staging: ks7010: move null check before dereference
[linux/fpc-iii.git] / mm / oom_kill.c
blobd083714a2bb924a0303fa7535acf09d7355aedf0
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
44 #include <asm/tlb.h>
45 #include "internal.h"
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/oom.h>
50 int sysctl_panic_on_oom;
51 int sysctl_oom_kill_allocating_task;
52 int sysctl_oom_dump_tasks = 1;
54 DEFINE_MUTEX(oom_lock);
56 #ifdef CONFIG_NUMA
57 /**
58 * has_intersects_mems_allowed() - check task eligiblity for kill
59 * @start: task struct of which task to consider
60 * @mask: nodemask passed to page allocator for mempolicy ooms
62 * Task eligibility is determined by whether or not a candidate task, @tsk,
63 * shares the same mempolicy nodes as current if it is bound by such a policy
64 * and whether or not it has the same set of allowed cpuset nodes.
66 static bool has_intersects_mems_allowed(struct task_struct *start,
67 const nodemask_t *mask)
69 struct task_struct *tsk;
70 bool ret = false;
72 rcu_read_lock();
73 for_each_thread(start, tsk) {
74 if (mask) {
76 * If this is a mempolicy constrained oom, tsk's
77 * cpuset is irrelevant. Only return true if its
78 * mempolicy intersects current, otherwise it may be
79 * needlessly killed.
81 ret = mempolicy_nodemask_intersects(tsk, mask);
82 } else {
84 * This is not a mempolicy constrained oom, so only
85 * check the mems of tsk's cpuset.
87 ret = cpuset_mems_allowed_intersects(current, tsk);
89 if (ret)
90 break;
92 rcu_read_unlock();
94 return ret;
96 #else
97 static bool has_intersects_mems_allowed(struct task_struct *tsk,
98 const nodemask_t *mask)
100 return true;
102 #endif /* CONFIG_NUMA */
105 * The process p may have detached its own ->mm while exiting or through
106 * use_mm(), but one or more of its subthreads may still have a valid
107 * pointer. Return p, or any of its subthreads with a valid ->mm, with
108 * task_lock() held.
110 struct task_struct *find_lock_task_mm(struct task_struct *p)
112 struct task_struct *t;
114 rcu_read_lock();
116 for_each_thread(p, t) {
117 task_lock(t);
118 if (likely(t->mm))
119 goto found;
120 task_unlock(t);
122 t = NULL;
123 found:
124 rcu_read_unlock();
126 return t;
130 * order == -1 means the oom kill is required by sysrq, otherwise only
131 * for display purposes.
133 static inline bool is_sysrq_oom(struct oom_control *oc)
135 return oc->order == -1;
138 static inline bool is_memcg_oom(struct oom_control *oc)
140 return oc->memcg != NULL;
143 /* return true if the task is not adequate as candidate victim task. */
144 static bool oom_unkillable_task(struct task_struct *p,
145 struct mem_cgroup *memcg, const nodemask_t *nodemask)
147 if (is_global_init(p))
148 return true;
149 if (p->flags & PF_KTHREAD)
150 return true;
152 /* When mem_cgroup_out_of_memory() and p is not member of the group */
153 if (memcg && !task_in_mem_cgroup(p, memcg))
154 return true;
156 /* p may not have freeable memory in nodemask */
157 if (!has_intersects_mems_allowed(p, nodemask))
158 return true;
160 return false;
164 * oom_badness - heuristic function to determine which candidate task to kill
165 * @p: task struct of which task we should calculate
166 * @totalpages: total present RAM allowed for page allocation
168 * The heuristic for determining which task to kill is made to be as simple and
169 * predictable as possible. The goal is to return the highest value for the
170 * task consuming the most memory to avoid subsequent oom failures.
