1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Kernel Probes (KProbes)
4 * arch/ia64/kernel/kprobes.c
6 * Copyright (C) IBM Corporation, 2002, 2004
7 * Copyright (C) Intel Corporation, 2005
9 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
10 * <anil.s.keshavamurthy@intel.com> adapted from i386
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/preempt.h>
18 #include <linux/extable.h>
19 #include <linux/kdebug.h>
20 #include <linux/pgtable.h>
22 #include <asm/sections.h>
23 #include <asm/exception.h>
25 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
26 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
28 struct kretprobe_blackpoint kretprobe_blacklist
[] = {{NULL
, NULL
}};
30 enum instruction_type
{A
, I
, M
, F
, B
, L
, X
, u
};
31 static enum instruction_type bundle_encoding
[32][3] = {
66 /* Insert a long branch code */
67 static void __kprobes
set_brl_inst(void *from
, void *to
)
69 s64 rel
= ((s64
) to
- (s64
) from
) >> 4;
71 brl
= (bundle_t
*) ((u64
) from
& ~0xf);
72 brl
->quad0
.template = 0x05; /* [MLX](stop) */
73 brl
->quad0
.slot0
= NOP_M_INST
; /* nop.m 0x0 */
74 brl
->quad0
.slot1_p0
= ((rel
>> 20) & 0x7fffffffff) << 2;
75 brl
->quad1
.slot1_p1
= (((rel
>> 20) & 0x7fffffffff) << 2) >> (64 - 46);
76 /* brl.cond.sptk.many.clr rel<<4 (qp=0) */
77 brl
->quad1
.slot2
= BRL_INST(rel
>> 59, rel
& 0xfffff);
81 * In this function we check to see if the instruction
82 * is IP relative instruction and update the kprobe
83 * inst flag accordingly
85 static void __kprobes
update_kprobe_inst_flag(uint
template, uint slot
,
87 unsigned long kprobe_inst
,
90 p
->ainsn
.inst_flag
= 0;
91 p
->ainsn
.target_br_reg
= 0;
94 /* Check for Break instruction
95 * Bits 37:40 Major opcode to be zero
96 * Bits 27:32 X6 to be zero
97 * Bits 32:35 X3 to be zero
99 if ((!major_opcode
) && (!((kprobe_inst
>> 27) & 0x1FF)) ) {
100 /* is a break instruction */
101 p
->ainsn
.inst_flag
|= INST_FLAG_BREAK_INST
;
105 if (bundle_encoding
[template][slot
] == B
) {
106 switch (major_opcode
) {
107 case INDIRECT_CALL_OPCODE
:
108 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_BRANCH_REG
;
109 p
->ainsn
.target_br_reg
= ((kprobe_inst
>> 6) & 0x7);
111 case IP_RELATIVE_PREDICT_OPCODE
:
112 case IP_RELATIVE_BRANCH_OPCODE
:
113 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_RELATIVE_IP_ADDR
;
115 case IP_RELATIVE_CALL_OPCODE
:
116 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_RELATIVE_IP_ADDR
;
117 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_BRANCH_REG
;
118 p
->ainsn
.target_br_reg
= ((kprobe_inst
>> 6) & 0x7);
121 } else if (bundle_encoding
[template][slot
] == X
) {
122 switch (major_opcode
) {
123 case LONG_CALL_OPCODE
:
124 p
->ainsn
.inst_flag
|= INST_FLAG_FIX_BRANCH_REG
;
125 p
->ainsn
.target_br_reg
= ((kprobe_inst
>> 6) & 0x7);
133 * In this function we check to see if the instruction
134 * (qp) cmpx.crel.ctype p1,p2=r2,r3
135 * on which we are inserting kprobe is cmp instruction
138 static uint __kprobes
is_cmp_ctype_unc_inst(uint
template, uint slot
,
140 unsigned long kprobe_inst
)
145 if (!((bundle_encoding
[template][slot
] == I
) ||
146 (bundle_encoding
[template][slot
] == M
)))
149 if (!((major_opcode
== 0xC) || (major_opcode
== 0xD) ||
150 (major_opcode
== 0xE)))
153 cmp_inst
.l
= kprobe_inst
;
154 if ((cmp_inst
.f
.x2
== 0) || (cmp_inst
.f
.x2
== 1)) {
155 /* Integer compare - Register Register (A6 type)*/
156 if ((cmp_inst
.f
.tb
== 0) && (cmp_inst
.f
.ta
== 0)
157 &&(cmp_inst
.f
.c
== 1))
159 } else if ((cmp_inst
.f
.x2
== 2)||(cmp_inst
.f
.x2
== 3)) {
160 /* Integer compare - Immediate Register (A8 type)*/
161 if ((cmp_inst
.f
.ta
== 0) &&(cmp_inst
.f
.c
== 1))
169 * In this function we check to see if the instruction
170 * on which we are inserting kprobe is supported.
