WIP FPC-III support
[linux/fpc-iii.git] / arch / arm64 / kernel / process.c
blob6616486a58fe0bd62a05bae78268e5cd54a1a26e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
10 #include <stdarg.h>
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
35 #include <linux/pm.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
53 #include <asm/exec.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
56 #include <asm/mte.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __read_mostly;
64 EXPORT_SYMBOL(__stack_chk_guard);
65 #endif
68 * Function pointers to optional machine specific functions
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off);
73 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
75 static void noinstr __cpu_do_idle(void)
77 dsb(sy);
78 wfi();
81 static void noinstr __cpu_do_idle_irqprio(void)
83 unsigned long pmr;
84 unsigned long daif_bits;
86 daif_bits = read_sysreg(daif);
87 write_sysreg(daif_bits | PSR_I_BIT, daif);
90 * Unmask PMR before going idle to make sure interrupts can
91 * be raised.
93 pmr = gic_read_pmr();
94 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
96 __cpu_do_idle();
98 gic_write_pmr(pmr);
99 write_sysreg(daif_bits, daif);
103 * cpu_do_idle()
105 * Idle the processor (wait for interrupt).
107 * If the CPU supports priority masking we must do additional work to
108 * ensure that interrupts are not masked at the PMR (because the core will
109 * not wake up if we block the wake up signal in the interrupt controller).
111 void noinstr cpu_do_idle(void)
113 if (system_uses_irq_prio_masking())
114 __cpu_do_idle_irqprio();
115 else
116 __cpu_do_idle();
120 * This is our default idle handler.
122 void noinstr arch_cpu_idle(void)
125 * This should do all the clock switching and wait for interrupt
126 * tricks
128 cpu_do_idle();
129 raw_local_irq_enable();
132 #ifdef CONFIG_HOTPLUG_CPU
133 void arch_cpu_idle_dead(void)
135 cpu_die();
137 #endif
140 * Called by kexec, immediately prior to machine_kexec().
142 * This must completely disable all secondary CPUs; simply causing those CPUs
143 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
144 * kexec'd kernel to use any and all RAM as it sees fit, without having to
145 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
146 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
148 void machine_shutdown(void)
150 smp_shutdown_nonboot_cpus(reboot_cpu);
154 * Halting simply requires that the secondary CPUs stop performing any
155 * activity (executing tasks, handling interrupts). smp_send_stop()
156 * achieves this.
158 void machine_halt(void)
160 local_irq_disable();
161 smp_send_stop();
162 while (1);
166 * Power-off simply requires that the secondary CPUs stop performing any
167 * activity (executing tasks, handling interrupts). smp_send_stop()
168 * achieves this. When the system power is turned off, it will take all CPUs
169 * with it.
171 void machine_power_off(void)
173 local_irq_disable();
174 smp_send_stop();
175 if (pm_power_off)
176 pm_power_off();
180 * Restart requires that the secondary CPUs stop performing any activity
181 * while the primary CPU resets the system. Systems with multiple CPUs must
182 * provide a HW restart implementation, to ensure that all CPUs reset at once.
183 * This is required so that any code running after reset on the primary CPU
184 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
185 * executing pre-reset code, and using RAM that the primary CPU's code wishes
186 * to use. Implementing such co-ordination would be essentially impossible.
188 void machine_restart(char *cmd)
190 /* Disable interrupts first */
191 local_irq_disable();
192 smp_send_stop();
195 * UpdateCapsule() depends on the system being reset via
196 * ResetSystem().
198 if (efi_enabled(EFI_RUNTIME_SERVICES))
199 efi_reboot(reboot_mode, NULL);
201 /* Now call the architecture specific reboot code. */
202 if (arm_pm_restart)
203 arm_pm_restart(reboot_mode, cmd);
204 else
205 do_kernel_restart(cmd);
208 * Whoops - the architecture was unable to reboot.
