WIP FPC-III support
[linux/fpc-iii.git] / Documentation / networking / device_drivers / ethernet / freescale / dpaa.rst
blob241c6c6f6e68fe9ab4df2a210e0de86fc38fc5ba
1 .. SPDX-License-Identifier: GPL-2.0
3 ==============================
4 The QorIQ DPAA Ethernet Driver
5 ==============================
7 Authors:
8 - Madalin Bucur <madalin.bucur@nxp.com>
9 - Camelia Groza <camelia.groza@nxp.com>
11 .. Contents
13         - DPAA Ethernet Overview
14         - DPAA Ethernet Supported SoCs
15         - Configuring DPAA Ethernet in your kernel
16         - DPAA Ethernet Frame Processing
17         - DPAA Ethernet Features
18         - DPAA IRQ Affinity and Receive Side Scaling
19         - Debugging
21 DPAA Ethernet Overview
22 ======================
24 DPAA stands for Data Path Acceleration Architecture and it is a
25 set of networking acceleration IPs that are available on several
26 generations of SoCs, both on PowerPC and ARM64.
28 The Freescale DPAA architecture consists of a series of hardware blocks
29 that support Ethernet connectivity. The Ethernet driver depends upon the
30 following drivers in the Linux kernel:
32  - Peripheral Access Memory Unit (PAMU) (* needed only for PPC platforms)
33     drivers/iommu/fsl_*
34  - Frame Manager (FMan)
35     drivers/net/ethernet/freescale/fman
36  - Queue Manager (QMan), Buffer Manager (BMan)
37     drivers/soc/fsl/qbman
39 A simplified view of the dpaa_eth interfaces mapped to FMan MACs::
41   dpaa_eth       /eth0\     ...       /ethN\
42   driver        |      |             |      |
43   -------------   ----   -----------   ----   -------------
44        -Ports  / Tx  Rx \    ...    / Tx  Rx \
45   FMan        |          |         |          |
46        -MACs  |   MAC0   |         |   MACN   |
47              /   dtsec0   \  ...  /   dtsecN   \ (or tgec)
48             /              \     /              \(or memac)
49   ---------  --------------  ---  --------------  ---------
50       FMan, FMan Port, FMan SP, FMan MURAM drivers
51   ---------------------------------------------------------
52       FMan HW blocks: MURAM, MACs, Ports, SP
53   ---------------------------------------------------------
55 The dpaa_eth relation to the QMan, BMan and FMan::
57               ________________________________
58   dpaa_eth   /            eth0                \
59   driver    /                                  \
60   ---------   -^-   -^-   -^-   ---    ---------
61   QMan driver / \   / \   / \  \   /  | BMan    |
62              |Rx | |Rx | |Tx | |Tx |  | driver  |
63   ---------  |Dfl| |Err| |Cnf| |FQs|  |         |
64   QMan HW    |FQ | |FQ | |FQs| |   |  |         |
65              /   \ /   \ /   \  \ /   |         |
66   ---------   ---   ---   ---   -v-    ---------
67             |        FMan QMI         |         |
68             | FMan HW       FMan BMI  | BMan HW |
69               -----------------------   --------
71 where the acronyms used above (and in the code) are:
73 =============== ===========================================================
74 DPAA            Data Path Acceleration Architecture
75 FMan            DPAA Frame Manager
76 QMan            DPAA Queue Manager
77 BMan            DPAA Buffers Manager
78 QMI             QMan interface in FMan
79 BMI             BMan interface in FMan
80 FMan SP         FMan Storage Profiles
81 MURAM           Multi-user RAM in FMan
82 FQ              QMan Frame Queue
83 Rx Dfl FQ       default reception FQ
84 Rx Err FQ       Rx error frames FQ
85 Tx Cnf FQ       Tx confirmation FQs
86 Tx FQs          transmission frame queues
87 dtsec           datapath three speed Ethernet controller (10/100/1000 Mbps)
88 tgec            ten gigabit Ethernet controller (10 Gbps)
89 memac           multirate Ethernet MAC (10/100/1000/10000)
90 =============== ===========================================================
92 DPAA Ethernet Supported SoCs
93 ============================
95 The DPAA drivers enable the Ethernet controllers present on the following SoCs:
97 PPC
98 - P1023
99 - P2041
100 - P3041
101 - P4080
102 - P5020
103 - P5040
104 - T1023
105 - T1024
106 - T1040
107 - T1042
108 - T2080
109 - T4240
110 - B4860
113 - LS1043A
114 - LS1046A
116 Configuring DPAA Ethernet in your kernel
117 ========================================
119 To enable the DPAA Ethernet driver, the following Kconfig options are required::
121   # common for arch/arm64 and arch/powerpc platforms
122   CONFIG_FSL_DPAA=y
123   CONFIG_FSL_FMAN=y
124   CONFIG_FSL_DPAA_ETH=y
125   CONFIG_FSL_XGMAC_MDIO=y
127   # for arch/powerpc only
128   CONFIG_FSL_PAMU=y
130   # common options needed for the PHYs used on the RDBs
131   CONFIG_VITESSE_PHY=y
132   CONFIG_REALTEK_PHY=y
133   CONFIG_AQUANTIA_PHY=y
135 DPAA Ethernet Frame Processing
136 ==============================
138 On Rx, buffers for the incoming frames are retrieved from the buffers found
139 in the dedicated interface buffer pool. The driver initializes and seeds these
140 with one page buffers.
142 On Tx, all transmitted frames are returned to the driver through Tx
143 confirmation frame queues. The driver is then responsible for freeing the
144 buffers. In order to do this properly, a backpointer is added to the buffer
145 before transmission that points to the skb. When the buffer returns to the
146 driver on a confirmation FQ, the skb can be correctly consumed.
