WIP FPC-III support
[linux/fpc-iii.git] / arch / arm64 / kernel / module-plts.c
blob2e224435c0249ac28c5eb63f8577250a3ff89f40
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
6 #include <linux/elf.h>
7 #include <linux/ftrace.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/sort.h>
12 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
13 enum aarch64_insn_register reg)
15 u32 adrp, add;
17 adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
18 add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
19 AARCH64_INSN_VARIANT_64BIT,
20 AARCH64_INSN_ADSB_ADD);
22 return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
25 struct plt_entry get_plt_entry(u64 dst, void *pc)
27 struct plt_entry plt;
28 static u32 br;
30 if (!br)
31 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
32 AARCH64_INSN_BRANCH_NOLINK);
34 plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
35 plt.br = cpu_to_le32(br);
37 return plt;
40 bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
42 u64 p, q;
45 * Check whether both entries refer to the same target:
46 * do the cheapest checks first.
47 * If the 'add' or 'br' opcodes are different, then the target
48 * cannot be the same.
50 if (a->add != b->add || a->br != b->br)
51 return false;
53 p = ALIGN_DOWN((u64)a, SZ_4K);
54 q = ALIGN_DOWN((u64)b, SZ_4K);
57 * If the 'adrp' opcodes are the same then we just need to check
58 * that they refer to the same 4k region.
60 if (a->adrp == b->adrp && p == q)
61 return true;
63 return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
64 (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
67 static bool in_init(const struct module *mod, void *loc)
69 return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
72 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
73 void *loc, const Elf64_Rela *rela,
74 Elf64_Sym *sym)
76 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
77 &mod->arch.init;
78 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
79 int i = pltsec->plt_num_entries;
80 int j = i - 1;
81 u64 val = sym->st_value + rela->r_addend;
83 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
84 i++;
86 plt[i] = get_plt_entry(val, &plt[i]);
89 * Check if the entry we just created is a duplicate. Given that the
90 * relocations are sorted, this will be the last entry we allocated.
91 * (if one exists).
93 if (j >= 0 && plt_entries_equal(plt + i, plt + j))
94 return (u64)&plt[j];
96 pltsec->plt_num_entries += i - j;
97 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
98 return 0;
100 return (u64)&plt[i];
103 #ifdef CONFIG_ARM64_ERRATUM_843419
104 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
105 void *loc, u64 val)
107 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
108 &mod->arch.init;
109 struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
110 int i = pltsec->plt_num_entries++;
111 u32 br;
112 int rd;
114 if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
115 return 0;
117 if (is_forbidden_offset_for_adrp(&plt[i].adrp))
118 i = pltsec->plt_num_entries++;
120 /* get the destination register of the ADRP instruction */
121 rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
122 le32_to_cpup((__le32 *)loc));
124 br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
125 AARCH64_INSN_BRANCH_NOLINK);
127 plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
128 plt[i].br = cpu_to_le32(br);
130 return (u64)&plt[i];
132 #endif
134 #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
136 static int cmp_rela(const void *a, const void *b)
138 const Elf64_Rela *x = a, *y = b;
139 int i;
141 /* sort by type, symbol index and addend */
142 i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
143 if (i == 0)
144 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
145 if (i == 0)
146 i = cmp_3way(x->r_addend, y->r_addend);
147 return i;
150 static bool duplicate_rel(const Elf64_Rela *rela, int num)
153 * Entries are sorted by type, symbol index and addend. That means
154 * that, if a duplicate entry exists, it must be in the preceding
155 * slot.
157 return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
160 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
161 Elf64_Word dstidx, Elf_Shdr *dstsec)
163 unsigned int ret = 0;
164 Elf64_Sym *s;
165 int i;
167 for (i = 0; i < num; i++) {
168 u64 min_align;
170 switch (ELF64_R_TYPE(rela[i].r_info)) {
171 case R_AARCH64_JUMP26:
172 case R_AARCH64_CALL26:
173 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
174 break;
177 * We only have to consider branch targets that resolve
178 * to symbols that are defined in a different section.
179 * This is not simply a heuristic, it is a fundamental
180 * limitation, since there is no guaranteed way to emit
181 * PLT entries sufficiently close to the branch if the
182 * section size exceeds the range of a branch
183 * instruction. So ignore relocations against defined
184 * symbols if they live in the same section as the
185 * relocation target.
187 s = syms + ELF64_R_SYM(rela[i].r_info);
188 if (s->st_shndx == dstidx)
189 break;
192 * Jump relocations with non-zero addends against
193 * undefined symbols are supported by the ELF spec, but
194 * do not occur in practice (e.g., 'jump n bytes past
195 * the entry point of undefined function symbol f').
196 * So we need to support them, but there is no need to
197 * take them into consideration when trying to optimize
198 * this code. So let's only check for duplicates when
199 * the addend is zero: this allows us to record the PLT
200 * entry address in the symbol table itself, rather than
201 * having to search the list for duplicates each time we
202 * emit one.
