WIP FPC-III support
[linux/fpc-iii.git] / Documentation / driver-api / mtd / nand_ecc.rst
blob74347c14a70bb17603b3e6cc0a695e01a9b5825b
1 ==========================
2 NAND Error-correction Code
3 ==========================
5 Introduction
6 ============
8 Having looked at the linux mtd/nand Hamming software ECC engine driver
9 I felt there was room for optimisation. I bashed the code for a few hours
10 performing tricks like table lookup removing superfluous code etc.
11 After that the speed was increased by 35-40%.
12 Still I was not too happy as I felt there was additional room for improvement.
14 Bad! I was hooked.
15 I decided to annotate my steps in this file. Perhaps it is useful to someone
16 or someone learns something from it.
19 The problem
20 ===========
22 NAND flash (at least SLC one) typically has sectors of 256 bytes.
23 However NAND flash is not extremely reliable so some error detection
24 (and sometimes correction) is needed.
26 This is done by means of a Hamming code. I'll try to explain it in
27 laymans terms (and apologies to all the pro's in the field in case I do
28 not use the right terminology, my coding theory class was almost 30
29 years ago, and I must admit it was not one of my favourites).
31 As I said before the ecc calculation is performed on sectors of 256
32 bytes. This is done by calculating several parity bits over the rows and
33 columns. The parity used is even parity which means that the parity bit = 1
34 if the data over which the parity is calculated is 1 and the parity bit = 0
35 if the data over which the parity is calculated is 0. So the total
36 number of bits over the data over which the parity is calculated + the
37 parity bit is even. (see wikipedia if you can't follow this).
38 Parity is often calculated by means of an exclusive or operation,
39 sometimes also referred to as xor. In C the operator for xor is ^
41 Back to ecc.
42 Let's give a small figure:
44 =========  ==== ==== ==== ==== ==== ==== ==== ====   === === === === ====
45 byte   0:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp2 rp4 ... rp14
46 byte   1:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp1 rp2 rp4 ... rp14
47 byte   2:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp3 rp4 ... rp14
48 byte   3:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp1 rp3 rp4 ... rp14
49 byte   4:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp2 rp5 ... rp14
50 ...
51 byte 254:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp0 rp3 rp5 ... rp15
52 byte 255:  bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0   rp1 rp3 rp5 ... rp15
53            cp1  cp0  cp1  cp0  cp1  cp0  cp1  cp0
54            cp3  cp3  cp2  cp2  cp3  cp3  cp2  cp2
55            cp5  cp5  cp5  cp5  cp4  cp4  cp4  cp4
56 =========  ==== ==== ==== ==== ==== ==== ==== ====   === === === === ====
58 This figure represents a sector of 256 bytes.
59 cp is my abbreviation for column parity, rp for row parity.
61 Let's start to explain column parity.
63 - cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
65   so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
67 Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
69 - cp2 is the parity over bit0, bit1, bit4 and bit5
70 - cp3 is the parity over bit2, bit3, bit6 and bit7.
71 - cp4 is the parity over bit0, bit1, bit2 and bit3.
72 - cp5 is the parity over bit4, bit5, bit6 and bit7.
74 Note that each of cp0 .. cp5 is exactly one bit.
76 Row parity actually works almost the same.
78 - rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
79 - rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
80 - rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
81   (so handle two bytes, then skip 2 bytes).
82 - rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
83 - for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
85   so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
86 - and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
88 The story now becomes quite boring. I guess you get the idea.
90 - rp6 covers 8 bytes then skips 8 etc
91 - rp7 skips 8 bytes then covers 8 etc
92 - rp8 covers 16 bytes then skips 16 etc
93 - rp9 skips 16 bytes then covers 16 etc
94 - rp10 covers 32 bytes then skips 32 etc
95 - rp11 skips 32 bytes then covers 32 etc
96 - rp12 covers 64 bytes then skips 64 etc
97 - rp13 skips 64 bytes then covers 64 etc
98 - rp14 covers 128 bytes then skips 128
99 - rp15 skips 128 bytes then covers 128
101 In the end the parity bits are grouped together in three bytes as
102 follows:
104 =====  ===== ===== ===== ===== ===== ===== ===== =====
105 ECC    Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
106 =====  ===== ===== ===== ===== ===== ===== ===== =====
107 ECC 0   rp07  rp06  rp05  rp04  rp03  rp02  rp01  rp00
108 ECC 1   rp15  rp14  rp13  rp12  rp11  rp10  rp09  rp08
109 ECC 2   cp5   cp4   cp3   cp2   cp1   cp0      1     1
110 =====  ===== ===== ===== ===== ===== ===== ===== =====
112 I detected after writing this that ST application note AN1823
113 (http://www.st.com/stonline/) gives a much
114 nicer picture.(but they use line parity as term where I use row parity)
