2 * High-level sync()-related operations
5 #include <linux/kernel.h>
6 #include <linux/file.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/namei.h>
11 #include <linux/sched.h>
12 #include <linux/writeback.h>
13 #include <linux/syscalls.h>
14 #include <linux/linkage.h>
15 #include <linux/pagemap.h>
16 #include <linux/quotaops.h>
17 #include <linux/backing-dev.h>
20 #define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
21 SYNC_FILE_RANGE_WAIT_AFTER)
24 * Do the filesystem syncing work. For simple filesystems
25 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
26 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
27 * wait == 1 case since in that case write_inode() functions do
28 * sync_dirty_buffer() and thus effectively write one block at a time.
30 static int __sync_filesystem(struct super_block
*sb
, int wait
)
35 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
37 if (sb
->s_op
->sync_fs
)
38 sb
->s_op
->sync_fs(sb
, wait
);
39 return __sync_blockdev(sb
->s_bdev
, wait
);
43 * Write out and wait upon all dirty data associated with this
44 * superblock. Filesystem data as well as the underlying block
45 * device. Takes the superblock lock.
47 int sync_filesystem(struct super_block
*sb
)
52 * We need to be protected against the filesystem going from
53 * r/o to r/w or vice versa.
55 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
58 * No point in syncing out anything if the filesystem is read-only.
60 if (sb
->s_flags
& MS_RDONLY
)
63 ret
= __sync_filesystem(sb
, 0);
66 return __sync_filesystem(sb
, 1);
68 EXPORT_SYMBOL(sync_filesystem
);
70 static void sync_inodes_one_sb(struct super_block
*sb
, void *arg
)
72 if (!(sb
->s_flags
& MS_RDONLY
))
76 static void sync_fs_one_sb(struct super_block
*sb
, void *arg
)
78 if (!(sb
->s_flags
& MS_RDONLY
) && sb
->s_op
->sync_fs
)
79 sb
->s_op
->sync_fs(sb
, *(int *)arg
);
82 static void fdatawrite_one_bdev(struct block_device
*bdev
, void *arg
)
84 filemap_fdatawrite(bdev
->bd_inode
->i_mapping
);
87 static void fdatawait_one_bdev(struct block_device
*bdev
, void *arg
)
89 filemap_fdatawait(bdev
->bd_inode
->i_mapping
);
93 * Sync everything. We start by waking flusher threads so that most of
94 * writeback runs on all devices in parallel. Then we sync all inodes reliably
95 * which effectively also waits for all flusher threads to finish doing
96 * writeback. At this point all data is on disk so metadata should be stable
97 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
98 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
99 * just write metadata (such as inodes or bitmaps) to block device page cache
100 * and do not sync it on their own in ->sync_fs().
102 SYSCALL_DEFINE0(sync
)
104 int nowait
= 0, wait
= 1;
106 wakeup_flusher_threads(0, WB_REASON_SYNC
);
107 iterate_supers(sync_inodes_one_sb
, NULL
);
108 iterate_supers(sync_fs_one_sb
, &nowait
);
109 iterate_supers(sync_fs_one_sb
, &wait
);
110 iterate_bdevs(fdatawrite_one_bdev
, NULL
);
111 iterate_bdevs(fdatawait_one_bdev
, NULL
);
112 if (unlikely(laptop_mode
))
113 laptop_sync_completion();
117 static void do_sync_work(struct work_struct
*work
)
122 * Sync twice to reduce the possibility we skipped some inodes / pages
123 * because they were temporarily locked
125 iterate_supers(sync_inodes_one_sb
, &nowait
);
126 iterate_supers(sync_fs_one_sb
, &nowait
);
127 iterate_bdevs(fdatawrite_one_bdev
, NULL
);
128 iterate_supers(sync_inodes_one_sb
, &nowait
);
129 iterate_supers(sync_fs_one_sb
, &nowait
);
130 iterate_bdevs(fdatawrite_one_bdev
, NULL
);
131 printk("Emergency Sync complete\n");
135 void emergency_sync(void)
137 struct work_struct
*work
;
139 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
141 INIT_WORK(work
, do_sync_work
);
147 * sync a single super
149 SYSCALL_DEFINE1(syncfs
, int, fd
)
151 struct fd f
= fdget(fd
);
152 struct super_block
*sb
;
157 sb
= f
.file
->f_path
.dentry
->d_sb
;
159 down_read(&sb
->s_umount
);
160 ret
= sync_filesystem(sb
);
161 up_read(&sb
->s_umount
);
168 * vfs_fsync_range - helper to sync a range of data & metadata to disk
169 * @file: file to sync
170 * @start: offset in bytes of the beginning of data range to sync
171 * @end: offset in bytes of the end of data range (inclusive)
172 * @datasync: perform only datasync
174 * Write back data in range @start..@end and metadata for @file to disk. If
175 * @datasync is set only metadata needed to access modified file data is
178 int vfs_fsync_range(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
180 struct inode
*inode
= file
->f_mapping
->host
;
182 if (!file
->f_op
->fsync
)
184 if (!datasync
&& (inode
->i_state
& I_DIRTY_TIME
)) {
185 spin_lock(&inode
->i_lock
);
186 inode
->i_state
&= ~I_DIRTY_TIME
;
187 spin_unlock(&inode
->i_lock
);
188 mark_inode_dirty_sync(inode
);
190 return file
->f_op
->fsync(file
, start
, end
, datasync
);
192 EXPORT_SYMBOL(vfs_fsync_range
);
195 * vfs_fsync - perform a fsync or fdatasync on a file
196 * @file: file to sync
197 * @datasync: only perform a fdatasync operation
199 * Write back data and metadata for @file to disk. If @datasync is
200 * set only metadata needed to access modified file data is written.