210 printk("Reboot failed -- System halted\n");
211 while (1);
214 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
215 static const char *const btypes[] = {
216 bstr(NONE, "--"),
217 bstr( JC, "jc"),
218 bstr( C, "-c"),
219 bstr( J , "j-")
221 #undef bstr
223 static void print_pstate(struct pt_regs *regs)
225 u64 pstate = regs->pstate;
227 if (compat_user_mode(regs)) {
228 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
229 pstate,
230 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
231 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
232 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
233 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
234 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
235 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
236 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
237 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
238 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
239 pstate & PSR_AA32_F_BIT ? 'F' : 'f');
240 } else {
241 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
242 PSR_BTYPE_SHIFT];
244 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
245 pstate,
246 pstate & PSR_N_BIT ? 'N' : 'n',
247 pstate & PSR_Z_BIT ? 'Z' : 'z',
248 pstate & PSR_C_BIT ? 'C' : 'c',
249 pstate & PSR_V_BIT ? 'V' : 'v',
250 pstate & PSR_D_BIT ? 'D' : 'd',
251 pstate & PSR_A_BIT ? 'A' : 'a',
252 pstate & PSR_I_BIT ? 'I' : 'i',
253 pstate & PSR_F_BIT ? 'F' : 'f',
254 pstate & PSR_PAN_BIT ? '+' : '-',
255 pstate & PSR_UAO_BIT ? '+' : '-',
256 pstate & PSR_TCO_BIT ? '+' : '-',
257 btype_str);
261 void __show_regs(struct pt_regs *regs)
263 int i, top_reg;
264 u64 lr, sp;
266 if (compat_user_mode(regs)) {
267 lr = regs->compat_lr;
268 sp = regs->compat_sp;
269 top_reg = 12;
270 } else {
271 lr = regs->regs[30];
272 sp = regs->sp;
273 top_reg = 29;
276 show_regs_print_info(KERN_DEFAULT);
277 print_pstate(regs);
279 if (!user_mode(regs)) {
280 printk("pc : %pS\n", (void *)regs->pc);
281 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
282 } else {
283 printk("pc : %016llx\n", regs->pc);
284 printk("lr : %016llx\n", lr);
287 printk("sp : %016llx\n", sp);
289 if (system_uses_irq_prio_masking())
290 printk("pmr_save: %08llx\n", regs->pmr_save);
292 i = top_reg;
294 while (i >= 0) {
295 printk("x%-2d: %016llx ", i, regs->regs[i]);
296 i--;
298 if (i % 2 == 0) {
299 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
300 i--;
303 pr_cont("\n");
307 void show_regs(struct pt_regs * regs)
309 __show_regs(regs);
310 dump_backtrace(regs, NULL, KERN_DEFAULT);
313 static void tls_thread_flush(void)
315 write_sysreg(0, tpidr_el0);
317 if (is_compat_task()) {
318 current->thread.uw.tp_value = 0;
321 * We need to ensure ordering between the shadow state and the
322 * hardware state, so that we don't corrupt the hardware state
323 * with a stale shadow state during context switch.
325 barrier();
326 write_sysreg(0, tpidrro_el0);
330 static void flush_tagged_addr_state(void)
332 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
333 clear_thread_flag(TIF_TAGGED_ADDR);
336 void flush_thread(void)
338 fpsimd_flush_thread();
339 tls_thread_flush();
340 flush_ptrace_hw_breakpoint(current);
341 flush_tagged_addr_state();
342 flush_mte_state();
345 void release_thread(struct task_struct *dead_task)
349 void arch_release_task_struct(struct task_struct *tsk)
351 fpsimd_release_task(tsk);
354 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
356 if (current->mm)
357 fpsimd_preserve_current_state();
358 *dst = *src;
360 /* We rely on the above assignment to initialize dst's thread_flags: */
361 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
364 * Detach src's sve_state (if any) from dst so that it does not
365 * get erroneously used or freed prematurely. dst's sve_state
366 * will be allocated on demand later on if dst uses SVE.
367 * For consistency, also clear TIF_SVE here: this could be done
368 * later in copy_process(), but to avoid tripping up future
369 * maintainers it is best not to leave TIF_SVE and sve_state in
370 * an inconsistent state, even temporarily.
372 dst->thread.sve_state = NULL;
373 clear_tsk_thread_flag(dst, TIF_SVE);
375 /* clear any pending asynchronous tag fault raised by the parent */
376 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
378 return 0;
381 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
383 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
384 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
386 struct pt_regs *childregs = task_pt_regs(p);
388 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
391 * In case p was allocated the same task_struct pointer as some
392 * other recently-exited task, make sure p is disassociated from
393 * any cpu that may have run that now-exited task recently.
