moves inactive's head, the VM expects the page would
743 * be write it out by flusher threads as this is much more effective
744 * than the single-page writeout from reclaim.
746 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
755 if (PageUnevictable(page
))
758 /* Some processes are using the page */
759 if (page_mapped(page
))
762 active
= PageActive(page
);
763 file
= page_is_file_cache(page
);
764 lru
= page_lru_base_type(page
);
766 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
767 ClearPageActive(page
);
768 ClearPageReferenced(page
);
769 add_page_to_lru_list(page
, lruvec
, lru
);
771 if (PageWriteback(page
) || PageDirty(page
)) {
773 * PG_reclaim could be raced with end_page_writeback
774 * It can make readahead confusing. But race window
775 * is _really_ small and it's non-critical problem.
777 SetPageReclaim(page
);
780 * The page's writeback ends up during pagevec
781 * We moves tha page into tail of inactive.
783 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
784 __count_vm_event(PGROTATED
);
788 __count_vm_event(PGDEACTIVATE
);
789 update_page_reclaim_stat(lruvec
, file
, 0);
793 * Drain pages out of the cpu's pagevecs.
794 * Either "cpu" is the current CPU, and preemption has already been
795 * disabled; or "cpu" is being hot-unplugged, and is already dead.
797 void lru_add_drain_cpu(int cpu
)
799 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
801 if (pagevec_count(pvec
))
802 __pagevec_lru_add(pvec
);
804 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
805 if (pagevec_count(pvec
)) {
808 /* No harm done if a racing interrupt already did this */
809 local_irq_save(flags
);
810 pagevec_move_tail(pvec
);
811 local_irq_restore(flags
);
814 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
815 if (pagevec_count(pvec
))
816 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
818 activate_page_drain(cpu
);
822 * deactivate_page - forcefully deactivate a page
823 * @page: page to deactivate
825 * This function hints the VM that @page is a good reclaim candidate,
826 * for example if its invalidation fails due to the page being dirty
827 * or under writeback.
829 void deactivate_page(struct page
*page
)
832 * In a workload with many unevictable page such as mprotect, unevictable
833 * page deactivation for accelerating reclaim is pointless.
835 if (PageUnevictable(page
))
838 if (likely(get_page_unless_zero(page
))) {
839 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
841 if (!pagevec_add(pvec
, page
))
842 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
843 put_cpu_var(lru_deactivate_pvecs
);
847 void lru_add_drain(void)
849 lru_add_drain_cpu(get_cpu());
853 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
858 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
860 void lru_add_drain_all(void)
862 static DEFINE_MUTEX(lock
);
863 static struct cpumask has_work
;
868 cpumask_clear(&has_work
);
870 for_each_online_cpu(cpu
) {
871 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
873 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
874 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
875 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
876 need_activate_page_drain(cpu
)) {
877 INIT_WORK(work
, lru_add_drain_per_cpu
);
878 schedule_work_on(cpu
, work
);
879 cpumask_set_cpu(cpu
, &has_work
);
883 for_each_cpu(cpu
, &has_work
)
884 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
891 * release_pages - batched page_cache_release()
892 * @pages: array of pages to release
893 * @nr: number of pages
894 * @cold: whether the pages are cache cold
896 * Decrement the reference count on all the pages in @pages. If it
897 * fell to zero, remove the page from the LRU and free it.
899 void release_pages(struct page
**pages
, int nr
, bool cold
)
902 LIST_HEAD(pages_to_free
);
903 struct zone
*zone
= NULL
;
904 struct lruvec
*lruvec
;
905 unsigned long uninitialized_var(flags
);
906 unsigned int uninitialized_var(lock_batch
);
908 for (i
= 0; i
< nr
; i
++) {
909 struct page
*page
= pages
[i
];
911 if (unlikely(PageCompound(page
))) {
913 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
916 put_compound_page(page
);
921 * Make sure the IRQ-safe lock-holding time does not get
922 * excessive with a continuous string of pages from the
923 * same zone. The lock is held only if zone != NULL.
925 if (zone
&& ++lock_batch
== SWAP_CLUSTER_MAX
) {
926 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
930 if (!put_page_testzero(page
))
934 struct zone
*pagezone
= page_zone(page
);
936 if (pagezone
!= zone
) {
938 spin_unlock_irqrestore(&zone
->lru_lock
,
942 spin_lock_irqsave(&zone
->lru_lock
, flags
);
945 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
946 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
947 __ClearPageLRU(page
);
948 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
951 /* Clear Active bit in case of parallel mark_page_accessed */
952 __ClearPageActive(page
);
954 list_add(&page
->lru
, &pages_to_free
);
957 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
959 mem_cgroup_uncharge_list(&pages_to_free
);
960 free_hot_cold_page_list(&pages_to_free
, cold
);
962 EXPORT_SYMBOL(release_pages
);
965 * The pages which we're about to release may be in the deferred lru-addition
966 * queues. That would prevent them from really being freed right now. That's
967 * OK from a correctness point of view but is inefficient - those pages may be
968 * cache-warm and we want to give them back to the page allocator ASAP.
