1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012 ARM Ltd.
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
9 #include <asm/proc-fns.h>
11 #include <asm/memory.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
24 #define VMALLOC_START (MODULES_END)
25 #define VMALLOC_END (VMEMMAP_START - SZ_256M)
27 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
29 #define FIRST_USER_ADDRESS 0UL
33 #include <asm/cmpxchg.h>
34 #include <asm/fixmap.h>
35 #include <linux/mmdebug.h>
36 #include <linux/mm_types.h>
37 #include <linux/sched.h>
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
40 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
42 /* Set stride and tlb_level in flush_*_tlb_range */
43 #define flush_pmd_tlb_range(vma, addr, end) \
44 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
45 #define flush_pud_tlb_range(vma, addr, end) \
46 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
47 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
50 * Outside of a few very special situations (e.g. hibernation), we always
51 * use broadcast TLB invalidation instructions, therefore a spurious page
52 * fault on one CPU which has been handled concurrently by another CPU
53 * does not need to perform additional invalidation.
55 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
58 * ZERO_PAGE is a global shared page that is always zero: used
59 * for zero-mapped memory areas etc..
61 extern unsigned long empty_zero_page
[PAGE_SIZE
/ sizeof(unsigned long)];
62 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
64 #define pte_ERROR(e) \
65 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
68 * Macros to convert between a physical address and its placement in a
69 * page table entry, taking care of 52-bit addresses.
71 #ifdef CONFIG_ARM64_PA_BITS_52
72 #define __pte_to_phys(pte) \
73 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36))
74 #define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK)
76 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
77 #define __phys_to_pte_val(phys) (phys)
80 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
81 #define pfn_pte(pfn,prot) \
82 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
84 #define pte_none(pte) (!pte_val(pte))
85 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
86 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
89 * The following only work if pte_present(). Undefined behaviour otherwise.
91 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
92 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
93 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
94 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
95 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
96 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
97 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
98 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
99 PTE_ATTRINDX(MT_NORMAL_TAGGED))
101 #define pte_cont_addr_end(addr, end) \
102 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
103 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
106 #define pmd_cont_addr_end(addr, end) \
107 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
108 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
111 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
112 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
113 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
115 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
116 #define pte_valid_not_user(pte) \
117 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
118 #define pte_valid_user(pte) \
119 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
122 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
123 * so that we don't erroneously return false for pages that have been
124 * remapped as PROT_NONE but are yet to be flushed from the TLB.
125 * Note that we can't make any assumptions based on the state of the access
126 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
129 #define pte_accessible(mm, pte) \
130 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
133 * p??_access_permitted() is true for valid user mappings (subject to the
134 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
137 #define pte_access_permitted(pte, write) \
138 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
139 #define pmd_access_permitted(pmd, write) \
140 (pte_access_permitted(pmd_pte(pmd), (write)))
141 #define pud_access_permitted(pud, write) \
142 (pte_access_permitted(pud_pte(pud), (write)))
144 static inline pte_t
clear_pte_bit(pte_t pte
, pgprot_t prot
)
146 pte_val(pte
) &= ~pgprot_val(prot
);
150 static inline pte_t
set_pte_bit(pte_t pte
, pgprot_t prot
)
152 pte_val(pte
) |= pgprot_val(prot
);
156 static inline pmd_t
clear_pmd_bit(pmd_t pmd
, pgprot_t prot
)
158 pmd_val(pmd
) &= ~pgprot_val(prot
);
162 static inline pmd_t
set_pmd_bit(pmd_t pmd
, pgprot_t prot
)
164 pmd_val(pmd
) |= pgprot_val(prot
);
168 static inline pte_t
pte_mkwrite(pte_t pte
)
170 pte
= set_pte_bit(pte
, __pgprot(PTE_WRITE
));
171 pte
= clear_pte_bit(pte
, __pgprot(PTE_RDONLY
));
175 static inline pte_t
pte_mkclean(pte_t pte
)
177 pte
= clear_pte_bit(pte
, __pgprot(PTE_DIRTY
));
178 pte
= set_pte_bit(pte
, __pgprot(PTE_RDONLY
));
183 static inline pte_t
pte_mkdirty(pte_t pte
)
185 pte
= set_pte_bit(pte
, __pgprot(PTE_DIRTY
));
188 pte
= clear_pte_bit(pte
, __pgprot(PTE_RDONLY
));
193 static inline pte_t
pte_wrprotect(pte_t pte
)
196 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
197 * clear), set the PTE_DIRTY bit.
