1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/kernel/process.c
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
12 #include <linux/compat.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/task.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/kernel.h>
21 #include <linux/lockdep.h>
22 #include <linux/mman.h>
24 #include <linux/nospec.h>
25 #include <linux/stddef.h>
26 #include <linux/sysctl.h>
27 #include <linux/unistd.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/elfcore.h>
36 #include <linux/tick.h>
37 #include <linux/utsname.h>
38 #include <linux/uaccess.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/personality.h>
42 #include <linux/notifier.h>
43 #include <trace/events/power.h>
44 #include <linux/percpu.h>
45 #include <linux/thread_info.h>
46 #include <linux/prctl.h>
48 #include <asm/alternative.h>
49 #include <asm/arch_gicv3.h>
50 #include <asm/compat.h>
51 #include <asm/cpufeature.h>
52 #include <asm/cacheflush.h>
54 #include <asm/fpsimd.h>
55 #include <asm/mmu_context.h>
57 #include <asm/processor.h>
58 #include <asm/pointer_auth.h>
59 #include <asm/stacktrace.h>
61 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
62 #include <linux/stackprotector.h>
63 unsigned long __stack_chk_guard __read_mostly
;
64 EXPORT_SYMBOL(__stack_chk_guard
);
68 * Function pointers to optional machine specific functions
70 void (*pm_power_off
)(void);
71 EXPORT_SYMBOL_GPL(pm_power_off
);
73 void (*arm_pm_restart
)(enum reboot_mode reboot_mode
, const char *cmd
);
75 static void noinstr
__cpu_do_idle(void)
81 static void noinstr
__cpu_do_idle_irqprio(void)
84 unsigned long daif_bits
;
86 daif_bits
= read_sysreg(daif
);
87 write_sysreg(daif_bits
| PSR_I_BIT
, daif
);
90 * Unmask PMR before going idle to make sure interrupts can
94 gic_write_pmr(GIC_PRIO_IRQON
| GIC_PRIO_PSR_I_SET
);
99 write_sysreg(daif_bits
, daif
);
105 * Idle the processor (wait for interrupt).
107 * If the CPU supports priority masking we must do additional work to
108 * ensure that interrupts are not masked at the PMR (because the core will
109 * not wake up if we block the wake up signal in the interrupt controller).
111 void noinstr
cpu_do_idle(void)
113 if (system_uses_irq_prio_masking())
114 __cpu_do_idle_irqprio();
120 * This is our default idle handler.
122 void noinstr
arch_cpu_idle(void)
125 * This should do all the clock switching and wait for interrupt
129 raw_local_irq_enable();
132 #ifdef CONFIG_HOTPLUG_CPU
133 void arch_cpu_idle_dead(void)
140 * Called by kexec, immediately prior to machine_kexec().
142 * This must completely disable all secondary CPUs; simply causing those CPUs
143 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
144 * kexec'd kernel to use any and all RAM as it sees fit, without having to
145 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
146 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
148 void machine_shutdown(void)
150 smp_shutdown_nonboot_cpus(reboot_cpu
);
154 * Halting simply requires that the secondary CPUs stop performing any
155 * activity (executing tasks, handling interrupts). smp_send_stop()
158 void machine_halt(void)
166 * Power-off simply requires that the secondary CPUs stop performing any
167 * activity (executing tasks, handling interrupts). smp_send_stop()
168 * achieves this. When the system power is turned off, it will take all CPUs
171 void machine_power_off(void)
180 * Restart requires that the secondary CPUs stop performing any activity
181 * while the primary CPU resets the system. Systems with multiple CPUs must
182 * provide a HW restart implementation, to ensure that all CPUs reset at once.
183 * This is required so that any code running after reset on the primary CPU
184 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
185 * executing pre-reset code, and using RAM that the primary CPU's code wishes
186 * to use. Implementing such co-ordination would be essentially impossible.
188 void machine_restart(char *cmd
)
190 /* Disable interrupts first */
195 * UpdateCapsule() depends on the system being reset via
198 if (efi_enabled(EFI_RUNTIME_SERVICES
))
199 efi_reboot(reboot_mode
, NULL
);
201 /* Now call the architecture specific reboot code. */
203 arm_pm_restart(reboot_mode
, cmd
);
205 do_kernel_restart(cmd
);
208 * Whoops - the architecture was unable to reboot.