172 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
173 const nodemask_t *nodemask, unsigned long totalpages)
175 long points;
176 long adj;
178 if (oom_unkillable_task(p, memcg, nodemask))
179 return 0;
181 p = find_lock_task_mm(p);
182 if (!p)
183 return 0;
186 * Do not even consider tasks which are explicitly marked oom
187 * unkillable or have been already oom reaped or the are in
188 * the middle of vfork
190 adj = (long)p->signal->oom_score_adj;
191 if (adj == OOM_SCORE_ADJ_MIN ||
192 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
193 in_vfork(p)) {
194 task_unlock(p);
195 return 0;
199 * The baseline for the badness score is the proportion of RAM that each
200 * task's rss, pagetable and swap space use.
202 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
203 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
204 task_unlock(p);
207 * Root processes get 3% bonus, just like the __vm_enough_memory()
208 * implementation used by LSMs.
210 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
211 points -= (points * 3) / 100;
213 /* Normalize to oom_score_adj units */
214 adj *= totalpages / 1000;
215 points += adj;
218 * Never return 0 for an eligible task regardless of the root bonus and
219 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
221 return points > 0 ? points : 1;
224 enum oom_constraint {
225 CONSTRAINT_NONE,
226 CONSTRAINT_CPUSET,
227 CONSTRAINT_MEMORY_POLICY,
228 CONSTRAINT_MEMCG,
232 * Determine the type of allocation constraint.
234 static enum oom_constraint constrained_alloc(struct oom_control *oc)
236 struct zone *zone;
237 struct zoneref *z;
238 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
239 bool cpuset_limited = false;
240 int nid;
242 if (is_memcg_oom(oc)) {
243 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
244 return CONSTRAINT_MEMCG;
247 /* Default to all available memory */
248 oc->totalpages = totalram_pages + total_swap_pages;
250 if (!IS_ENABLED(CONFIG_NUMA))
251 return CONSTRAINT_NONE;
253 if (!oc->zonelist)
254 return CONSTRAINT_NONE;
256 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
257 * to kill current.We have to random task kill in this case.
258 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
260 if (oc->gfp_mask & __GFP_THISNODE)
261 return CONSTRAINT_NONE;
264 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
265 * the page allocator means a mempolicy is in effect. Cpuset policy
266 * is enforced in get_page_from_freelist().
268 if (oc->nodemask &&
269 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
270 oc->totalpages = total_swap_pages;
271 for_each_node_mask(nid, *oc->nodemask)
272 oc->totalpages += node_spanned_pages(nid);
273 return CONSTRAINT_MEMORY_POLICY;
276 /* Check this allocation failure is caused by cpuset's wall function */
277 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
278 high_zoneidx, oc->nodemask)
279 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
280 cpuset_limited = true;
282 if (cpuset_limited) {
283 oc->totalpages = total_swap_pages;
284 for_each_node_mask(nid, cpuset_current_mems_allowed)
285 oc->totalpages += node_spanned_pages(nid);
286 return CONSTRAINT_CPUSET;
288 return CONSTRAINT_NONE;
291 static int oom_evaluate_task(struct task_struct *task, void *arg)
293 struct oom_control *oc = arg;
294 unsigned long points;
296 if (oom_unkillable_task(task, NULL, oc->nodemask))
297 goto next;
300 * This task already has access to memory reserves and is being killed.
301 * Don't allow any other task to have access to the reserves unless
302 * the task has MMF_OOM_SKIP because chances that it would release
303 * any memory is quite low.
305 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
306 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
307 goto next;
308 goto abort;
312 * If task is allocating a lot of memory and has been marked to be
313 * killed first if it triggers an oom, then select it.
315 if (oom_task_origin(task)) {
316 points = ULONG_MAX;
317 goto select;
320 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
321 if (!points || points < oc->chosen_points)
322 goto next;
324 /* Prefer thread group leaders for display purposes */
325 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
326 goto next;
327 select:
328 if (oc->chosen)
329 put_task_struct(oc->chosen);
330 get_task_struct(task);
331 oc->chosen = task;
332 oc->chosen_points = points;
333 next:
334 return 0;
335 abort:
336 if (oc->chosen)
337 put_task_struct(oc->chosen);
338 oc->chosen = (void *)-1UL;
339 return 1;
343 * Simple selection loop. We choose the process with the highest number of
344 * 'points'. In case scan was aborted, oc->chosen is set to -1.