199 if (pte_hw_dirty(pte
))
200 pte
= pte_mkdirty(pte
);
202 pte
= clear_pte_bit(pte
, __pgprot(PTE_WRITE
));
203 pte
= set_pte_bit(pte
, __pgprot(PTE_RDONLY
));
207 static inline pte_t
pte_mkold(pte_t pte
)
209 return clear_pte_bit(pte
, __pgprot(PTE_AF
));
212 static inline pte_t
pte_mkyoung(pte_t pte
)
214 return set_pte_bit(pte
, __pgprot(PTE_AF
));
217 static inline pte_t
pte_mkspecial(pte_t pte
)
219 return set_pte_bit(pte
, __pgprot(PTE_SPECIAL
));
222 static inline pte_t
pte_mkcont(pte_t pte
)
224 pte
= set_pte_bit(pte
, __pgprot(PTE_CONT
));
225 return set_pte_bit(pte
, __pgprot(PTE_TYPE_PAGE
));
228 static inline pte_t
pte_mknoncont(pte_t pte
)
230 return clear_pte_bit(pte
, __pgprot(PTE_CONT
));
233 static inline pte_t
pte_mkpresent(pte_t pte
)
235 return set_pte_bit(pte
, __pgprot(PTE_VALID
));
238 static inline pmd_t
pmd_mkcont(pmd_t pmd
)
240 return __pmd(pmd_val(pmd
) | PMD_SECT_CONT
);
243 static inline pte_t
pte_mkdevmap(pte_t pte
)
245 return set_pte_bit(pte
, __pgprot(PTE_DEVMAP
| PTE_SPECIAL
));
248 static inline void set_pte(pte_t
*ptep
, pte_t pte
)
250 WRITE_ONCE(*ptep
, pte
);
253 * Only if the new pte is valid and kernel, otherwise TLB maintenance
254 * or update_mmu_cache() have the necessary barriers.
256 if (pte_valid_not_user(pte
)) {
262 extern void __sync_icache_dcache(pte_t pteval
);
265 * PTE bits configuration in the presence of hardware Dirty Bit Management
266 * (PTE_WRITE == PTE_DBM):
268 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
274 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
275 * the page fault mechanism. Checking the dirty status of a pte becomes:
277 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
280 static inline void __check_racy_pte_update(struct mm_struct
*mm
, pte_t
*ptep
,
285 if (!IS_ENABLED(CONFIG_DEBUG_VM
))
288 old_pte
= READ_ONCE(*ptep
);
290 if (!pte_valid(old_pte
) || !pte_valid(pte
))
292 if (mm
!= current
->active_mm
&& atomic_read(&mm
->mm_users
) <= 1)
296 * Check for potential race with hardware updates of the pte
297 * (ptep_set_access_flags safely changes valid ptes without going
298 * through an invalid entry).
300 VM_WARN_ONCE(!pte_young(pte
),
301 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
302 __func__
, pte_val(old_pte
), pte_val(pte
));
303 VM_WARN_ONCE(pte_write(old_pte
) && !pte_dirty(pte
),
304 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
305 __func__
, pte_val(old_pte
), pte_val(pte
));
308 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
309 pte_t
*ptep
, pte_t pte
)
311 if (pte_present(pte
) && pte_user_exec(pte
) && !pte_special(pte
))
312 __sync_icache_dcache(pte
);
314 if (system_supports_mte() &&
315 pte_present(pte
) && pte_tagged(pte
) && !pte_special(pte
))
316 mte_sync_tags(ptep
, pte
);
318 __check_racy_pte_update(mm
, ptep
, pte
);
324 * Huge pte definitions.