210 printk("Reboot failed -- System halted\n");
214 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
215 static const char *const btypes
[] = {
223 static void print_pstate(struct pt_regs
*regs
)
225 u64 pstate
= regs
->pstate
;
227 if (compat_user_mode(regs
)) {
228 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c)\n",
230 pstate
& PSR_AA32_N_BIT
? 'N' : 'n',
231 pstate
& PSR_AA32_Z_BIT
? 'Z' : 'z',
232 pstate
& PSR_AA32_C_BIT
? 'C' : 'c',
233 pstate
& PSR_AA32_V_BIT
? 'V' : 'v',
234 pstate
& PSR_AA32_Q_BIT
? 'Q' : 'q',
235 pstate
& PSR_AA32_T_BIT
? "T32" : "A32",
236 pstate
& PSR_AA32_E_BIT
? "BE" : "LE",
237 pstate
& PSR_AA32_A_BIT
? 'A' : 'a',
238 pstate
& PSR_AA32_I_BIT
? 'I' : 'i',
239 pstate
& PSR_AA32_F_BIT
? 'F' : 'f');
241 const char *btype_str
= btypes
[(pstate
& PSR_BTYPE_MASK
) >>
244 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO BTYPE=%s)\n",
246 pstate
& PSR_N_BIT
? 'N' : 'n',
247 pstate
& PSR_Z_BIT
? 'Z' : 'z',
248 pstate
& PSR_C_BIT
? 'C' : 'c',
249 pstate
& PSR_V_BIT
? 'V' : 'v',
250 pstate
& PSR_D_BIT
? 'D' : 'd',
251 pstate
& PSR_A_BIT
? 'A' : 'a',
252 pstate
& PSR_I_BIT
? 'I' : 'i',
253 pstate
& PSR_F_BIT
? 'F' : 'f',
254 pstate
& PSR_PAN_BIT
? '+' : '-',
255 pstate
& PSR_UAO_BIT
? '+' : '-',
256 pstate
& PSR_TCO_BIT
? '+' : '-',
261 void __show_regs(struct pt_regs
*regs
)
266 if (compat_user_mode(regs
)) {
267 lr
= regs
->compat_lr
;
268 sp
= regs
->compat_sp
;
276 show_regs_print_info(KERN_DEFAULT
);
279 if (!user_mode(regs
)) {
280 printk("pc : %pS\n", (void *)regs
->pc
);
281 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr
));
283 printk("pc : %016llx\n", regs
->pc
);
284 printk("lr : %016llx\n", lr
);
287 printk("sp : %016llx\n", sp
);
289 if (system_uses_irq_prio_masking())
290 printk("pmr_save: %08llx\n", regs
->pmr_save
);
295 printk("x%-2d: %016llx ", i
, regs
->regs
[i
]);
299 pr_cont("x%-2d: %016llx ", i
, regs
->regs
[i
]);
307 void show_regs(struct pt_regs
* regs
)
310 dump_backtrace(regs
, NULL
, KERN_DEFAULT
);
313 static void tls_thread_flush(void)
315 write_sysreg(0, tpidr_el0
);
317 if (is_compat_task()) {
318 current
->thread
.uw
.tp_value
= 0;
321 * We need to ensure ordering between the shadow state and the
322 * hardware state, so that we don't corrupt the hardware state
323 * with a stale shadow state during context switch.
326 write_sysreg(0, tpidrro_el0
);
330 static void flush_tagged_addr_state(void)
332 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI
))
333 clear_thread_flag(TIF_TAGGED_ADDR
);
336 void flush_thread(void)
338 fpsimd_flush_thread();
340 flush_ptrace_hw_breakpoint(current
);
341 flush_tagged_addr_state();
345 void release_thread(struct task_struct
*dead_task
)
349 void arch_release_task_struct(struct task_struct
*tsk
)
351 fpsimd_release_task(tsk
);
354 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
357 fpsimd_preserve_current_state();
360 /* We rely on the above assignment to initialize dst's thread_flags: */
361 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK
));
364 * Detach src's sve_state (if any) from dst so that it does not
365 * get erroneously used or freed prematurely. dst's sve_state
366 * will be allocated on demand later on if dst uses SVE.
367 * For consistency, also clear TIF_SVE here: this could be done
368 * later in copy_process(), but to avoid tripping up future
369 * maintainers it is best not to leave TIF_SVE and sve_state in
370 * an inconsistent state, even temporarily.
372 dst
->thread
.sve_state
= NULL
;
373 clear_tsk_thread_flag(dst
, TIF_SVE
);
375 /* clear any pending asynchronous tag fault raised by the parent */
376 clear_tsk_thread_flag(dst
, TIF_MTE_ASYNC_FAULT
);
381 asmlinkage
void ret_from_fork(void) asm("ret_from_fork");
383 int copy_thread(unsigned long clone_flags
, unsigned long stack_start
,
384 unsigned long stk_sz
, struct task_struct
*p
, unsigned long tls
)
386 struct pt_regs
*childregs
= task_pt_regs(p
);
388 memset(&p
->thread
.cpu_context
, 0, sizeof(struct cpu_context
));
391 * In case p was allocated the same task_struct pointer as some
392 * other recently-exited task, make sure p is disassociated from
393 * any cpu that may have run that now-exited task recently.