115 Oh well, I'm graphically challenged, so suffer with me for a moment :-)
117 And I could not reuse the ST picture anyway for copyright reasons.
120 Attempt 0
121 =========
123 Implementing the parity calculation is pretty simple.
124 In C pseudocode::
126   for (i = 0; i < 256; i++)
127   {
128     if (i & 0x01)
129        rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
130     else
131        rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp0;
132     if (i & 0x02)
133        rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
134     else
135        rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
136     if (i & 0x04)
137       rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
138     else
139       rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
140     if (i & 0x08)
141       rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
142     else
143       rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
144     if (i & 0x10)
145       rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
146     else
147       rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
148     if (i & 0x20)
149       rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
150     else
151       rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
152     if (i & 0x40)
153       rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
154     else
155       rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
156     if (i & 0x80)
157       rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
158     else
159       rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
160     cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
161     cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
162     cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
163     cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
164     cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
165     cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
166   }
169 Analysis 0
170 ==========
172 C does have bitwise operators but not really operators to do the above
173 efficiently (and most hardware has no such instructions either).
174 Therefore without implementing this it was clear that the code above was
175 not going to bring me a Nobel prize :-)
177 Fortunately the exclusive or operation is commutative, so we can combine
178 the values in any order. So instead of calculating all the bits
179 individually, let us try to rearrange things.
180 For the column parity this is easy. We can just xor the bytes and in the
181 end filter out the relevant bits. This is pretty nice as it will bring
182 all cp calculation out of the for loop.
184 Similarly we can first xor the bytes for the various rows.
185 This leads to:
188 Attempt 1
189 =========
193   const char parity[256] = {
194       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
195       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
196       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
197       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
198       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
199       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
200       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
201       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
202       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
203       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
204       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
205       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
206       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
207       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
208       1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
209       0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
210   };
212   void ecc1(const unsigned char *buf, unsigned char *code)
213   {
214       int i;
215       const unsigned char *bp = buf;
216       unsigned char cur;
217       unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
218       unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
219       unsigned char par;
221       par = 0;
222       rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
223       rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
224       rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
225       rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
227       for (i = 0; i < 256; i++)
228       {
229           cur = *bp++;
230           par ^= cur;
231           if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
232           if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
233           if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
234           if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
235           if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
236           if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
237           if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
238           if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
239       }
240       code[0] =
241           (parity[rp7] << 7) |
242           (parity[rp6] << 6) |
243           (parity[rp5] << 5) |
244           (parity[rp4] << 4) |
245           (parity[rp3] << 3) |
246           (parity[rp2] << 2) |
247           (parity[rp1] << 1) |
248           (parity[rp0]);
249       code[1] =
250           (parity[rp15] << 7) |
251           (parity[rp14] << 6) |
252           (parity[rp13] << 5) |
253           (parity[rp12] << 4) |
254           (parity[rp11] << 3) |
255           (parity[rp10] << 2) |
256           (parity[rp9]  << 1) |
257           (parity[rp8]);
258       code[2] =
259           (parity[par & 0xf0] << 7) |
260           (parity[par & 0x0f] << 6) |
261           (parity[par & 0xcc] << 5) |
262           (parity[par & 0x33] << 4) |
263           (parity[par & 0xaa] << 3) |
264           (parity[par & 0x55] << 2);
265       code[0] = ~code[0];
266       code[1] = ~code[1];
267       code[2] = ~code[2];
268   }
270 Still pretty straightforward. The last three invert statements are there to
271 give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
272 all data is 0xff, so the checksum then matches.
274 I also introduced the parity lookup. I expected this to be the fastest
275 way to calculate the parity, but I will investigate alternatives later
279 Analysis 1
280 ==========
282 The code works, but is not terribly efficient. On my system it took
283 almost 4 times as much time as the linux driver code. But hey, if it was
284 *that* easy this would have been done long before.
285 No pain. no gain.
287 Fortunately there is plenty of room for improvement.
289 In step 1 we moved from bit-wise calculation to byte-wise calculation.
290 However in C we can also use the unsigned long data type and virtually
291 every modern microprocessor supports 32 bit operations, so why not try
292 to write our code in such a way that we process data in 32 bit chunks.
294 Of course this means some modification as the row parity is byte by
295 byte. A quick analysis:
296 for the column parity we use the par variable. When extending to 32 bits
297 we can in the end easily calculate rp0 and rp1 from it.
