1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2017 Arm Ltd.
3 #define pr_fmt(fmt) "sdei: " fmt
5 #include <linux/arm-smccc.h>
6 #include <linux/arm_sdei.h>
7 #include <linux/hardirq.h>
8 #include <linux/irqflags.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/scs.h>
11 #include <linux/uaccess.h>
13 #include <asm/alternative.h>
14 #include <asm/exception.h>
15 #include <asm/kprobes.h>
17 #include <asm/ptrace.h>
18 #include <asm/sections.h>
19 #include <asm/stacktrace.h>
20 #include <asm/sysreg.h>
21 #include <asm/vmap_stack.h>
23 unsigned long sdei_exit_mode
;
26 * VMAP'd stacks checking for stack overflow on exception using sp as a scratch
27 * register, meaning SDEI has to switch to its own stack. We need two stacks as
28 * a critical event may interrupt a normal event that has just taken a
29 * synchronous exception, and is using sp as scratch register. For a critical
30 * event interrupting a normal event, we can't reliably tell if we were on the
32 * For now, we allocate stacks when the driver is probed.
34 DECLARE_PER_CPU(unsigned long *, sdei_stack_normal_ptr
);
35 DECLARE_PER_CPU(unsigned long *, sdei_stack_critical_ptr
);
37 #ifdef CONFIG_VMAP_STACK
38 DEFINE_PER_CPU(unsigned long *, sdei_stack_normal_ptr
);
39 DEFINE_PER_CPU(unsigned long *, sdei_stack_critical_ptr
);
42 DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr
);
43 DECLARE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr
);
45 #ifdef CONFIG_SHADOW_CALL_STACK
46 DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_normal_ptr
);
47 DEFINE_PER_CPU(unsigned long *, sdei_shadow_call_stack_critical_ptr
);
50 static void _free_sdei_stack(unsigned long * __percpu
*ptr
, int cpu
)
54 p
= per_cpu(*ptr
, cpu
);
56 per_cpu(*ptr
, cpu
) = NULL
;
61 static void free_sdei_stacks(void)
65 if (!IS_ENABLED(CONFIG_VMAP_STACK
))
68 for_each_possible_cpu(cpu
) {
69 _free_sdei_stack(&sdei_stack_normal_ptr
, cpu
);
70 _free_sdei_stack(&sdei_stack_critical_ptr
, cpu
);
74 static int _init_sdei_stack(unsigned long * __percpu
*ptr
, int cpu
)
78 p
= arch_alloc_vmap_stack(SDEI_STACK_SIZE
, cpu_to_node(cpu
));
81 per_cpu(*ptr
, cpu
) = p
;
86 static int init_sdei_stacks(void)
91 if (!IS_ENABLED(CONFIG_VMAP_STACK
))
94 for_each_possible_cpu(cpu
) {
95 err
= _init_sdei_stack(&sdei_stack_normal_ptr
, cpu
);
98 err
= _init_sdei_stack(&sdei_stack_critical_ptr
, cpu
);
109 static void _free_sdei_scs(unsigned long * __percpu
*ptr
, int cpu
)
113 s
= per_cpu(*ptr
, cpu
);
115 per_cpu(*ptr
, cpu
) = NULL
;
120 static void free_sdei_scs(void)
124 for_each_possible_cpu(cpu
) {
125 _free_sdei_scs(&sdei_shadow_call_stack_normal_ptr
, cpu
);
126 _free_sdei_scs(&sdei_shadow_call_stack_critical_ptr
, cpu
);
130 static int _init_sdei_scs(unsigned long * __percpu
*ptr
, int cpu
)
134 s
= scs_alloc(cpu_to_node(cpu
));
137 per_cpu(*ptr
, cpu
) = s
;
142 static int init_sdei_scs(void)
147 if (!IS_ENABLED(CONFIG_SHADOW_CALL_STACK
))
150 for_each_possible_cpu(cpu
) {
151 err
= _init_sdei_scs(&sdei_shadow_call_stack_normal_ptr
, cpu
);
154 err
= _init_sdei_scs(&sdei_shadow_call_stack_critical_ptr
, cpu
);
165 static bool on_sdei_normal_stack(unsigned long sp
, struct stack_info
*info
)
167 unsigned long low
= (unsigned long)raw_cpu_read(sdei_stack_normal_ptr
);
168 unsigned long high
= low
+ SDEI_STACK_SIZE
;
170 return on_stack(sp
, low
, high
, STACK_TYPE_SDEI_NORMAL
, info
);
173 static bool on_sdei_critical_stack(unsigned long sp
, struct stack_info
*info
)
175 unsigned long low
= (unsigned long)raw_cpu_read(sdei_stack_critical_ptr
);
176 unsigned long high
= low
+ SDEI_STACK_SIZE
;
178 return on_stack(sp
, low
, high
, STACK_TYPE_SDEI_CRITICAL
, info
);
181 bool _on_sdei_stack(unsigned long sp
, struct stack_info
*info
)
183 if (!IS_ENABLED(CONFIG_VMAP_STACK