346 static void select_bad_process(struct oom_control *oc)
348 if (is_memcg_oom(oc))
349 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
350 else {
351 struct task_struct *p;
353 rcu_read_lock();
354 for_each_process(p)
355 if (oom_evaluate_task(p, oc))
356 break;
357 rcu_read_unlock();
360 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
364 * dump_tasks - dump current memory state of all system tasks
365 * @memcg: current's memory controller, if constrained
366 * @nodemask: nodemask passed to page allocator for mempolicy ooms
368 * Dumps the current memory state of all eligible tasks. Tasks not in the same
369 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
370 * are not shown.
371 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
372 * swapents, oom_score_adj value, and name.
374 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
376 struct task_struct *p;
377 struct task_struct *task;
379 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
380 rcu_read_lock();
381 for_each_process(p) {
382 if (oom_unkillable_task(p, memcg, nodemask))
383 continue;
385 task = find_lock_task_mm(p);
386 if (!task) {
388 * This is a kthread or all of p's threads have already
389 * detached their mm's. There's no need to report
390 * them; they can't be oom killed anyway.
392 continue;
395 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
396 task->pid, from_kuid(&init_user_ns, task_uid(task)),
397 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
398 atomic_long_read(&task->mm->nr_ptes),
399 mm_nr_pmds(task->mm),
400 get_mm_counter(task->mm, MM_SWAPENTS),
401 task->signal->oom_score_adj, task->comm);
402 task_unlock(task);
404 rcu_read_unlock();
407 static void dump_header(struct oom_control *oc, struct task_struct *p)
409 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
410 current->comm, oc->gfp_mask, &oc->gfp_mask);
411 if (oc->nodemask)
412 pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
413 else
414 pr_cont("(null)");
415 pr_cont(", order=%d, oom_score_adj=%hd\n",
416 oc->order, current->signal->oom_score_adj);
417 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
418 pr_warn("COMPACTION is disabled!!!\n");
420 cpuset_print_current_mems_allowed();
421 dump_stack();
422 if (oc->memcg)
423 mem_cgroup_print_oom_info(oc->memcg, p);
424 else
425 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
426 if (sysctl_oom_dump_tasks)
427 dump_tasks(oc->memcg, oc->nodemask);
431 * Number of OOM victims in flight
433 static atomic_t oom_victims = ATOMIC_INIT(0);
434 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
436 static bool oom_killer_disabled __read_mostly;
438 #define K(x) ((x) << (PAGE_SHIFT-10))
441 * task->mm can be NULL if the task is the exited group leader. So to
442 * determine whether the task is using a particular mm, we examine all the
443 * task's threads: if one of those is using this mm then this task was also
444 * using it.
446 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
448 struct task_struct *t;
450 for_each_thread(p, t) {
451 struct mm_struct *t_mm = READ_ONCE(t->mm);
452 if (t_mm)
453 return t_mm == mm;
455 return false;
459 #ifdef CONFIG_MMU
461 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
462 * victim (if that is possible) to help the OOM killer to move on.
464 static struct task_struct *oom_reaper_th;
465 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
466 static struct task_struct *oom_reaper_list;
467 static DEFINE_SPINLOCK(oom_reaper_lock);
469 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
471 struct mmu_gather tlb;
472 struct vm_area_struct *vma;
473 bool ret = true;
476 * We have to make sure to not race with the victim exit path
477 * and cause premature new oom victim selection:
478 * __oom_reap_task_mm exit_mm
479 * mmget_not_zero
480 * mmput
481 * atomic_dec_and_test
482 * exit_oom_victim
483 * [...]
