WIP FPC-III support
[linux/fpc-iii.git] / Documentation / x86 / amd-memory-encryption.rst
blobc48d452d0718964f0d269ba469725199e3d399f8
1 .. SPDX-License-Identifier: GPL-2.0
3 =====================
4 AMD Memory Encryption
5 =====================
7 Secure Memory Encryption (SME) and Secure Encrypted Virtualization (SEV) are
8 features found on AMD processors.
10 SME provides the ability to mark individual pages of memory as encrypted using
11 the standard x86 page tables.  A page that is marked encrypted will be
12 automatically decrypted when read from DRAM and encrypted when written to
13 DRAM.  SME can therefore be used to protect the contents of DRAM from physical
14 attacks on the system.
16 SEV enables running encrypted virtual machines (VMs) in which the code and data
17 of the guest VM are secured so that a decrypted version is available only
18 within the VM itself. SEV guest VMs have the concept of private and shared
19 memory. Private memory is encrypted with the guest-specific key, while shared
20 memory may be encrypted with hypervisor key. When SME is enabled, the hypervisor
21 key is the same key which is used in SME.
23 A page is encrypted when a page table entry has the encryption bit set (see
24 below on how to determine its position).  The encryption bit can also be
25 specified in the cr3 register, allowing the PGD table to be encrypted. Each
26 successive level of page tables can also be encrypted by setting the encryption
27 bit in the page table entry that points to the next table. This allows the full
28 page table hierarchy to be encrypted. Note, this means that just because the
29 encryption bit is set in cr3, doesn't imply the full hierarchy is encrypted.
30 Each page table entry in the hierarchy needs to have the encryption bit set to
31 achieve that. So, theoretically, you could have the encryption bit set in cr3
32 so that the PGD is encrypted, but not set the encryption bit in the PGD entry
33 for a PUD which results in the PUD pointed to by that entry to not be
34 encrypted.
36 When SEV is enabled, instruction pages and guest page tables are always treated
37 as private. All the DMA operations inside the guest must be performed on shared
38 memory. Since the memory encryption bit is controlled by the guest OS when it
39 is operating in 64-bit or 32-bit PAE mode, in all other modes the SEV hardware
40 forces the memory encryption bit to 1.
42 Support for SME and SEV can be determined through the CPUID instruction. The
43 CPUID function 0x8000001f reports information related to SME::
45         0x8000001f[eax]:
46                 Bit[0] indicates support for SME
47                 Bit[1] indicates support for SEV
48         0x8000001f[ebx]:
49                 Bits[5:0]  pagetable bit number used to activate memory
50                            encryption
51                 Bits[11:6] reduction in physical address space, in bits, when
52                            memory encryption is enabled (this only affects
53                            system physical addresses, not guest physical
54                            addresses)
56 If support for SME is present, MSR 0xc00100010 (MSR_K8_SYSCFG) can be used to
57 determine if SME is enabled and/or to enable memory encryption::
59         0xc0010010:
60                 Bit[23]   0 = memory encryption features are disabled
61                           1 = memory encryption features are enabled
63 If SEV is supported, MSR 0xc0010131 (MSR_AMD64_SEV) can be used to determine if
64 SEV is active::
66         0xc0010131:
67                 Bit[0]    0 = memory encryption is not active
68                           1 = memory encryption is active
70 Linux relies on BIOS to set this bit if BIOS has determined that the reduction
71 in the physical address space as a result of enabling memory encryption (see
72 CPUID information above) will not conflict with the address space resource
73 requirements for the system.  If this bit is not set upon Linux startup then
74 Linux itself will not set it and memory encryption will not be possible.
76 The state of SME in the Linux kernel can be documented as follows:
78         - Supported:
79           The CPU supports SME (determined through CPUID instruction).
81         - Enabled:
82           Supported and bit 23 of MSR_K8_SYSCFG is set.
84         - Active:
85           Supported, Enabled and the Linux kernel is actively applying
86           the encryption bit to page table entries (the SME mask in the
87           kernel is non-zero).
89 SME can also be enabled and activated in the BIOS. If SME is enabled and
90 activated in the BIOS, then all memory accesses will be encrypted and it will
91 not be necessary to activate the Linux memory encryption support.  If the BIOS
92 merely enables SME (sets bit 23 of the MSR_K8_SYSCFG), then Linux can activate
93 memory encryption by default (CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT=y) or
94 by supplying mem_encrypt=on on the kernel command line.  However, if BIOS does
95 not enable SME, then Linux will not be able to activate memory encryption, even
96 if configured to do so by default or the mem_encrypt=on command line parameter
97 is specified.