394 * Otherwise we could erroneously skip reloading the FPSIMD
397 fpsimd_flush_task_state(p
);
399 ptrauth_thread_init_kernel(p
);
401 if (likely(!(p
->flags
& PF_KTHREAD
))) {
402 *childregs
= *current_pt_regs();
403 childregs
->regs
[0] = 0;
406 * Read the current TLS pointer from tpidr_el0 as it may be
407 * out-of-sync with the saved value.
409 *task_user_tls(p
) = read_sysreg(tpidr_el0
);
412 if (is_compat_thread(task_thread_info(p
)))
413 childregs
->compat_sp
= stack_start
;
415 childregs
->sp
= stack_start
;
419 * If a TLS pointer was passed to clone, use it for the new
422 if (clone_flags
& CLONE_SETTLS
)
423 p
->thread
.uw
.tp_value
= tls
;
426 * A kthread has no context to ERET to, so ensure any buggy
427 * ERET is treated as an illegal exception return.
429 * When a user task is created from a kthread, childregs will
430 * be initialized by start_thread() or start_compat_thread().
432 memset(childregs
, 0, sizeof(struct pt_regs
));
433 childregs
->pstate
= PSR_MODE_EL1h
| PSR_IL_BIT
;
435 p
->thread
.cpu_context
.x19
= stack_start
;
436 p
->thread
.cpu_context
.x20
= stk_sz
;
438 p
->thread
.cpu_context
.pc
= (unsigned long)ret_from_fork
;
439 p
->thread
.cpu_context
.sp
= (unsigned long)childregs
;
441 ptrace_hw_copy_thread(p
);
446 void tls_preserve_current_state(void)
448 *task_user_tls(current
) = read_sysreg(tpidr_el0
);
451 static void tls_thread_switch(struct task_struct
*next
)
453 tls_preserve_current_state();
455 if (is_compat_thread(task_thread_info(next
)))
456 write_sysreg(next
->thread
.uw
.tp_value
, tpidrro_el0
);
457 else if (!arm64_kernel_unmapped_at_el0())
458 write_sysreg(0, tpidrro_el0
);
460 write_sysreg(*task_user_tls(next
), tpidr_el0
);
464 * Force SSBS state on context-switch, since it may be lost after migrating
465 * from a CPU which treats the bit as RES0 in a heterogeneous system.
467 static void ssbs_thread_switch(struct task_struct
*next
)
470 * Nothing to do for kernel threads, but 'regs' may be junk
471 * (e.g. idle task) so check the flags and bail early.
473 if (unlikely(next
->flags
& PF_KTHREAD
))
477 * If all CPUs implement the SSBS extension, then we just need to
478 * context-switch the PSTATE field.
480 if (cpus_have_const_cap(ARM64_SSBS
))
483 spectre_v4_enable_task_mitigation(next
);
487 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
488 * shadow copy so that we can restore this upon entry from userspace.
490 * This is *only* for exception entry from EL0, and is not valid until we
491 * __switch_to() a user task.
493 DEFINE_PER_CPU(struct task_struct
*, __entry_task
);
495 static void entry_task_switch(struct task_struct
*next
)
497 __this_cpu_write(__entry_task
, next
);
501 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
502 * Assuming the virtual counter is enabled at the beginning of times:
504 * - disable access when switching from a 64bit task to a 32bit task
505 * - enable access when switching from a 32bit task to a 64bit task
507 static void erratum_1418040_thread_switch(struct task_struct
*prev
,
508 struct task_struct
*next
)
513 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040
))
516 prev32
= is_compat_thread(task_thread_info(prev
));
517 next32
= is_compat_thread(task_thread_info(next
));
519 if (prev32
== next32
|| !this_cpu_has_cap(ARM64_WORKAROUND_1418040
))
522 val
= read_sysreg(cntkctl_el1
);
525 val
|= ARCH_TIMER_USR_VCT_ACCESS_EN
;
527 val
&= ~ARCH_TIMER_USR_VCT_ACCESS_EN
;
529 write_sysreg(val
, cntkctl_el1
);
535 __notrace_funcgraph
struct task_struct
*__switch_to(struct task_struct
*prev
,
536 struct task_struct
*next
)
538 struct task_struct
*last
;
540 fpsimd_thread_switch(next
);
541 tls_thread_switch(next
);
542 hw_breakpoint_thread_switch(next
);
543 contextidr_thread_switch(next
);
544 entry_task_switch(next
);
545 ssbs_thread_switch(next
);
546 erratum_1418040_thread_switch(prev
, next
);
549 * Complete any pending TLB or cache maintenance on this CPU in case
550 * the thread migrates to a different CPU.