326 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
329 * Hugetlb definitions.
331 #define HUGE_MAX_HSTATE 4
332 #define HPAGE_SHIFT PMD_SHIFT
333 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
334 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
335 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
337 static inline pte_t
pgd_pte(pgd_t pgd
)
339 return __pte(pgd_val(pgd
));
342 static inline pte_t
p4d_pte(p4d_t p4d
)
344 return __pte(p4d_val(p4d
));
347 static inline pte_t
pud_pte(pud_t pud
)
349 return __pte(pud_val(pud
));
352 static inline pud_t
pte_pud(pte_t pte
)
354 return __pud(pte_val(pte
));
357 static inline pmd_t
pud_pmd(pud_t pud
)
359 return __pmd(pud_val(pud
));
362 static inline pte_t
pmd_pte(pmd_t pmd
)
364 return __pte(pmd_val(pmd
));
367 static inline pmd_t
pte_pmd(pte_t pte
)
369 return __pmd(pte_val(pte
));
372 static inline pgprot_t
mk_pud_sect_prot(pgprot_t prot
)
374 return __pgprot((pgprot_val(prot
) & ~PUD_TABLE_BIT
) | PUD_TYPE_SECT
);
377 static inline pgprot_t
mk_pmd_sect_prot(pgprot_t prot
)
379 return __pgprot((pgprot_val(prot
) & ~PMD_TABLE_BIT
) | PMD_TYPE_SECT
);
382 #ifdef CONFIG_NUMA_BALANCING
384 * See the comment in include/linux/pgtable.h
386 static inline int pte_protnone(pte_t pte
)
388 return (pte_val(pte
) & (PTE_VALID
| PTE_PROT_NONE
)) == PTE_PROT_NONE
;
391 static inline int pmd_protnone(pmd_t pmd
)
393 return pte_protnone(pmd_pte(pmd
));
397 #define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
399 static inline int pmd_present(pmd_t pmd
)
401 return pte_present(pmd_pte(pmd
)) || pmd_present_invalid(pmd
);
408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 static inline int pmd_trans_huge(pmd_t pmd
)
411 return pmd_val(pmd
) && pmd_present(pmd
) && !(pmd_val(pmd
) & PMD_TABLE_BIT
);
413 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
415 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
416 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
417 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
418 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
419 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
420 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
421 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
422 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
423 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
424 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
426 static inline pmd_t
pmd_mkinvalid(pmd_t pmd
)
428 pmd
= set_pmd_bit(pmd
, __pgprot(PMD_PRESENT_INVALID
));
429 pmd
= clear_pmd_bit(pmd
, __pgprot(PMD_SECT_VALID
));
434 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
436 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
438 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
440 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
441 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
443 static inline pmd_t
pmd_mkdevmap(pmd_t pmd
)
445 return pte_pmd(set_pte_bit(pmd_pte(pmd
), __pgprot(PTE_DEVMAP
)));
448 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
449 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
450 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
451 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
452 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
454 #define pud_young(pud) pte_young(pud_pte(pud))
455 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
456 #define pud_write(pud) pte_write(pud_pte(pud))
458 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
460 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
461 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
462 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
463 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
465 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
466 #define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud))
468 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
469 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
471 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
472 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
474 #define __pgprot_modify(prot,mask,bits) \
475 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
477 #define pgprot_nx(prot) \
478 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
481 * Mark the prot value as uncacheable and unbufferable.