484 * out_of_memory
485 * select_bad_process
486 * # no TIF_MEMDIE task selects new victim
487 * unmap_page_range # frees some memory
489 mutex_lock(&oom_lock);
491 if (!down_read_trylock(&mm->mmap_sem)) {
492 ret = false;
493 goto unlock_oom;
497 * increase mm_users only after we know we will reap something so
498 * that the mmput_async is called only when we have reaped something
499 * and delayed __mmput doesn't matter that much
501 if (!mmget_not_zero(mm)) {
502 up_read(&mm->mmap_sem);
503 goto unlock_oom;
507 * Tell all users of get_user/copy_from_user etc... that the content
508 * is no longer stable. No barriers really needed because unmapping
509 * should imply barriers already and the reader would hit a page fault
510 * if it stumbled over a reaped memory.
512 set_bit(MMF_UNSTABLE, &mm->flags);
514 tlb_gather_mmu(&tlb, mm, 0, -1);
515 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
516 if (!can_madv_dontneed_vma(vma))
517 continue;
520 * Only anonymous pages have a good chance to be dropped
521 * without additional steps which we cannot afford as we
522 * are OOM already.
524 * We do not even care about fs backed pages because all
525 * which are reclaimable have already been reclaimed and
526 * we do not want to block exit_mmap by keeping mm ref
527 * count elevated without a good reason.
529 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
530 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
531 NULL);
533 tlb_finish_mmu(&tlb, 0, -1);
534 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
535 task_pid_nr(tsk), tsk->comm,
536 K(get_mm_counter(mm, MM_ANONPAGES)),
537 K(get_mm_counter(mm, MM_FILEPAGES)),
538 K(get_mm_counter(mm, MM_SHMEMPAGES)));
539 up_read(&mm->mmap_sem);
542 * Drop our reference but make sure the mmput slow path is called from a
543 * different context because we shouldn't risk we get stuck there and
544 * put the oom_reaper out of the way.
546 mmput_async(mm);
547 unlock_oom:
548 mutex_unlock(&oom_lock);
549 return ret;
552 #define MAX_OOM_REAP_RETRIES 10
553 static void oom_reap_task(struct task_struct *tsk)
555 int attempts = 0;
556 struct mm_struct *mm = tsk->signal->oom_mm;
558 /* Retry the down_read_trylock(mmap_sem) a few times */
559 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
560 schedule_timeout_idle(HZ/10);
562 if (attempts <= MAX_OOM_REAP_RETRIES)
563 goto done;
566 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
567 task_pid_nr(tsk), tsk->comm);
568 debug_show_all_locks();
570 done:
571 tsk->oom_reaper_list = NULL;
574 * Hide this mm from OOM killer because it has been either reaped or
575 * somebody can't call up_write(mmap_sem).
577 set_bit(MMF_OOM_SKIP, &mm->flags);
579 /* Drop a reference taken by wake_oom_reaper */
580 put_task_struct(tsk);
583 static int oom_reaper(void *unused)
585 while (true) {
586 struct task_struct *tsk = NULL;
588 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
589 spin_lock(&oom_reaper_lock);
590 if (oom_reaper_list != NULL) {
591 tsk = oom_reaper_list;
592 oom_reaper_list = tsk->oom_reaper_list;
594 spin_unlock(&oom_reaper_lock);
596 if (tsk)
597 oom_reap_task(tsk);
600 return 0;
603 static void wake_oom_reaper(struct task_struct *tsk)
605 if (!oom_reaper_th)
606 return;
608 /* tsk is already queued? */
609 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
610 return;
612 get_task_struct(tsk);
614 spin_lock(&oom_reaper_lock);
615 tsk->oom_reaper_list = oom_reaper_list;
616 oom_reaper_list = tsk;
617 spin_unlock(&oom_reaper_lock);
618 wake_up(&oom_reaper_wait);
621 static int __init oom_init(void)
623 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
624 if (IS_ERR(oom_reaper_th)) {
625 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
626 PTR_ERR(oom_reaper_th));
627 oom_reaper_th = NULL;
629 return 0;
631 subsys_initcall(oom_init)
632 #else
633 static inline void wake_oom_reaper(struct task_struct *tsk)
636 #endif /* CONFIG_MMU */
639 * mark_oom_victim - mark the given task as OOM victim
640 * @tsk: task to mark
642 * Has to be called with oom_lock held and never after
643 * oom has been disabled already.