))
186 if (on_sdei_critical_stack(sp
, info
))
189 if (on_sdei_normal_stack(sp
, info
))
195 unsigned long sdei_arch_get_entry_point(int conduit
)
198 * SDEI works between adjacent exception levels. If we booted at EL1 we
199 * assume a hypervisor is marshalling events. If we booted at EL2 and
200 * dropped to EL1 because we don't support VHE, then we can't support
203 if (is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
204 pr_err("Not supported on this hardware/boot configuration\n");
208 if (init_sdei_stacks())
212 goto out_err_free_stacks
;
214 sdei_exit_mode
= (conduit
== SMCCC_CONDUIT_HVC
) ? SDEI_EXIT_HVC
: SDEI_EXIT_SMC
;
216 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
217 if (arm64_kernel_unmapped_at_el0()) {
218 unsigned long offset
;
220 offset
= (unsigned long)__sdei_asm_entry_trampoline
-
221 (unsigned long)__entry_tramp_text_start
;
222 return TRAMP_VALIAS
+ offset
;
224 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
225 return (unsigned long)__sdei_asm_handler
;
234 * __sdei_handler() returns one of:
235 * SDEI_EV_HANDLED - success, return to the interrupted context.
236 * SDEI_EV_FAILED - failure, return this error code to firmare.
237 * virtual-address - success, return to this address.
239 static __kprobes
unsigned long _sdei_handler(struct pt_regs
*regs
,
240 struct sdei_registered_event
*arg
)
244 int clobbered_registers
= 4;
245 u64 elr
= read_sysreg(elr_el1
);
246 u32 kernel_mode
= read_sysreg(CurrentEL
) | 1; /* +SPSel */
247 unsigned long vbar
= read_sysreg(vbar_el1
);
249 if (arm64_kernel_unmapped_at_el0())
250 clobbered_registers
++;
252 /* Retrieve the missing registers values */
253 for (i
= 0; i
< clobbered_registers
; i
++) {
254 /* from within the handler, this call always succeeds */
255 sdei_api_event_context(i
, ®s
->regs
[i
]);
258 err
= sdei_event_handler(regs
, arg
);
260 return SDEI_EV_FAILED
;
262 if (elr
!= read_sysreg(elr_el1
)) {
264 * We took a synchronous exception from the SDEI handler.
265 * This could deadlock, and if you interrupt KVM it will
268 pr_warn("unsafe: exception during handler\n");
271 mode
= regs
->pstate
& (PSR_MODE32_BIT
| PSR_MODE_MASK
);
274 * If we interrupted the kernel with interrupts masked, we always go
275 * back to wherever we came from.
277 if (mode
== kernel_mode
&& !interrupts_enabled(regs
))
278 return SDEI_EV_HANDLED
;
281 * Otherwise, we pretend this was an IRQ. This lets user space tasks
282 * receive signals before we return to them, and KVM to invoke it's
283 * world switch to do the same.
285 * See DDI0487B.a Table D1-7 'Vector offsets from vector table base
288 if (mode
== kernel_mode
)
290 else if (mode
& PSR_MODE32_BIT
)
296 static void __kprobes notrace
__sdei_pstate_entry(void)
299 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
300 * whether PSTATE bits are inherited unchanged or generated from
301 * scratch, and the TF-A implementation always clears PAN and always
302 * clears UAO. There are no other known implementations.
304 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
305 * PSTATE is modified upon architectural exceptions, and so PAN is
306 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
309 * We must explicitly reset PAN to the expected state, including
310 * clearing it when the host isn't using it, in case a VM had it set.
312 if (system_uses_hw_pan())
314 else if (cpu_has_pan())
318 asmlinkage noinstr
unsigned long
319 __sdei_handler(struct pt_regs
*regs
, struct sdei_registered_event
*arg
)
324 * We didn't take an exception to get here, so the HW hasn't
325 * set/cleared bits in PSTATE that we may rely on. Initialize PAN.
327 __sdei_pstate_entry();
329 arm64_enter_nmi(regs
);
331 ret
= _sdei_handler(regs
, arg
);
333 arm64_exit_nmi(regs
);