483 #define pgprot_noncached(prot) \
484 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
485 #define pgprot_writecombine(prot) \
486 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
487 #define pgprot_device(prot) \
488 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
490 * DMA allocations for non-coherent devices use what the Arm architecture calls
491 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
492 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
493 * is intended for MMIO and thus forbids speculation, preserves access size,
494 * requires strict alignment and can also force write responses to come from the
497 #define pgprot_dmacoherent(prot) \
498 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
499 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
501 #define __HAVE_PHYS_MEM_ACCESS_PROT
503 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
504 unsigned long size
, pgprot_t vma_prot
);
506 #define pmd_none(pmd) (!pmd_val(pmd))
508 #define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
510 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
512 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
514 #define pmd_leaf(pmd) pmd_sect(pmd)
516 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
517 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
519 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
520 static inline bool pud_sect(pud_t pud
) { return false; }
521 static inline bool pud_table(pud_t pud
) { return true; }
523 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
525 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
529 extern pgd_t init_pg_dir
[PTRS_PER_PGD
];
530 extern pgd_t init_pg_end
[];
531 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
532 extern pgd_t idmap_pg_dir
[PTRS_PER_PGD
];
533 extern pgd_t idmap_pg_end
[];
534 extern pgd_t tramp_pg_dir
[PTRS_PER_PGD
];
535 extern pgd_t reserved_pg_dir
[PTRS_PER_PGD
];
537 extern void set_swapper_pgd(pgd_t
*pgdp
, pgd_t pgd
);
539 static inline bool in_swapper_pgdir(void *addr
)
541 return ((unsigned long)addr
& PAGE_MASK
) ==
542 ((unsigned long)swapper_pg_dir
& PAGE_MASK
);
545 static inline void set_pmd(pmd_t
*pmdp
, pmd_t pmd
)
547 #ifdef __PAGETABLE_PMD_FOLDED
548 if (in_swapper_pgdir(pmdp
)) {
549 set_swapper_pgd((pgd_t
*)pmdp
, __pgd(pmd_val(pmd
)));
552 #endif /* __PAGETABLE_PMD_FOLDED */
554 WRITE_ONCE(*pmdp
, pmd
);
556 if (pmd_valid(pmd
)) {
562 static inline void pmd_clear(pmd_t
*pmdp
)
564 set_pmd(pmdp
, __pmd(0));
567 static inline phys_addr_t
pmd_page_paddr(pmd_t pmd
)
569 return __pmd_to_phys(pmd
);
572 static inline unsigned long pmd_page_vaddr(pmd_t pmd
)
574 return (unsigned long)__va(pmd_page_paddr(pmd
));
577 /* Find an entry in the third-level page table. */
578 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
580 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
581 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
582 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
584 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
586 /* use ONLY for statically allocated translation tables */
587 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
590 * Conversion functions: convert a page and protection to a page entry,
591 * and a page entry and page directory to the page they refer to.
593 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
595 #if CONFIG_PGTABLE_LEVELS > 2
597 #define pmd_ERROR(e) \
598 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
600 #define pud_none(pud) (!pud_val(pud))
601 #define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
602 #define pud_present(pud) pte_present(pud_pte(pud))
603 #define pud_leaf(pud) pud_sect(pud)
604 #define pud_valid(pud) pte_valid(pud_pte(pud))
606 static inline void set_pud(pud_t
*pudp
, pud_t pud
)
608 #ifdef __PAGETABLE_PUD_FOLDED
609 if (in_swapper_pgdir(pudp
)) {
610 set_swapper_pgd((pgd_t
*)pudp
, __pgd(pud_val(pud
)));
613 #endif /* __PAGETABLE_PUD_FOLDED */
615 WRITE_ONCE(*pudp
, pud
);
617 if (pud_valid(pud
)) {
623 static inline void pud_clear(pud_t
*pudp
)
625 set_pud(pudp
, __pud(0));