645 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
646 * under task_lock or operate on the current).
648 static void mark_oom_victim(struct task_struct *tsk)
650 struct mm_struct *mm = tsk->mm;
652 WARN_ON(oom_killer_disabled);
653 /* OOM killer might race with memcg OOM */
654 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
655 return;
657 /* oom_mm is bound to the signal struct life time. */
658 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
659 mmgrab(tsk->signal->oom_mm);
662 * Make sure that the task is woken up from uninterruptible sleep
663 * if it is frozen because OOM killer wouldn't be able to free
664 * any memory and livelock. freezing_slow_path will tell the freezer
665 * that TIF_MEMDIE tasks should be ignored.
667 __thaw_task(tsk);
668 atomic_inc(&oom_victims);
672 * exit_oom_victim - note the exit of an OOM victim
674 void exit_oom_victim(void)
676 clear_thread_flag(TIF_MEMDIE);
678 if (!atomic_dec_return(&oom_victims))
679 wake_up_all(&oom_victims_wait);
683 * oom_killer_enable - enable OOM killer
685 void oom_killer_enable(void)
687 oom_killer_disabled = false;
691 * oom_killer_disable - disable OOM killer
692 * @timeout: maximum timeout to wait for oom victims in jiffies
694 * Forces all page allocations to fail rather than trigger OOM killer.
695 * Will block and wait until all OOM victims are killed or the given
696 * timeout expires.
698 * The function cannot be called when there are runnable user tasks because
699 * the userspace would see unexpected allocation failures as a result. Any
700 * new usage of this function should be consulted with MM people.
702 * Returns true if successful and false if the OOM killer cannot be
703 * disabled.
705 bool oom_killer_disable(signed long timeout)
707 signed long ret;
710 * Make sure to not race with an ongoing OOM killer. Check that the
711 * current is not killed (possibly due to sharing the victim's memory).
713 if (mutex_lock_killable(&oom_lock))
714 return false;
715 oom_killer_disabled = true;
716 mutex_unlock(&oom_lock);
718 ret = wait_event_interruptible_timeout(oom_victims_wait,
719 !atomic_read(&oom_victims), timeout);
720 if (ret <= 0) {
721 oom_killer_enable();
722 return false;
725 return true;
728 static inline bool __task_will_free_mem(struct task_struct *task)
730 struct signal_struct *sig = task->signal;
733 * A coredumping process may sleep for an extended period in exit_mm(),
734 * so the oom killer cannot assume that the process will promptly exit
735 * and release memory.
737 if (sig->flags & SIGNAL_GROUP_COREDUMP)
738 return false;
740 if (sig->flags & SIGNAL_GROUP_EXIT)
741 return true;
743 if (thread_group_empty(task) && (task->flags & PF_EXITING))
744 return true;
746 return false;
750 * Checks whether the given task is dying or exiting and likely to
751 * release its address space. This means that all threads and processes
752 * sharing the same mm have to be killed or exiting.
753 * Caller has to make sure that task->mm is stable (hold task_lock or
754 * it operates on the current).
756 static bool task_will_free_mem(struct task_struct *task)
758 struct mm_struct *mm = task->mm;
759 struct task_struct *p;
760 bool ret = true;
763 * Skip tasks without mm because it might have passed its exit_mm and
764 * exit_oom_victim. oom_reaper could have rescued that but do not rely
765 * on that for now. We can consider find_lock_task_mm in future.
