WIP FPC-III support
[linux/fpc-iii.git] / Documentation / devicetree / bindings / iio / mount-matrix.txt
blobc3344ab509a36c31a0a9977b4f2c5835758101dc
1 For discussion. Unclear are:
2 * is the definition of +/- values practical or counterintuitive?
3 * are the definitions unambiguous and easy to follow?
4 * are the examples correct?
5 * should we have HOWTO engineer a correct matrix for a new device (without comparing to a different one)?
7 ====
10 Mounting matrix
12 The mounting matrix is a device tree property used to orient any device
13 that produce three-dimensional data in relation to the world where it is
14 deployed.
16 The purpose of the mounting matrix is to translate the sensor frame of
17 reference into the device frame of reference using a translation matrix as
18 defined in linear algebra.
20 The typical usecase is that where a component has an internal representation
21 of the (x,y,z) triplets, such as different registers to read these coordinates,
22 and thus implying that the component should be mounted in a certain orientation
23 relative to some specific device frame of reference.
25 For example a device with some kind of screen, where the user is supposed to
26 interact with the environment using an accelerometer, gyroscope or magnetometer
27 mounted on the same chassis as this screen, will likely take the screen as
28 reference to (x,y,z) orientation, with (x,y) corresponding to these axes on the
29 screen and (z) being depth, the axis perpendicular to the screen.
31 For a screen you probably want (x) coordinates to go from negative on the left
32 to positive on the right, (y) from negative on the bottom to positive on top
33 and (z) depth to be negative under the screen and positive in front of it,
34 toward the face of the user.
36 A sensor can be mounted in any angle along the axes relative to the frame of
37 reference. This means that the sensor may be flipped upside-down, left-right,
38 or tilted at any angle relative to the frame of reference.
40 Another frame of reference is how the device with its sensor relates to the
41 external world, the environment where the device is deployed. Usually the data
42 from the sensor is used to figure out how the device is oriented with respect
43 to this world. When using the mounting matrix, the sensor and device orientation
44 becomes identical and we can focus on the data as it relates to the surrounding
45 world.
47 Device-to-world examples for some three-dimensional sensor types:
49 - Accelerometers have their world frame of reference toward the center of
50   gravity, usually to the core of the planet. A reading of the (x,y,z) values
51   from the sensor will give a projection of the gravity vector through the
52   device relative to the center of the planet, i.e. relative to its surface at
53   this point. Up and down in the world relative to the device frame of
54   reference can thus be determined. and users would likely expect a value of
55   9.81 m/s^2 upwards along the (z) axis, i.e. out of the screen when the device
56   is held with its screen flat on the planets surface and 0 on the other axes,
57   as the gravity vector is projected 1:1 onto the sensors (z)-axis.
59   If you tilt the device, the g vector virtually coming out of the display
60   is projected onto the (x,y) plane of the display panel.
62   Example:
64          ^ z: +g                   ^ z: > 0
65          !                        /!
66          ! x=y=0                 / ! x: > 0
67      +--------+             +--------+
68      !        !             !        !
69      +--------+             +--------+
70          !                    /
71          !                   /
72          v                  v
73       center of         center of
74        gravity           gravity
77   If the device is tilted to the left, you get a positive x value. If you point
78   its top towards surface, you get a negative y axis.
80      (---------)
81      !         !           y: -g
82      !         !             ^
83      !         !             !
84      !         !
85      !         !  x: +g <- z: +g  -> x: -g
86      ! 1  2  3 !
87      ! 4  5  6 !             !
88      ! 7  8  9 !             v
89      ! *  0  # !           y: +g
90      (---------)
93 - Magnetometers (compasses) have their world frame of reference relative to the
94   geomagnetic field. The system orientation vis-a-vis the world is defined with
95   respect to the local earth geomagnetic reference frame where (y) is in the
96   ground plane and positive towards magnetic North, (x) is in the ground plane,
97   perpendicular to the North axis and positive towards the East and (z) is
98   perpendicular to the ground plane and positive upwards.
101      ^^^ North: y > 0
103      (---------)
104      !         !
105      !         !
106      !         !
107      !         !  >
108      !         !  > North: x > 0
109      ! 1  2  3 !  >
110      ! 4  5  6 !
111      ! 7  8  9 !
112      ! *  0  # !
113      (---------)
115   Since the geomagnetic field is not uniform this definition fails if we come
116   closer to the poles.
118   Sensors and driver can not and should not take care of this because there
119   are complex calculations and empirical data to be taken care of. We leave
120   this up to user space.
122   The definition we take:
124   If the device is placed at the equator and the top is pointing north, the
125   display is readable by a person standing upright on the earth surface, this
126   defines a positive y value.
129 - Gyroscopes detects the movement relative the device itself. The angular
130   velocity is defined as orthogonal to the plane of rotation, so if you put the
131   device on a flat surface and spin it around the z axis (such as rotating a
132   device with a screen lying flat on a table), you should get a negative value
133   along the (z) axis if rotated clockwise, and a positive value if rotated
134   counter-clockwise according to the right-hand rule.
137      (---------)     y > 0
138      !         !     v---\
139      !         !
140      !         !
141      !         !      <--\
142      !         !         ! z > 0
143      ! 1  2  3 !       --/
144      ! 4  5  6 !
145      ! 7  8  9 !
146      ! *  0  # !
147      (---------)
150 So unless the sensor is ideally mounted, we need a means to indicate the
151 relative orientation of any given sensor of this type with respect to the
152 frame of reference.
154 To achieve this, use the device tree property "mount-matrix" for the sensor.
156 This supplies a 3x3 rotation matrix in the strict linear algebraic sense,
157 to orient the senor axes relative to a desired point of reference. This means
158 the resulting values from the sensor, after scaling to proper units, should be
159 multiplied by this matrix to give the proper vectors values in three-dimensional
160 space, relative to the device or world point of reference.
162 For more information, consult:
163 https://en.wikipedia.org/wiki/Rotation_matrix
165 The mounting matrix has the layout:
167  (mxx, myx, mzx)
168  (mxy, myy, mzy)
169  (mxz, myz, mzz)
171 Values are intended to be multiplied as:
173   x' = mxx * x + myx * y + mzx * z
174   y' = mxy * x + myy * y + mzy * z
175   z' = mxz * x + myz * y + mzz * z
177 It is represented as an array of strings containing the real values for
178 producing the transformation matrix.
180 Examples:
182 Identity matrix (nothing happens to the coordinates, which means the device was
183 mechanically mounted in an ideal way and we need no transformation):
185 mount-matrix = "1", "0", "0",
186                "0", "1", "0",
187                "0", "0", "1";
189 The sensor is mounted 30 degrees (Pi/6 radians) tilted along the X axis, so we
190 compensate by performing a -30 degrees rotation around the X axis:
192 mount-matrix = "1", "0", "0",
193                "0", "0.866", "0.5",
194                "0", "-0.5", "0.866";
196 The sensor is flipped 180 degrees (Pi radians) around the Z axis, i.e. mounted
197 upside-down:
199 mount-matrix = "0.998", "0.054", "0",
200                "-0.054", "0.998", "0",
201                "0", "0", "1";
203 ???: this does not match "180 degrees" - factors indicate ca. 3 degrees compensation