202 int vfs_fsync(struct file
*file
, int datasync
)
204 return vfs_fsync_range(file
, 0, LLONG_MAX
, datasync
);
206 EXPORT_SYMBOL(vfs_fsync
);
208 static int do_fsync(unsigned int fd
, int datasync
)
210 struct fd f
= fdget(fd
);
214 ret
= vfs_fsync(f
.file
, datasync
);
220 SYSCALL_DEFINE1(fsync
, unsigned int, fd
)
222 return do_fsync(fd
, 0);
225 SYSCALL_DEFINE1(fdatasync
, unsigned int, fd
)
227 return do_fsync(fd
, 1);
231 * sys_sync_file_range() permits finely controlled syncing over a segment of
232 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
233 * zero then sys_sync_file_range() will operate from offset out to EOF.
237 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
238 * before performing the write.
240 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
241 * range which are not presently under writeback. Note that this may block for
242 * significant periods due to exhaustion of disk request structures.
244 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
245 * after performing the write.
247 * Useful combinations of the flag bits are:
249 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
250 * in the range which were dirty on entry to sys_sync_file_range() are placed
251 * under writeout. This is a start-write-for-data-integrity operation.
253 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
254 * are not presently under writeout. This is an asynchronous flush-to-disk
255 * operation. Not suitable for data integrity operations.
257 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
258 * completion of writeout of all pages in the range. This will be used after an
259 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
260 * for that operation to complete and to return the result.
262 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER:
263 * a traditional sync() operation. This is a write-for-data-integrity operation
264 * which will ensure that all pages in the range which were dirty on entry to
265 * sys_sync_file_range() are committed to disk.
268 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
269 * I/O errors or ENOSPC conditions and will return those to the caller, after
270 * clearing the EIO and ENOSPC flags in the address_space.
272 * It should be noted that none of these operations write out the file's
273 * metadata. So unless the application is strictly performing overwrites of
274 * already-instantiated disk blocks, there are no guarantees here that the data
275 * will be available after a crash.
277 SYSCALL_DEFINE4(sync_file_range
, int, fd
, loff_t
, offset
, loff_t
, nbytes
,
282 struct address_space
*mapping
;
283 loff_t endbyte
; /* inclusive */
287 if (flags
& ~VALID_FLAGS
)
290 endbyte
= offset
+ nbytes
;
294 if ((s64
)endbyte
< 0)
296 if (endbyte
< offset
)
299 if (sizeof(pgoff_t
) == 4) {
300 if (offset
>= (0x100000000ULL
<< PAGE_CACHE_SHIFT
)) {
302 * The range starts outside a 32 bit machine's
303 * pagecache addressing capabilities. Let it "succeed"
308 if (endbyte
>= (0x100000000ULL
<< PAGE_CACHE_SHIFT
)) {
319 endbyte
--; /* inclusive */
326 i_mode
= file_inode(f
.file
)->i_mode
;
328 if (!S_ISREG(i_mode
) && !S_ISBLK(i_mode
) && !S_ISDIR(i_mode
) &&
332 mapping
= f
.file
->f_mapping
;
339 if (flags
& SYNC_FILE_RANGE_WAIT_BEFORE
) {
340 ret
= filemap_fdatawait_range(mapping
, offset
, endbyte
);
345 if (flags
& SYNC_FILE_RANGE_WRITE
) {
346 ret
= filemap_fdatawrite_range(mapping
, offset
, endbyte
);
351 if (flags
& SYNC_FILE_RANGE_WAIT_AFTER
)
352 ret
= filemap_fdatawait_range(mapping
, offset
, endbyte
);
360 /* It would be nice if people remember that not all the world's an i386
361 when they introduce new system calls */
362 SYSCALL_DEFINE4(sync_file_range2
, int, fd
, unsigned int, flags
,
363 loff_t
, offset
, loff_t
, nbytes
)
365 return sys_sync_file_range(fd
, offset
, nbytes
, flags
);