148 DPAA Ethernet Features
149 ======================
151 Currently the DPAA Ethernet driver enables the basic features required for
152 a Linux Ethernet driver. The support for advanced features will be added
153 gradually.
155 The driver has Rx and Tx checksum offloading for UDP and TCP. Currently the Rx
156 checksum offload feature is enabled by default and cannot be controlled through
157 ethtool. Also, rx-flow-hash and rx-hashing was added. The addition of RSS
158 provides a big performance boost for the forwarding scenarios, allowing
159 different traffic flows received by one interface to be processed by different
160 CPUs in parallel.
162 The driver has support for multiple prioritized Tx traffic classes. Priorities
163 range from 0 (lowest) to 3 (highest). These are mapped to HW workqueues with
164 strict priority levels. Each traffic class contains NR_CPU TX queues. By
165 default, only one traffic class is enabled and the lowest priority Tx queues
166 are used. Higher priority traffic classes can be enabled with the mqprio
167 qdisc. For example, all four traffic classes are enabled on an interface with
168 the following command. Furthermore, skb priority levels are mapped to traffic
169 classes as follows:
171         * priorities 0 to 3 - traffic class 0 (low priority)
172         * priorities 4 to 7 - traffic class 1 (medium-low priority)
173         * priorities 8 to 11 - traffic class 2 (medium-high priority)
174         * priorities 12 to 15 - traffic class 3 (high priority)
178   tc qdisc add dev <int> root handle 1: \
179          mqprio num_tc 4 map 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 hw 1
181 DPAA IRQ Affinity and Receive Side Scaling
182 ==========================================
184 Traffic coming on the DPAA Rx queues or on the DPAA Tx confirmation
185 queues is seen by the CPU as ingress traffic on a certain portal.
186 The DPAA QMan portal interrupts are affined each to a certain CPU.
187 The same portal interrupt services all the QMan portal consumers.
189 By default the DPAA Ethernet driver enables RSS, making use of the
190 DPAA FMan Parser and Keygen blocks to distribute traffic on 128
191 hardware frame queues using a hash on IP v4/v6 source and destination
192 and L4 source and destination ports, in present in the received frame.
193 When RSS is disabled, all traffic received by a certain interface is
194 received on the default Rx frame queue. The default DPAA Rx frame
195 queues are configured to put the received traffic into a pool channel
196 that allows any available CPU portal to dequeue the ingress traffic.
197 The default frame queues have the HOLDACTIVE option set, ensuring that
198 traffic bursts from a certain queue are serviced by the same CPU.
199 This ensures a very low rate of frame reordering. A drawback of this
200 is that only one CPU at a time can service the traffic received by a
201 certain interface when RSS is not enabled.
203 To implement RSS, the DPAA Ethernet driver allocates an extra set of
204 128 Rx frame queues that are configured to dedicated channels, in a
205 round-robin manner. The mapping of the frame queues to CPUs is now
206 hardcoded, there is no indirection table to move traffic for a certain
207 FQ (hash result) to another CPU. The ingress traffic arriving on one
208 of these frame queues will arrive at the same portal and will always
209 be processed by the same CPU. This ensures intra-flow order preservation
210 and workload distribution for multiple traffic flows.
212 RSS can be turned off for a certain interface using ethtool, i.e.::
214         # ethtool -N fm1-mac9 rx-flow-hash tcp4 ""
216 To turn it back on, one needs to set rx-flow-hash for tcp4/6 or udp4/6::
218         # ethtool -N fm1-mac9 rx-flow-hash udp4 sfdn
220 There is no independent control for individual protocols, any command
221 run for one of tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6 is
222 going to control the rx-flow-hashing for all protocols on that interface.
224 Besides using the FMan Keygen computed hash for spreading traffic on the
225 128 Rx FQs, the DPAA Ethernet driver also sets the skb hash value when
226 the NETIF_F_RXHASH feature is on (active by default). This can be turned
227 on or off through ethtool, i.e.::
229         # ethtool -K fm1-mac9 rx-hashing off
230         # ethtool -k fm1-mac9 | grep hash
231         receive-hashing: off
232         # ethtool -K fm1-mac9 rx-hashing on
233         Actual changes:
234         receive-hashing: on
235         # ethtool -k fm1-mac9 | grep hash
236         receive-hashing: on
238 Please note that Rx hashing depends upon the rx-flow-hashing being on
239 for that interface - turning off rx-flow-hashing will also disable the
240 rx-hashing (without ethtool reporting it as off as that depends on the
241 NETIF_F_RXHASH feature flag).
243 Debugging
244 =========
246 The following statistics are exported for each interface through ethtool:
248         - interrupt count per CPU
249         - Rx packets count per CPU
250         - Tx packets count per CPU
251         - Tx confirmed packets count per CPU
252         - Tx S/G frames count per CPU
253         - Tx error count per CPU
254         - Rx error count per CPU
255         - Rx error count per type
256         - congestion related statistics:
258                 - congestion status
259                 - time spent in congestion
260                 - number of time the device entered congestion
261                 - dropped packets count per cause
263 The driver also exports the following information in sysfs:
265         - the FQ IDs for each FQ type
266           /sys/devices/platform/soc/<addr>.fman/<addr>.ethernet/dpaa-ethernet.<id>/net/fm<nr>-mac<nr>/fqids
268         - the ID of the buffer pool in use
269           /sys/devices/platform/soc/<addr>.fman/<addr>.ethernet/dpaa-ethernet.<id>/net/fm<nr>-mac<nr>/bpids