970 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
971 * and __pagevec_lru_add_active() call release_pages() directly to avoid
974 void __pagevec_release(struct pagevec
*pvec
)
977 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
978 pagevec_reinit(pvec
);
980 EXPORT_SYMBOL(__pagevec_release
);
982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
983 /* used by __split_huge_page_refcount() */
984 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
985 struct lruvec
*lruvec
, struct list_head
*list
)
989 VM_BUG_ON_PAGE(!PageHead(page
), page
);
990 VM_BUG_ON_PAGE(PageCompound(page_tail
), page
);
991 VM_BUG_ON_PAGE(PageLRU(page_tail
), page
);
992 VM_BUG_ON(NR_CPUS
!= 1 &&
993 !spin_is_locked(&lruvec_zone(lruvec
)->lru_lock
));
996 SetPageLRU(page_tail
);
998 if (likely(PageLRU(page
)))
999 list_add_tail(&page_tail
->lru
, &page
->lru
);
1001 /* page reclaim is reclaiming a huge page */
1002 get_page(page_tail
);
1003 list_add_tail(&page_tail
->lru
, list
);
1005 struct list_head
*list_head
;
1007 * Head page has not yet been counted, as an hpage,
1008 * so we must account for each subpage individually.
1010 * Use the standard add function to put page_tail on the list,
1011 * but then correct its position so they all end up in order.
1013 add_page_to_lru_list(page_tail
, lruvec
, page_lru(page_tail
));
1014 list_head
= page_tail
->lru
.prev
;
1015 list_move_tail(&page_tail
->lru
, list_head
);
1018 if (!PageUnevictable(page
))
1019 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
1021 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1023 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
1026 int file
= page_is_file_cache(page
);
1027 int active
= PageActive(page
);
1028 enum lru_list lru
= page_lru(page
);
1030 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1033 add_page_to_lru_list(page
, lruvec
, lru
);
1034 update_page_reclaim_stat(lruvec
, file
, active
);
1035 trace_mm_lru_insertion(page
, lru
);
1039 * Add the passed pages to the LRU, then drop the caller's refcount
1040 * on them. Reinitialises the caller's pagevec.
1042 void __pagevec_lru_add(struct pagevec
*pvec
)
1044 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
1046 EXPORT_SYMBOL(__pagevec_lru_add
);
1049 * pagevec_lookup_entries - gang pagecache lookup
1050 * @pvec: Where the resulting entries are placed
1051 * @mapping: The address_space to search
1052 * @start: The starting entry index
1053 * @nr_entries: The maximum number of entries
1054 * @indices: The cache indices corresponding to the entries in @pvec
1056 * pagevec_lookup_entries() will search for and return a group of up
1057 * to @nr_entries pages and shadow entries in the mapping. All
1058 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1059 * reference against actual pages in @pvec.
1061 * The search returns a group of mapping-contiguous entries with
1062 * ascending indexes. There may be holes in the indices due to
1063 * not-present entries.
1065 * pagevec_lookup_entries() returns the number of entries which were
1068 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
1069 struct address_space
*mapping
,
1070 pgoff_t start
, unsigned nr_pages
,
1073 pvec
->nr
= find_get_entries(mapping
, start
, nr_pages
,
1074 pvec
->pages
, indices
);
1075 return pagevec_count(pvec
);
1079 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1080 * @pvec: The pagevec to prune
1082 * pagevec_lookup_entries() fills both pages and exceptional radix
1083 * tree entries into the pagevec. This function prunes all
1084 * exceptionals from @pvec without leaving holes, so that it can be
1085 * passed on to page-only pagevec operations.
1087 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
1091 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
1092 struct page
*page
= pvec
->pages
[i
];
1093 if (!radix_tree_exceptional_entry(page
))
1094 pvec
->pages
[j
++] = page
;
1100 * pagevec_lookup - gang pagecache lookup
1101 * @pvec: Where the resulting pages are placed
1102 * @mapping: The address_space to search
1103 * @start: The starting page index
1104 * @nr_pages: The maximum number of pages
1106 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1107 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1108 * reference against the pages in @pvec.
1110 * The search returns a group of mapping-contiguous pages with ascending
1111 * indexes. There may be holes in the indices due to not-present pages.
1113 * pagevec_lookup() returns the number of pages which were found.
1115 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
1116 pgoff_t start
, unsigned nr_pages
)
1118 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
1119 return pagevec_count(pvec
);
1121 EXPORT_SYMBOL(pagevec_lookup
);
1123 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
1124 pgoff_t
*index
, int tag
, unsigned nr_pages
)
1126 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
1127 nr_pages
, pvec
->pages
);
1128 return pagevec_count(pvec
);
1130 EXPORT_SYMBOL(pagevec_lookup_tag
);
1133 * Perform any setup for the swap system
1135 void __init
swap_setup(void)
1137 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
1141 if (bdi_init(swapper_spaces
[0].backing_dev_info
))
1142 panic("Failed to init swap bdi");
1143 for (i
= 0; i
< MAX_SWAPFILES
; i
++) {
1144 spin_lock_init(&swapper_spaces
[i
].tree_lock
);
1145 INIT_LIST_HEAD(&swapper_spaces
[i
].i_mmap_nonlinear
);
1149 /* Use a smaller cluster for small-memory machines */
1155 * Right now other parts of the system means that we
1156 * _really_ don't want to cluster much more