298 (because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
299 respectively, from MSB to LSB)
300 also rp2 and rp3 can be easily retrieved from par as rp3 covers the
301 first two MSBs and rp2 covers the last two LSBs.
303 Note that of course now the loop is executed only 64 times (256/4).
304 And note that care must taken wrt byte ordering. The way bytes are
305 ordered in a long is machine dependent, and might affect us.
306 Anyway, if there is an issue: this code is developed on x86 (to be
307 precise: a DELL PC with a D920 Intel CPU)
309 And of course the performance might depend on alignment, but I expect
310 that the I/O buffers in the nand driver are aligned properly (and
311 otherwise that should be fixed to get maximum performance).
313 Let's give it a try...
316 Attempt 2
317 =========
321   extern const char parity[256];
323   void ecc2(const unsigned char *buf, unsigned char *code)
324   {
325       int i;
326       const unsigned long *bp = (unsigned long *)buf;
327       unsigned long cur;
328       unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
329       unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
330       unsigned long par;
332       par = 0;
333       rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
334       rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
335       rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
336       rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
338       for (i = 0; i < 64; i++)
339       {
340           cur = *bp++;
341           par ^= cur;
342           if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
343           if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
344           if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
345           if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
346           if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
347           if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
348       }
349       /*
350          we need to adapt the code generation for the fact that rp vars are now
351          long; also the column parity calculation needs to be changed.
352          we'll bring rp4 to 15 back to single byte entities by shifting and
353          xoring
354       */
355       rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
356       rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
357       rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
358       rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
359       rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
360       rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
361       rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
362       rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
363       rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
364       rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
365       rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
366       rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
367       rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
368       rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
369       par ^= (par >> 16);
370       rp1 = (par >> 8); rp1 &= 0xff;
371       rp0 = (par & 0xff);
372       par ^= (par >> 8); par &= 0xff;
374       code[0] =
375           (parity[rp7] << 7) |
376           (parity[rp6] << 6) |
377           (parity[rp5] << 5) |
378           (parity[rp4] << 4) |
379           (parity[rp3] << 3) |
380           (parity[rp2] << 2) |
381           (parity[rp1] << 1) |
382           (parity[rp0]);
383       code[1] =
384           (parity[rp15] << 7) |
385           (parity[rp14] << 6) |
386           (parity[rp13] << 5) |
387           (parity[rp12] << 4) |
388           (parity[rp11] << 3) |
389           (parity[rp10] << 2) |
390           (parity[rp9]  << 1) |
391           (parity[rp8]);
392       code[2] =
393           (parity[par & 0xf0] << 7) |
394           (parity[par & 0x0f] << 6) |
395           (parity[par & 0xcc] << 5) |
396           (parity[par & 0x33] << 4) |
397           (parity[par & 0xaa] << 3) |
398           (parity[par & 0x55] << 2);
399       code[0] = ~code[0];
400       code[1] = ~code[1];
401       code[2] = ~code[2];
402   }
404 The parity array is not shown any more. Note also that for these
405 examples I kinda deviated from my regular programming style by allowing
406 multiple statements on a line, not using { } in then and else blocks
407 with only a single statement and by using operators like ^=
410 Analysis 2
411 ==========
413 The code (of course) works, and hurray: we are a little bit faster than
414 the linux driver code (about 15%). But wait, don't cheer too quickly.
415 There is more to be gained.
416 If we look at e.g. rp14 and rp15 we see that we either xor our data with
417 rp14 or with rp15. However we also have par which goes over all data.
418 This means there is no need to calculate rp14 as it can be calculated from
419 rp15 through rp14 = par ^ rp15, because par = rp14 ^ rp15;
420 (or if desired we can avoid calculating rp15 and calculate it from
421 rp14).  That is why some places refer to inverse parity.
422 Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
423 Effectively this means we can eliminate the else clause from the if
424 statements. Also we can optimise the calculation in the end a little bit
425 by going from long to byte first. Actually we can even avoid the table
426 lookups
428 Attempt 3
429 =========
431 Odd replaced::
433           if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
434           if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
435           if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
436           if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
437           if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
438           if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
440 with::
442           if (i & 0x01) rp5 ^= cur;
443           if (i & 0x02) rp7 ^= cur;
444           if (i & 0x04) rp9 ^= cur;
445           if (i & 0x08) rp11 ^= cur;
446           if (i & 0x10) rp13 ^= cur;
447           if (i & 0x20) rp15 ^= cur;
449 and outside the loop added::
451           rp4  = par ^ rp5;
452           rp6  = par ^ rp7;
453           rp8  = par ^ rp9;
454           rp10  = par ^ rp11;
455           rp12  = par ^ rp13;
456           rp14  = par ^ rp15;
458 And after that the code takes about 30% more time, although the number of
459 statements is reduced. This is also reflected in the assembly code.