767 if (!mm)
768 return false;
770 if (!__task_will_free_mem(task))
771 return false;
774 * This task has already been drained by the oom reaper so there are
775 * only small chances it will free some more
777 if (test_bit(MMF_OOM_SKIP, &mm->flags))
778 return false;
780 if (atomic_read(&mm->mm_users) <= 1)
781 return true;
784 * Make sure that all tasks which share the mm with the given tasks
785 * are dying as well to make sure that a) nobody pins its mm and
786 * b) the task is also reapable by the oom reaper.
788 rcu_read_lock();
789 for_each_process(p) {
790 if (!process_shares_mm(p, mm))
791 continue;
792 if (same_thread_group(task, p))
793 continue;
794 ret = __task_will_free_mem(p);
795 if (!ret)
796 break;
798 rcu_read_unlock();
800 return ret;
803 static void oom_kill_process(struct oom_control *oc, const char *message)
805 struct task_struct *p = oc->chosen;
806 unsigned int points = oc->chosen_points;
807 struct task_struct *victim = p;
808 struct task_struct *child;
809 struct task_struct *t;
810 struct mm_struct *mm;
811 unsigned int victim_points = 0;
812 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
813 DEFAULT_RATELIMIT_BURST);
814 bool can_oom_reap = true;
817 * If the task is already exiting, don't alarm the sysadmin or kill
818 * its children or threads, just set TIF_MEMDIE so it can die quickly
820 task_lock(p);
821 if (task_will_free_mem(p)) {
822 mark_oom_victim(p);
823 wake_oom_reaper(p);
824 task_unlock(p);
825 put_task_struct(p);
826 return;
828 task_unlock(p);
830 if (__ratelimit(&oom_rs))
831 dump_header(oc, p);
833 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
834 message, task_pid_nr(p), p->comm, points);
837 * If any of p's children has a different mm and is eligible for kill,
838 * the one with the highest oom_badness() score is sacrificed for its
839 * parent. This attempts to lose the minimal amount of work done while
840 * still freeing memory.
842 read_lock(&tasklist_lock);
843 for_each_thread(p, t) {
844 list_for_each_entry(child, &t->children, sibling) {
845 unsigned int child_points;
847 if (process_shares_mm(child, p->mm))
848 continue;
850 * oom_badness() returns 0 if the thread is unkillable
852 child_points = oom_badness(child,
853 oc->memcg, oc->nodemask, oc->totalpages);
854 if (child_points > victim_points) {
855 put_task_struct(victim);
856 victim = child;
857 victim_points = child_points;
858 get_task_struct(victim);
862 read_unlock(&tasklist_lock);
864 p = find_lock_task_mm(victim);
865 if (!p) {
866 put_task_struct(victim);
867 return;
868 } else if (victim != p) {
869 get_task_struct(p);
870 put_task_struct(victim);
871 victim = p;
874 /* Get a reference to safely compare mm after task_unlock(victim) */
875 mm = victim->mm;
876 mmgrab(mm);
878 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
879 * the OOM victim from depleting the memory reserves from the user
880 * space under its control.
882 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
883 mark_oom_victim(victim);
884 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
885 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
886 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
887 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
888 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
889 task_unlock(victim);
892 * Kill all user processes sharing victim->mm in other thread groups, if
893 * any. They don't get access to memory reserves, though, to avoid
894 * depletion of all memory. This prevents mm->mmap_sem livelock when an
895 * oom killed thread cannot exit because it requires the semaphore and
896 * its contended by another thread trying to allocate memory itself.
897 * That thread will now get access to memory reserves since it has a
898 * pending fatal signal.
900 rcu_read_lock();
901 for_each_process(p) {
902 if (!process_shares_mm(p, mm))
903 continue;
904 if (same_thread_group(p, victim))
905 continue;
906 if (is_global_init(p)) {
907 can_oom_reap = false;
908 set_bit(MMF_OOM_SKIP, &mm->flags);
909 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
910 task_pid_nr(victim), victim->comm,
911 task_pid_nr(p), p->comm);
912 continue;
915 * No use_mm() user needs to read from the userspace so we are
916 * ok to reap it.