551 * This full barrier is also required by the membarrier system
557 * MTE thread switching must happen after the DSB above to ensure that
558 * any asynchronous tag check faults have been logged in the TFSR*_EL1
561 mte_thread_switch(next
);
563 /* the actual thread switch */
564 last
= cpu_switch_to(prev
, next
);
569 unsigned long get_wchan(struct task_struct
*p
)
571 struct stackframe frame
;
572 unsigned long stack_page
, ret
= 0;
574 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
577 stack_page
= (unsigned long)try_get_task_stack(p
);
581 start_backtrace(&frame
, thread_saved_fp(p
), thread_saved_pc(p
));
584 if (unwind_frame(p
, &frame
))
586 if (!in_sched_functions(frame
.pc
)) {
590 } while (count
++ < 16);
597 unsigned long arch_align_stack(unsigned long sp
)
599 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
600 sp
-= get_random_int() & ~PAGE_MASK
;
605 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
607 void arch_setup_new_exec(void)
609 current
->mm
->context
.flags
= is_compat_task() ? MMCF_AARCH32
: 0;
611 ptrauth_thread_init_user(current
);
613 if (task_spec_ssb_noexec(current
)) {
614 arch_prctl_spec_ctrl_set(current
, PR_SPEC_STORE_BYPASS
,
619 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
621 * Control the relaxed ABI allowing tagged user addresses into the kernel.
623 static unsigned int tagged_addr_disabled
;
625 long set_tagged_addr_ctrl(struct task_struct
*task
, unsigned long arg
)
627 unsigned long valid_mask
= PR_TAGGED_ADDR_ENABLE
;
628 struct thread_info
*ti
= task_thread_info(task
);
630 if (is_compat_thread(ti
))
633 if (system_supports_mte())
634 valid_mask
|= PR_MTE_TCF_MASK
| PR_MTE_TAG_MASK
;
636 if (arg
& ~valid_mask
)
640 * Do not allow the enabling of the tagged address ABI if globally
641 * disabled via sysctl abi.tagged_addr_disabled.
643 if (arg
& PR_TAGGED_ADDR_ENABLE
&& tagged_addr_disabled
)
646 if (set_mte_ctrl(task
, arg
) != 0)
649 update_ti_thread_flag(ti
, TIF_TAGGED_ADDR
, arg
& PR_TAGGED_ADDR_ENABLE
);
654 long get_tagged_addr_ctrl(struct task_struct
*task
)
657 struct thread_info
*ti
= task_thread_info(task
);
659 if (is_compat_thread(ti
))
662 if (test_ti_thread_flag(ti
, TIF_TAGGED_ADDR
))
663 ret
= PR_TAGGED_ADDR_ENABLE
;
665 ret
|= get_mte_ctrl(task
);
671 * Global sysctl to disable the tagged user addresses support. This control
672 * only prevents the tagged address ABI enabling via prctl() and does not
673 * disable it for tasks that already opted in to the relaxed ABI.
676 static struct ctl_table tagged_addr_sysctl_table
[] = {
678 .procname
= "tagged_addr_disabled",
680 .data
= &tagged_addr_disabled
,
681 .maxlen
= sizeof(int),
682 .proc_handler
= proc_dointvec_minmax
,
683 .extra1
= SYSCTL_ZERO
,
684 .extra2
= SYSCTL_ONE
,
689 static int __init
tagged_addr_init(void)
691 if (!register_sysctl("abi", tagged_addr_sysctl_table
))
696 core_initcall(tagged_addr_init
);
697 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
699 asmlinkage
void __sched
arm64_preempt_schedule_irq(void)
701 lockdep_assert_irqs_disabled();
704 * Preempting a task from an IRQ means we leave copies of PSTATE
705 * on the stack. cpufeature's enable calls may modify PSTATE, but
706 * resuming one of these preempted tasks would undo those changes.
708 * Only allow a task to be preempted once cpufeatures have been
711 if (system_capabilities_finalized())
712 preempt_schedule_irq();
715 #ifdef CONFIG_BINFMT_ELF
716 int arch_elf_adjust_prot(int prot
, const struct arch_elf_state
*state
,
717 bool has_interp
, bool is_interp
)
720 * For dynamically linked executables the interpreter is
721 * responsible for setting PROT_BTI on everything except
724 if (is_interp
!= has_interp
)
727 if (!(state
->flags
& ARM64_ELF_BTI
))
730 if (prot
& PROT_EXEC
)