462 Analysis 3
463 ==========
465 Very weird. Guess it has to do with caching or instruction parallellism
466 or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
467 observation was that this one is only 30% slower (according to time)
468 executing the code as my 3Ghz D920 processor.
470 Well, it was expected not to be easy so maybe instead move to a
471 different track: let's move back to the code from attempt2 and do some
472 loop unrolling. This will eliminate a few if statements. I'll try
473 different amounts of unrolling to see what works best.
476 Attempt 4
477 =========
479 Unrolled the loop 1, 2, 3 and 4 times.
480 For 4 the code starts with::
482     for (i = 0; i < 4; i++)
483     {
484         cur = *bp++;
485         par ^= cur;
486         rp4 ^= cur;
487         rp6 ^= cur;
488         rp8 ^= cur;
489         rp10 ^= cur;
490         if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
491         if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
492         cur = *bp++;
493         par ^= cur;
494         rp5 ^= cur;
495         rp6 ^= cur;
496         ...
499 Analysis 4
500 ==========
502 Unrolling once gains about 15%
504 Unrolling twice keeps the gain at about 15%
506 Unrolling three times gives a gain of 30% compared to attempt 2.
508 Unrolling four times gives a marginal improvement compared to unrolling
509 three times.
511 I decided to proceed with a four time unrolled loop anyway. It was my gut
512 feeling that in the next steps I would obtain additional gain from it.
514 The next step was triggered by the fact that par contains the xor of all
515 bytes and rp4 and rp5 each contain the xor of half of the bytes.
516 So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
517 that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
518 eliminate rp5 (or rp4, but I already foresaw another optimisation).
519 The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
522 Attempt 5
523 =========
525 Effectively so all odd digit rp assignments in the loop were removed.
526 This included the else clause of the if statements.
527 Of course after the loop we need to correct things by adding code like::
529     rp5 = par ^ rp4;
531 Also the initial assignments (rp5 = 0; etc) could be removed.
532 Along the line I also removed the initialisation of rp0/1/2/3.
535 Analysis 5
536 ==========
538 Measurements showed this was a good move. The run-time roughly halved
539 compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
540 of the processor time compared to the current code in the linux kernel.
542 However, still I thought there was more. I didn't like all the if
543 statements. Why not keep a running parity and only keep the last if
544 statement. Time for yet another version!
547 Attempt 6
548 =========
550 THe code within the for loop was changed to::
552     for (i = 0; i < 4; i++)
553     {
554         cur = *bp++; tmppar  = cur; rp4 ^= cur;
555         cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
556         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
557         cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
559         cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
560         cur = *bp++; tmppar ^= cur; rp6 ^= cur;
561         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
562         cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
564         cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
565         cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
566         cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
567         cur = *bp++; tmppar ^= cur; rp8 ^= cur;
569         cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
570         cur = *bp++; tmppar ^= cur; rp6 ^= cur;
571         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
572         cur = *bp++; tmppar ^= cur;
574         par ^= tmppar;
575         if ((i & 0x1) == 0) rp12 ^= tmppar;
576         if ((i & 0x2) == 0) rp14 ^= tmppar;
577     }
579 As you can see tmppar is used to accumulate the parity within a for
580 iteration. In the last 3 statements is added to par and, if needed,
581 to rp12 and rp14.
583 While making the changes I also found that I could exploit that tmppar
584 contains the running parity for this iteration. So instead of having:
585 rp4 ^= cur; rp6 ^= cur;
586 I removed the rp6 ^= cur; statement and did rp6 ^= tmppar; on next
587 statement. A similar change was done for rp8 and rp10
590 Analysis 6
591 ==========
593 Measuring this code again showed big gain. When executing the original
594 linux code 1 million times, this took about 1 second on my system.
595 (using time to measure the performance). After this iteration I was back
596 to 0.075 sec. Actually I had to decide to start measuring over 10
597 million iterations in order not to lose too much accuracy. This one
598 definitely seemed to be the jackpot!
600 There is a little bit more room for improvement though. There are three
601 places with statements::
603         rp4 ^= cur; rp6 ^= cur;
605 It seems more efficient to also maintain a variable rp4_6 in the while
606 loop; This eliminates 3 statements per loop. Of course after the loop we
607 need to correct by adding::
609         rp4 ^= rp4_6;
610         rp6 ^= rp4_6
612 Furthermore there are 4 sequential assignments to rp8. This can be
613 encoded slightly more efficiently by saving tmppar before those 4 lines
614 and later do rp8 = rp8 ^ tmppar ^ notrp8;
615 (where notrp8 is the value of rp8 before those 4 lines).