394 * Otherwise we could erroneously skip reloading the FPSIMD
395 * registers for p.
397 fpsimd_flush_task_state(p);
399 ptrauth_thread_init_kernel(p);
401 if (likely(!(p->flags & PF_KTHREAD))) {
402 *childregs = *current_pt_regs();
403 childregs->regs[0] = 0;
406 * Read the current TLS pointer from tpidr_el0 as it may be
407 * out-of-sync with the saved value.
409 *task_user_tls(p) = read_sysreg(tpidr_el0);
411 if (stack_start) {
412 if (is_compat_thread(task_thread_info(p)))
413 childregs->compat_sp = stack_start;
414 else
415 childregs->sp = stack_start;
419 * If a TLS pointer was passed to clone, use it for the new
420 * thread.
422 if (clone_flags & CLONE_SETTLS)
423 p->thread.uw.tp_value = tls;
424 } else {
426 * A kthread has no context to ERET to, so ensure any buggy
427 * ERET is treated as an illegal exception return.
429 * When a user task is created from a kthread, childregs will
430 * be initialized by start_thread() or start_compat_thread().
432 memset(childregs, 0, sizeof(struct pt_regs));
433 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
435 p->thread.cpu_context.x19 = stack_start;
436 p->thread.cpu_context.x20 = stk_sz;
438 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
439 p->thread.cpu_context.sp = (unsigned long)childregs;
441 ptrace_hw_copy_thread(p);
443 return 0;
446 void tls_preserve_current_state(void)
448 *task_user_tls(current) = read_sysreg(tpidr_el0);
451 static void tls_thread_switch(struct task_struct *next)
453 tls_preserve_current_state();
455 if (is_compat_thread(task_thread_info(next)))
456 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
457 else if (!arm64_kernel_unmapped_at_el0())
458 write_sysreg(0, tpidrro_el0);
460 write_sysreg(*task_user_tls(next), tpidr_el0);
464 * Force SSBS state on context-switch, since it may be lost after migrating
465 * from a CPU which treats the bit as RES0 in a heterogeneous system.
467 static void ssbs_thread_switch(struct task_struct *next)
470 * Nothing to do for kernel threads, but 'regs' may be junk
471 * (e.g. idle task) so check the flags and bail early.
473 if (unlikely(next->flags & PF_KTHREAD))
474 return;
477 * If all CPUs implement the SSBS extension, then we just need to
478 * context-switch the PSTATE field.
480 if (cpus_have_const_cap(ARM64_SSBS))
481 return;
483 spectre_v4_enable_task_mitigation(next);
487 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
488 * shadow copy so that we can restore this upon entry from userspace.
490 * This is *only* for exception entry from EL0, and is not valid until we
491 * __switch_to() a user task.
493 DEFINE_PER_CPU(struct task_struct *, __entry_task);
495 static void entry_task_switch(struct task_struct *next)
497 __this_cpu_write(__entry_task, next);
501 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
502 * Assuming the virtual counter is enabled at the beginning of times:
504 * - disable access when switching from a 64bit task to a 32bit task
505 * - enable access when switching from a 32bit task to a 64bit task
507 static void erratum_1418040_thread_switch(struct task_struct *prev,
508 struct task_struct *next)
510 bool prev32, next32;
511 u64 val;
513 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
514 return;
516 prev32 = is_compat_thread(task_thread_info(prev));
517 next32 = is_compat_thread(task_thread_info(next));
519 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
520 return;
522 val = read_sysreg(cntkctl_el1);
524 if (!next32)
525 val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
526 else
527 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
529 write_sysreg(val, cntkctl_el1);
533 * Thread switching.
535 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
536 struct task_struct *next)
538 struct task_struct *last;
540 fpsimd_thread_switch(next);
541 tls_thread_switch(next);
542 hw_breakpoint_thread_switch(next);
543 contextidr_thread_switch(next);
544 entry_task_switch(next);
545 ssbs_thread_switch(next);
546 erratum_1418040_thread_switch(prev, next);
549 * Complete any pending TLB or cache maintenance on this CPU in case
550 * the thread migrates to a different CPU.
