WIP FPC-III support
[linux/fpc-iii.git] / arch / arm64 / include / asm / memory.h
blob18fce223b67b2746d08b1d5f64ee3c54e456989d
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Based on arch/arm/include/asm/memory.h
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
8 * Note: this file should not be included by non-asm/.h files
9 */
10 #ifndef __ASM_MEMORY_H
11 #define __ASM_MEMORY_H
13 #include <linux/const.h>
14 #include <linux/sizes.h>
15 #include <asm/page-def.h>
18 * Size of the PCI I/O space. This must remain a power of two so that
19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
21 #define PCI_IO_SIZE SZ_16M
24 * VMEMMAP_SIZE - allows the whole linear region to be covered by
25 * a struct page array
27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
28 * needs to cover the memory region from the beginning of the 52-bit
29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
31 * of the VMEMMAP where 52-bit support is not available in hardware.
33 #define VMEMMAP_SHIFT (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)
34 #define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT)
37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
38 * start of the TTBR1 address space.
39 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
40 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
41 * VA_BITS - the maximum number of bits for virtual addresses.
43 #define VA_BITS (CONFIG_ARM64_VA_BITS)
44 #define _PAGE_OFFSET(va) (-(UL(1) << (va)))
45 #define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
46 #define KIMAGE_VADDR (MODULES_END)
47 #define BPF_JIT_REGION_START (_PAGE_END(VA_BITS_MIN))
48 #define BPF_JIT_REGION_SIZE (SZ_128M)
49 #define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
50 #define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
51 #define MODULES_VADDR (BPF_JIT_REGION_END)
52 #define MODULES_VSIZE (SZ_128M)
53 #define VMEMMAP_START (-(UL(1) << (VA_BITS - VMEMMAP_SHIFT)))
54 #define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE)
55 #define PCI_IO_END (VMEMMAP_START - SZ_8M)
56 #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
57 #define FIXADDR_TOP (VMEMMAP_START - SZ_32M)
59 #if VA_BITS > 48
60 #define VA_BITS_MIN (48)
61 #else
62 #define VA_BITS_MIN (VA_BITS)
63 #endif
65 #define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
67 #define KERNEL_START _text
68 #define KERNEL_END _end
71 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
72 * address space for the shadow region respectively. They can bloat the stack
73 * significantly, so double the (minimum) stack size when they are in use.
75 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
76 #define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
77 #define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
78 + KASAN_SHADOW_OFFSET)
79 #define PAGE_END (KASAN_SHADOW_END - (1UL << (vabits_actual - KASAN_SHADOW_SCALE_SHIFT)))
80 #define KASAN_THREAD_SHIFT 1
81 #else
82 #define KASAN_THREAD_SHIFT 0
83 #define PAGE_END (_PAGE_END(VA_BITS_MIN))
84 #endif /* CONFIG_KASAN */
86 #define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
89 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
90 * stacks are a multiple of page size.
92 #if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
93 #define THREAD_SHIFT PAGE_SHIFT
94 #else
95 #define THREAD_SHIFT MIN_THREAD_SHIFT
96 #endif
98 #if THREAD_SHIFT >= PAGE_SHIFT
99 #define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
100 #endif
102 #define THREAD_SIZE (UL(1) << THREAD_SHIFT)
105 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
106 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
107 * assembly.
109 #ifdef CONFIG_VMAP_STACK
110 #define THREAD_ALIGN (2 * THREAD_SIZE)
111 #else
112 #define THREAD_ALIGN THREAD_SIZE
113 #endif
115 #define IRQ_STACK_SIZE THREAD_SIZE
117 #define OVERFLOW_STACK_SIZE SZ_4K
120 * Alignment of kernel segments (e.g. .text, .data).
122 * 4 KB granule: 16 level 3 entries, with contiguous bit
123 * 16 KB granule: 4 level 3 entries, without contiguous bit
124 * 64 KB granule: 1 level 3 entry
126 #define SEGMENT_ALIGN SZ_64K
129 * Memory types available.
131 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in
132 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note
133 * that protection_map[] only contains MT_NORMAL attributes.
135 #define MT_NORMAL 0
136 #define MT_NORMAL_TAGGED 1
137 #define MT_NORMAL_NC 2
138 #define MT_NORMAL_WT 3
139 #define MT_DEVICE_nGnRnE 4
140 #define MT_DEVICE_nGnRE 5
141 #define MT_DEVICE_GRE 6
144 * Memory types for Stage-2 translation
146 #define MT_S2_NORMAL 0xf
147 #define MT_S2_DEVICE_nGnRE 0x1
150 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
151 * Stage-2 enforces Normal-WB and Device-nGnRE
153 #define MT_S2_FWB_NORMAL 6
154 #define MT_S2_FWB_DEVICE_nGnRE 1
156 #ifdef CONFIG_ARM64_4K_PAGES
157 #define IOREMAP_MAX_ORDER (PUD_SHIFT)
158 #else
159 #define IOREMAP_MAX_ORDER (PMD_SHIFT)
160 #endif
162 #ifndef __ASSEMBLY__
164 #include <linux/bitops.h>
165 #include <linux/compiler.h>
166 #include <linux/mmdebug.h>
167 #include <linux/types.h>
168 #include <asm/bug.h>
170 extern u64 vabits_actual;
172 extern s64 memstart_addr;
173 /* PHYS_OFFSET - the physical address of the start of memory. */
174 #define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
176 /* the virtual base of the kernel image */
177 extern u64 kimage_vaddr;
179 /* the offset between the kernel virtual and physical mappings */
180 extern u64 kimage_voffset;
182 static inline unsigned long kaslr_offset(void)
184 return kimage_vaddr - KIMAGE_VADDR;
188 * Allow all memory at the discovery stage. We will clip it later.