204 if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
205 ret++;
206 break;
207 case R_AARCH64_ADR_PREL_PG_HI21_NC:
208 case R_AARCH64_ADR_PREL_PG_HI21:
209 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
210 !cpus_have_const_cap(ARM64_WORKAROUND_843419))
211 break;
214 * Determine the minimal safe alignment for this ADRP
215 * instruction: the section alignment at which it is
216 * guaranteed not to appear at a vulnerable offset.
218 * This comes down to finding the least significant zero
219 * bit in bits [11:3] of the section offset, and
220 * increasing the section's alignment so that the
221 * resulting address of this instruction is guaranteed
222 * to equal the offset in that particular bit (as well
223 * as all less signficant bits). This ensures that the
224 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
225 * have all ones in bits [11:3])
227 min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
230 * Allocate veneer space for each ADRP that may appear
231 * at a vulnerable offset nonetheless. At relocation
232 * time, some of these will remain unused since some
233 * ADRP instructions can be patched to ADR instructions
234 * instead.
236 if (min_align > SZ_4K)
237 ret++;
238 else
239 dstsec->sh_addralign = max(dstsec->sh_addralign,
240 min_align);
241 break;
245 if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
246 cpus_have_const_cap(ARM64_WORKAROUND_843419))
248 * Add some slack so we can skip PLT slots that may trigger
249 * the erratum due to the placement of the ADRP instruction.
251 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
253 return ret;
256 static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
257 Elf64_Word dstidx)
260 Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
262 if (s->st_shndx == dstidx)
263 return false;
265 return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
266 ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
269 /* Group branch PLT relas at the front end of the array. */
270 static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
271 int numrels, Elf64_Word dstidx)
273 int i = 0, j = numrels - 1;
275 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
276 return 0;
278 while (i < j) {
279 if (branch_rela_needs_plt(syms, &rela[i], dstidx))
280 i++;
281 else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
282 swap(rela[i], rela[j]);
283 else
284 j--;
287 return i;
290 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
291 char *secstrings, struct module *mod)
293 unsigned long core_plts = 0;
294 unsigned long init_plts = 0;
295 Elf64_Sym *syms = NULL;
296 Elf_Shdr *pltsec, *tramp = NULL;
297 int i;
300 * Find the empty .plt section so we can expand it to store the PLT
301 * entries. Record the symtab address as well.
303 for (i = 0; i < ehdr->e_shnum; i++) {
304 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
305 mod->arch.core.plt_shndx = i;
306 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
307 mod->arch.init.plt_shndx = i;
308 else if (!strcmp(secstrings + sechdrs[i].sh_name,
309 ".text.ftrace_trampoline"))
310 tramp = sechdrs + i;
311 else if (sechdrs[i].sh_type == SHT_SYMTAB)
312 syms = (Elf64_Sym *)sechdrs[i].sh_addr;
315 if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
316 pr_err("%s: module PLT section(s) missing\n", mod->name);
317 return -ENOEXEC;
319 if (!syms) {
320 pr_err("%s: module symtab section missing\n", mod->name);
321 return -ENOEXEC;
324 for (i = 0; i < ehdr->e_shnum; i++) {
325 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
326 int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
327 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
329 if (sechdrs[i].sh_type != SHT_RELA)
330 continue;
332 /* ignore relocations that operate on non-exec sections */
333 if (!(dstsec->sh_flags & SHF_EXECINSTR))
334 continue;
337 * sort branch relocations requiring a PLT by type, symbol index
338 * and addend
340 nents = partition_branch_plt_relas(syms, rels, numrels,
341 sechdrs[i].sh_info);
342 if (nents)
343 sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
345 if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
346 core_plts += count_plts(syms, rels, numrels,
347 sechdrs[i].sh_info, dstsec);
348 else
349 init_plts += count_plts(syms, rels, numrels,
350 sechdrs[i].sh_info, dstsec);
353 pltsec = sechdrs + mod->arch.core.plt_shndx;
354 pltsec->sh_type = SHT_NOBITS;
355 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
356 pltsec->sh_addralign = L1_CACHE_BYTES;
357 pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
358 mod->arch.core.plt_num_entries = 0;
359 mod->arch.core.plt_max_entries = core_plts;
361 pltsec = sechdrs + mod->arch.init.plt_shndx;
362 pltsec->sh_type = SHT_NOBITS;
363 pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
364 pltsec->sh_addralign = L1_CACHE_BYTES;
365 pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
366 mod->arch.init.plt_num_entries = 0;
367 mod->arch.init.plt_max_entries = init_plts;
369 if (tramp) {
370 tramp->sh_type = SHT_NOBITS;
371 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
372 tramp->sh_addralign = __alignof__(struct plt_entry);
373 tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
376 return 0;