628 static inline phys_addr_t
pud_page_paddr(pud_t pud
)
630 return __pud_to_phys(pud
);
633 static inline unsigned long pud_page_vaddr(pud_t pud
)
635 return (unsigned long)__va(pud_page_paddr(pud
));
638 /* Find an entry in the second-level page table. */
639 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
641 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
642 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
643 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
645 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
647 /* use ONLY for statically allocated translation tables */
648 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
652 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
654 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
655 #define pmd_set_fixmap(addr) NULL
656 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
657 #define pmd_clear_fixmap()
659 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
661 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
663 #if CONFIG_PGTABLE_LEVELS > 3
665 #define pud_ERROR(e) \
666 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
668 #define p4d_none(p4d) (!p4d_val(p4d))
669 #define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
670 #define p4d_present(p4d) (p4d_val(p4d))
672 static inline void set_p4d(p4d_t
*p4dp
, p4d_t p4d
)
674 if (in_swapper_pgdir(p4dp
)) {
675 set_swapper_pgd((pgd_t
*)p4dp
, __pgd(p4d_val(p4d
)));
679 WRITE_ONCE(*p4dp
, p4d
);
684 static inline void p4d_clear(p4d_t
*p4dp
)
686 set_p4d(p4dp
, __p4d(0));
689 static inline phys_addr_t
p4d_page_paddr(p4d_t p4d
)
691 return __p4d_to_phys(p4d
);
694 static inline unsigned long p4d_page_vaddr(p4d_t p4d
)
696 return (unsigned long)__va(p4d_page_paddr(p4d
));
699 /* Find an entry in the frst-level page table. */
700 #define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
702 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
703 #define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
704 #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
706 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
708 /* use ONLY for statically allocated translation tables */
709 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
713 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
714 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
716 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
717 #define pud_set_fixmap(addr) NULL
718 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
719 #define pud_clear_fixmap()
721 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
723 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
725 #define pgd_ERROR(e) \
726 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
728 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
729 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
731 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
734 * Normal and Normal-Tagged are two different memory types and indices
735 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
737 const pteval_t mask
= PTE_USER
| PTE_PXN
| PTE_UXN
| PTE_RDONLY
|
738 PTE_PROT_NONE
| PTE_VALID
| PTE_WRITE
| PTE_GP
|
740 /* preserve the hardware dirty information */
741 if (pte_hw_dirty(pte
))
742 pte
= pte_mkdirty(pte
);
743 pte_val(pte
) = (pte_val(pte
) & ~mask
) | (pgprot_val(newprot
) & mask
);
747 static inline pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
749 return pte_pmd(pte_modify(pmd_pte(pmd
), newprot
));
752 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
753 extern int ptep_set_access_flags(struct vm_area_struct
*vma
,
754 unsigned long address
, pte_t
*ptep
,
755 pte_t entry
, int dirty
);
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
759 static inline int pmdp_set_access_flags(struct vm_area_struct
*vma
,
760 unsigned long address
, pmd_t
*pmdp
,
761 pmd_t entry
, int dirty
)
763 return ptep_set_access_flags(vma
, address
, (pte_t
*)pmdp
, pmd_pte(entry
), dirty
);
766 static inline int pud_devmap(pud_t pud
)
771 static inline int pgd_devmap(pgd_t pgd
)
778 * Atomic pte/pmd modifications.