190 #define MIN_MEMBLOCK_ADDR 0
191 #define MAX_MEMBLOCK_ADDR U64_MAX
194 * PFNs are used to describe any physical page; this means
195 * PFN 0 == physical address 0.
197 * This is the PFN of the first RAM page in the kernel
198 * direct-mapped view. We assume this is the first page
199 * of RAM in the mem_map as well.
201 #define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
204 * When dealing with data aborts, watchpoints, or instruction traps we may end
205 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
206 * pass on to access_ok(), for instance.
208 #define __untagged_addr(addr) \
209 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
211 #define untagged_addr(addr) ({ \
212 u64 __addr = (__force u64)(addr); \
213 __addr &= __untagged_addr(__addr); \
214 (__force __typeof__(addr))__addr; \
217 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
218 #define __tag_shifted(tag) ((u64)(tag) << 56)
219 #define __tag_reset(addr) __untagged_addr(addr)
220 #define __tag_get(addr) (__u8)((u64)(addr) >> 56)
221 #else
222 #define __tag_shifted(tag) 0UL
223 #define __tag_reset(addr) (addr)
224 #define __tag_get(addr) 0
225 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
227 static inline const void *__tag_set(const void *addr, u8 tag)
229 u64 __addr = (u64)addr & ~__tag_shifted(0xff);
230 return (const void *)(__addr | __tag_shifted(tag));
233 #ifdef CONFIG_KASAN_HW_TAGS
234 #define arch_enable_tagging() mte_enable_kernel()
235 #define arch_init_tags(max_tag) mte_init_tags(max_tag)
236 #define arch_get_random_tag() mte_get_random_tag()
237 #define arch_get_mem_tag(addr) mte_get_mem_tag(addr)
238 #define arch_set_mem_tag_range(addr, size, tag) \
239 mte_set_mem_tag_range((addr), (size), (tag))
240 #endif /* CONFIG_KASAN_HW_TAGS */
243 * Physical vs virtual RAM address space conversion. These are
244 * private definitions which should NOT be used outside memory.h
245 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
250 * The linear kernel range starts at the bottom of the virtual address space.
252 #define __is_lm_address(addr) (((u64)(addr) & ~PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET))
254 #define __lm_to_phys(addr) (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET)
255 #define __kimg_to_phys(addr) ((addr) - kimage_voffset)
257 #define __virt_to_phys_nodebug(x) ({ \
258 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
259 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
262 #define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
264 #ifdef CONFIG_DEBUG_VIRTUAL
265 extern phys_addr_t __virt_to_phys(unsigned long x);
266 extern phys_addr_t __phys_addr_symbol(unsigned long x);
267 #else
268 #define __virt_to_phys(x) __virt_to_phys_nodebug(x)
269 #define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
270 #endif /* CONFIG_DEBUG_VIRTUAL */
272 #define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
273 #define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
276 * Convert a page to/from a physical address
278 #define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
279 #define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
282 * Note: Drivers should NOT use these. They are the wrong
283 * translation for translating DMA addresses. Use the driver
284 * DMA support - see dma-mapping.h.
286 #define virt_to_phys virt_to_phys
287 static inline phys_addr_t virt_to_phys(const volatile void *x)
289 return __virt_to_phys((unsigned long)(x));
292 #define phys_to_virt phys_to_virt
293 static inline void *phys_to_virt(phys_addr_t x)
295 return (void *)(__phys_to_virt(x));
299 * Drivers should NOT use these either.
301 #define __pa(x) __virt_to_phys((unsigned long)(x))
302 #define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
303 #define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
304 #define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
305 #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
306 #define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
307 #define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
310 * virt_to_page(x) convert a _valid_ virtual address to struct page *
311 * virt_addr_valid(x) indicates whether a virtual address is valid
313 #define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
315 #if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
316 #define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
317 #else
318 #define page_to_virt(x) ({ \
319 __typeof__(x) __page = x; \
320 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
321 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
322 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
325 #define virt_to_page(x) ({ \
326 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
327 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
328 (struct page *)__addr; \
330 #endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
332 #define virt_addr_valid(addr) ({ \
333 __typeof__(addr) __addr = addr; \
334 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \
337 void dump_mem_limit(void);
338 #endif /* !ASSEMBLY */
341 * Given that the GIC architecture permits ITS implementations that can only be
342 * configured with a LPI table address once, GICv3 systems with many CPUs may
343 * end up reserving a lot of different regions after a kexec for their LPI
344 * tables (one per CPU), as we are forced to reuse the same memory after kexec
345 * (and thus reserve it persistently with EFI beforehand)
347 #if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
348 # define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
349 #endif
351 #include <asm-generic/memory_model.h>
353 #endif /* __ASM_MEMORY_H */