918 if (unlikely(p->flags & PF_KTHREAD))
919 continue;
920 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
922 rcu_read_unlock();
924 if (can_oom_reap)
925 wake_oom_reaper(victim);
927 mmdrop(mm);
928 put_task_struct(victim);
930 #undef K
933 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
935 static void check_panic_on_oom(struct oom_control *oc,
936 enum oom_constraint constraint)
938 if (likely(!sysctl_panic_on_oom))
939 return;
940 if (sysctl_panic_on_oom != 2) {
942 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
943 * does not panic for cpuset, mempolicy, or memcg allocation
944 * failures.
946 if (constraint != CONSTRAINT_NONE)
947 return;
949 /* Do not panic for oom kills triggered by sysrq */
950 if (is_sysrq_oom(oc))
951 return;
952 dump_header(oc, NULL);
953 panic("Out of memory: %s panic_on_oom is enabled\n",
954 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
957 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
959 int register_oom_notifier(struct notifier_block *nb)
961 return blocking_notifier_chain_register(&oom_notify_list, nb);
963 EXPORT_SYMBOL_GPL(register_oom_notifier);
965 int unregister_oom_notifier(struct notifier_block *nb)
967 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
969 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
972 * out_of_memory - kill the "best" process when we run out of memory
973 * @oc: pointer to struct oom_control
975 * If we run out of memory, we have the choice between either
976 * killing a random task (bad), letting the system crash (worse)
977 * OR try to be smart about which process to kill. Note that we
978 * don't have to be perfect here, we just have to be good.
980 bool out_of_memory(struct oom_control *oc)
982 unsigned long freed = 0;
983 enum oom_constraint constraint = CONSTRAINT_NONE;
985 if (oom_killer_disabled)
986 return false;
988 if (!is_memcg_oom(oc)) {
989 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
990 if (freed > 0)
991 /* Got some memory back in the last second. */
992 return true;
996 * If current has a pending SIGKILL or is exiting, then automatically
997 * select it. The goal is to allow it to allocate so that it may
998 * quickly exit and free its memory.
1000 if (task_will_free_mem(current)) {
1001 mark_oom_victim(current);
1002 wake_oom_reaper(current);
1003 return true;
1007 * The OOM killer does not compensate for IO-less reclaim.
1008 * pagefault_out_of_memory lost its gfp context so we have to
1009 * make sure exclude 0 mask - all other users should have at least
1010 * ___GFP_DIRECT_RECLAIM to get here.
1012 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1013 return true;
1016 * Check if there were limitations on the allocation (only relevant for
1017 * NUMA and memcg) that may require different handling.
1019 constraint = constrained_alloc(oc);
1020 if (constraint != CONSTRAINT_MEMORY_POLICY)
1021 oc->nodemask = NULL;
1022 check_panic_on_oom(oc, constraint);
1024 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1025 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1026 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1027 get_task_struct(current);
1028 oc->chosen = current;
1029 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1030 return true;
1033 select_bad_process(oc);
1034 /* Found nothing?!?! Either we hang forever, or we panic. */
1035 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1036 dump_header(oc, NULL);
1037 panic("Out of memory and no killable processes...\n");
1039 if (oc->chosen && oc->chosen != (void *)-1UL) {
1040 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1041 "Memory cgroup out of memory");
1043 * Give the killed process a good chance to exit before trying
1044 * to allocate memory again.
1046 schedule_timeout_killable(1);
1048 return !!oc->chosen;
1052 * The pagefault handler calls here because it is out of memory, so kill a
1053 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1054 * killing is already in progress so do nothing.
1056 void pagefault_out_of_memory(void)
1058 struct oom_control oc = {
1059 .zonelist = NULL,
1060 .nodemask = NULL,
1061 .memcg = NULL,
1062 .gfp_mask = 0,
1063 .order = 0,
1066 if (mem_cgroup_oom_synchronize(true))
1067 return;
1069 if (!mutex_trylock(&oom_lock))
1070 return;
1071 out_of_memory(&oc);
1072 mutex_unlock(&oom_lock);