616 Again a use of the commutative property of xor.
617 Time for a new test!
620 Attempt 7
621 =========
623 The new code now looks like::
625     for (i = 0; i < 4; i++)
626     {
627         cur = *bp++; tmppar  = cur; rp4 ^= cur;
628         cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
629         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
630         cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
632         cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
633         cur = *bp++; tmppar ^= cur; rp6 ^= cur;
634         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
635         cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
637         notrp8 = tmppar;
638         cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
639         cur = *bp++; tmppar ^= cur; rp6 ^= cur;
640         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
641         cur = *bp++; tmppar ^= cur;
642         rp8 = rp8 ^ tmppar ^ notrp8;
644         cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
645         cur = *bp++; tmppar ^= cur; rp6 ^= cur;
646         cur = *bp++; tmppar ^= cur; rp4 ^= cur;
647         cur = *bp++; tmppar ^= cur;
649         par ^= tmppar;
650         if ((i & 0x1) == 0) rp12 ^= tmppar;
651         if ((i & 0x2) == 0) rp14 ^= tmppar;
652     }
653     rp4 ^= rp4_6;
654     rp6 ^= rp4_6;
657 Not a big change, but every penny counts :-)
660 Analysis 7
661 ==========
663 Actually this made things worse. Not very much, but I don't want to move
664 into the wrong direction. Maybe something to investigate later. Could
665 have to do with caching again.
667 Guess that is what there is to win within the loop. Maybe unrolling one
668 more time will help. I'll keep the optimisations from 7 for now.
671 Attempt 8
672 =========
674 Unrolled the loop one more time.
677 Analysis 8
678 ==========
680 This makes things worse. Let's stick with attempt 6 and continue from there.
681 Although it seems that the code within the loop cannot be optimised
682 further there is still room to optimize the generation of the ecc codes.
683 We can simply calculate the total parity. If this is 0 then rp4 = rp5
684 etc. If the parity is 1, then rp4 = !rp5;
686 But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
687 in the result byte and then do something like::
689     code[0] |= (code[0] << 1);
691 Lets test this.
694 Attempt 9
695 =========
697 Changed the code but again this slightly degrades performance. Tried all
698 kind of other things, like having dedicated parity arrays to avoid the
699 shift after parity[rp7] << 7; No gain.
700 Change the lookup using the parity array by using shift operators (e.g.
701 replace parity[rp7] << 7 with::
703         rp7 ^= (rp7 << 4);
704         rp7 ^= (rp7 << 2);
705         rp7 ^= (rp7 << 1);
706         rp7 &= 0x80;
708 No gain.
710 The only marginal change was inverting the parity bits, so we can remove
711 the last three invert statements.
713 Ah well, pity this does not deliver more. Then again 10 million
714 iterations using the linux driver code takes between 13 and 13.5
715 seconds, whereas my code now takes about 0.73 seconds for those 10
716 million iterations. So basically I've improved the performance by a
717 factor 18 on my system. Not that bad. Of course on different hardware
718 you will get different results. No warranties!
720 But of course there is no such thing as a free lunch. The codesize almost
721 tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
724 Correcting errors
725 =================
727 For correcting errors I again used the ST application note as a starter,
728 but I also peeked at the existing code.
730 The algorithm itself is pretty straightforward. Just xor the given and
731 the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
732 are 1 we have one correctable bit error. If there is 1 bit 1, we have an
733 error in the given ecc code.
735 It proved to be fastest to do some table lookups. Performance gain
736 introduced by this is about a factor 2 on my system when a repair had to
737 be done, and 1% or so if no repair had to be done.
739 Code size increased from 330 bytes to 686 bytes for this function.
740 (gcc 4.2, -O3)
743 Conclusion
744 ==========
746 The gain when calculating the ecc is tremendous. Om my development hardware
747 a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
748 embedded system with a MIPS core a factor 7 was obtained.
750 On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
751 5 (big endian mode, gcc 4.1.2, -O3)
753 For correction not much gain could be obtained (as bitflips are rare). Then
754 again there are also much less cycles spent there.
756 It seems there is not much more gain possible in this, at least when
757 programmed in C. Of course it might be possible to squeeze something more
758 out of it with an assembler program, but due to pipeline behaviour etc
759 this is very tricky (at least for intel hw).
761 Author: Frans Meulenbroeks
763 Copyright (C) 2008 Koninklijke Philips Electronics NV.