780 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
781 static inline int __ptep_test_and_clear_young(pte_t
*ptep
)
785 pte
= READ_ONCE(*ptep
);
788 pte
= pte_mkold(pte
);
789 pte_val(pte
) = cmpxchg_relaxed(&pte_val(*ptep
),
790 pte_val(old_pte
), pte_val(pte
));
791 } while (pte_val(pte
) != pte_val(old_pte
));
793 return pte_young(pte
);
796 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
797 unsigned long address
,
800 return __ptep_test_and_clear_young(ptep
);
803 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
804 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
805 unsigned long address
, pte_t
*ptep
)
807 int young
= ptep_test_and_clear_young(vma
, address
, ptep
);
811 * We can elide the trailing DSB here since the worst that can
812 * happen is that a CPU continues to use the young entry in its
813 * TLB and we mistakenly reclaim the associated page. The
814 * window for such an event is bounded by the next
815 * context-switch, which provides a DSB to complete the TLB
818 flush_tlb_page_nosync(vma
, address
);
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
825 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
826 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
827 unsigned long address
,
830 return ptep_test_and_clear_young(vma
, address
, (pte_t
*)pmdp
);
832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
834 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
835 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
836 unsigned long address
, pte_t
*ptep
)
838 return __pte(xchg_relaxed(&pte_val(*ptep
), 0));
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
843 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
844 unsigned long address
, pmd_t
*pmdp
)
846 return pte_pmd(ptep_get_and_clear(mm
, address
, (pte_t
*)pmdp
));
848 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
851 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
852 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
854 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
855 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
859 pte
= READ_ONCE(*ptep
);
862 pte
= pte_wrprotect(pte
);
863 pte_val(pte
) = cmpxchg_relaxed(&pte_val(*ptep
),
864 pte_val(old_pte
), pte_val(pte
));
865 } while (pte_val(pte
) != pte_val(old_pte
));
868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
869 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
870 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
871 unsigned long address
, pmd_t
*pmdp
)
873 ptep_set_wrprotect(mm
, address
, (pte_t
*)pmdp
);
876 #define pmdp_establish pmdp_establish
877 static inline pmd_t
pmdp_establish(struct vm_area_struct
*vma
,
878 unsigned long address
, pmd_t
*pmdp
, pmd_t pmd
)
880 return __pmd(xchg_relaxed(&pmd_val(*pmdp
), pmd_val(pmd
)));
885 * Encode and decode a swap entry:
886 * bits 0-1: present (must be zero)
887 * bits 2-7: swap type
888 * bits 8-57: swap offset
889 * bit 58: PTE_PROT_NONE (must be zero)
891 #define __SWP_TYPE_SHIFT 2
892 #define __SWP_TYPE_BITS 6
893 #define __SWP_OFFSET_BITS 50
894 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
895 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
896 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
898 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
899 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
900 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
902 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
903 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
905 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
906 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
907 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
908 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
911 * Ensure that there are not more swap files than can be encoded in the kernel
914 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
916 extern int kern_addr_valid(unsigned long addr
);
918 #ifdef CONFIG_ARM64_MTE
920 #define __HAVE_ARCH_PREPARE_TO_SWAP
921 static inline int arch_prepare_to_swap(struct page
*page
)
923 if (system_supports_mte())
924 return mte_save_tags(page
);
928 #define __HAVE_ARCH_SWAP_INVALIDATE
929 static inline void arch_swap_invalidate_page(int type
, pgoff_t offset
)
931 if (system_supports_mte())
932 mte_invalidate_tags(type
, offset
);
935 static inline void arch_swap_invalidate_area(int type
)
937 if (system_supports_mte())
938 mte_invalidate_tags_area(type
);
941 #define __HAVE_ARCH_SWAP_RESTORE
942 static inline void arch_swap_restore(swp_entry_t entry
, struct page
*page
)
944 if (system_supports_mte() && mte_restore_tags(entry
, page
))
945 set_bit(PG_mte_tagged
, &page
->flags
);
948 #endif /* CONFIG_ARM64_MTE */
951 * On AArch64, the cache coherency is handled via the set_pte_at() function.
953 static inline void update_mmu_cache(struct vm_area_struct
*vma
,
954 unsigned long addr
, pte_t
*ptep
)
957 * We don't do anything here, so there's a very small chance of
958 * us retaking a user fault which we just fixed up. The alternative
959 * is doing a dsb(ishst), but that penalises the fastpath.
963 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
965 #ifdef CONFIG_ARM64_PA_BITS_52
966 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
968 #define phys_to_ttbr(addr) (addr)
972 * On arm64 without hardware Access Flag, copying from user will fail because
973 * the pte is old and cannot be marked young. So we always end up with zeroed
974 * page after fork() + CoW for pfn mappings. We don't always have a
975 * hardware-managed access flag on arm64.
977 static inline bool arch_faults_on_old_pte(void)
979 WARN_ON(preemptible());
981 return !cpu_has_hw_af();
983 #define arch_faults_on_old_pte arch_faults_on_old_pte
985 #endif /* !__ASSEMBLY__ */
987 #endif /* __ASM_PGTABLE_H */