551 * This full barrier is also required by the membarrier system
552 * call.
554 dsb(ish);
557 * MTE thread switching must happen after the DSB above to ensure that
558 * any asynchronous tag check faults have been logged in the TFSR*_EL1
559 * registers.
561 mte_thread_switch(next);
563 /* the actual thread switch */
564 last = cpu_switch_to(prev, next);
566 return last;
569 unsigned long get_wchan(struct task_struct *p)
571 struct stackframe frame;
572 unsigned long stack_page, ret = 0;
573 int count = 0;
574 if (!p || p == current || p->state == TASK_RUNNING)
575 return 0;
577 stack_page = (unsigned long)try_get_task_stack(p);
578 if (!stack_page)
579 return 0;
581 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
583 do {
584 if (unwind_frame(p, &frame))
585 goto out;
586 if (!in_sched_functions(frame.pc)) {
587 ret = frame.pc;
588 goto out;
590 } while (count ++ < 16);
592 out:
593 put_task_stack(p);
594 return ret;
597 unsigned long arch_align_stack(unsigned long sp)
599 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
600 sp -= get_random_int() & ~PAGE_MASK;
601 return sp & ~0xf;
605 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
607 void arch_setup_new_exec(void)
609 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
611 ptrauth_thread_init_user(current);
613 if (task_spec_ssb_noexec(current)) {
614 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
615 PR_SPEC_ENABLE);
619 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
621 * Control the relaxed ABI allowing tagged user addresses into the kernel.
623 static unsigned int tagged_addr_disabled;
625 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
627 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
628 struct thread_info *ti = task_thread_info(task);
630 if (is_compat_thread(ti))
631 return -EINVAL;
633 if (system_supports_mte())
634 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
636 if (arg & ~valid_mask)
637 return -EINVAL;
640 * Do not allow the enabling of the tagged address ABI if globally
641 * disabled via sysctl abi.tagged_addr_disabled.
643 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
644 return -EINVAL;
646 if (set_mte_ctrl(task, arg) != 0)
647 return -EINVAL;
649 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
651 return 0;
654 long get_tagged_addr_ctrl(struct task_struct *task)
656 long ret = 0;
657 struct thread_info *ti = task_thread_info(task);
659 if (is_compat_thread(ti))
660 return -EINVAL;
662 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
663 ret = PR_TAGGED_ADDR_ENABLE;
665 ret |= get_mte_ctrl(task);
667 return ret;
671 * Global sysctl to disable the tagged user addresses support. This control
672 * only prevents the tagged address ABI enabling via prctl() and does not
673 * disable it for tasks that already opted in to the relaxed ABI.
676 static struct ctl_table tagged_addr_sysctl_table[] = {
678 .procname = "tagged_addr_disabled",
679 .mode = 0644,
680 .data = &tagged_addr_disabled,
681 .maxlen = sizeof(int),
682 .proc_handler = proc_dointvec_minmax,
683 .extra1 = SYSCTL_ZERO,
684 .extra2 = SYSCTL_ONE,
689 static int __init tagged_addr_init(void)
691 if (!register_sysctl("abi", tagged_addr_sysctl_table))
692 return -EINVAL;
693 return 0;
696 core_initcall(tagged_addr_init);
697 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
699 asmlinkage void __sched arm64_preempt_schedule_irq(void)
701 lockdep_assert_irqs_disabled();
704 * Preempting a task from an IRQ means we leave copies of PSTATE
705 * on the stack. cpufeature's enable calls may modify PSTATE, but
706 * resuming one of these preempted tasks would undo those changes.
708 * Only allow a task to be preempted once cpufeatures have been
709 * enabled.
711 if (system_capabilities_finalized())
712 preempt_schedule_irq();
715 #ifdef CONFIG_BINFMT_ELF
716 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
717 bool has_interp, bool is_interp)
720 * For dynamically linked executables the interpreter is
721 * responsible for setting PROT_BTI on everything except
722 * itself.
724 if (is_interp != has_interp)
725 return prot;
727 if (!(state->flags & ARM64_ELF_BTI))
728 return prot;
730 if (prot & PROT_EXEC)
731 prot |= PROT_BTI;
733 return prot;
735 #endif