171 * Returns qp value if supported
172 * Returns -EINVAL if unsupported
174 static int __kprobes
unsupported_inst(uint
template, uint slot
,
176 unsigned long kprobe_inst
,
181 qp
= kprobe_inst
& 0x3f;
182 if (is_cmp_ctype_unc_inst(template, slot
, major_opcode
, kprobe_inst
)) {
183 if (slot
== 1 && qp
) {
184 printk(KERN_WARNING
"Kprobes on cmp unc "
185 "instruction on slot 1 at <0x%lx> "
186 "is not supported\n", addr
);
192 else if (bundle_encoding
[template][slot
] == I
) {
193 if (major_opcode
== 0) {
195 * Check for Integer speculation instruction
196 * - Bit 33-35 to be equal to 0x1
198 if (((kprobe_inst
>> 33) & 0x7) == 1) {
200 "Kprobes on speculation inst at <0x%lx> not supported\n",
205 * IP relative mov instruction
206 * - Bit 27-35 to be equal to 0x30
208 if (((kprobe_inst
>> 27) & 0x1FF) == 0x30) {
210 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
216 else if ((major_opcode
== 5) && !(kprobe_inst
& (0xFUl
<< 33)) &&
217 (kprobe_inst
& (0x1UL
<< 12))) {
218 /* test bit instructions, tbit,tnat,tf
219 * bit 33-36 to be equal to 0
220 * bit 12 to be equal to 1
222 if (slot
== 1 && qp
) {
223 printk(KERN_WARNING
"Kprobes on test bit "
224 "instruction on slot at <0x%lx> "
225 "is not supported\n", addr
);
231 else if (bundle_encoding
[template][slot
] == B
) {
232 if (major_opcode
== 7) {
233 /* IP-Relative Predict major code is 7 */
234 printk(KERN_WARNING
"Kprobes on IP-Relative"
235 "Predict is not supported\n");
238 else if (major_opcode
== 2) {
239 /* Indirect Predict, major code is 2
240 * bit 27-32 to be equal to 10 or 11
242 int x6
=(kprobe_inst
>> 27) & 0x3F;
243 if ((x6
== 0x10) || (x6
== 0x11)) {
244 printk(KERN_WARNING
"Kprobes on "
245 "Indirect Predict is not supported\n");
250 /* kernel does not use float instruction, here for safety kprobe
251 * will judge whether it is fcmp/flass/float approximation instruction
253 else if (unlikely(bundle_encoding
[template][slot
] == F
)) {
254 if ((major_opcode
== 4 || major_opcode
== 5) &&
255 (kprobe_inst
& (0x1 << 12))) {
256 /* fcmp/fclass unc instruction */
257 if (slot
== 1 && qp
) {
258 printk(KERN_WARNING
"Kprobes on fcmp/fclass "
259 "instruction on slot at <0x%lx> "
260 "is not supported\n", addr
);
266 if ((major_opcode
== 0 || major_opcode
== 1) &&
267 (kprobe_inst
& (0x1UL
<< 33))) {
268 /* float Approximation instruction */
269 if (slot
== 1 && qp
) {
270 printk(KERN_WARNING
"Kprobes on float Approx "
271 "instr at <0x%lx> is not supported\n",
282 * In this function we override the bundle with
283 * the break instruction at the given slot.
285 static void __kprobes
prepare_break_inst(uint
template, uint slot
,
287 unsigned long kprobe_inst
,
291 unsigned long break_inst
= BREAK_INST
;
292 bundle_t
*bundle
= &p
->opcode
.bundle
;
295 * Copy the original kprobe_inst qualifying predicate(qp)
296 * to the break instruction
302 bundle
->quad0
.slot0
= break_inst
;
305 bundle
->quad0
.slot1_p0
= break_inst
;
306 bundle
->quad1
.slot1_p1
= break_inst
>> (64-46);
309 bundle
->quad1
.slot2
= break_inst
;
314 * Update the instruction flag, so that we can
315 * emulate the instruction properly after we
316 * single step on original instruction
318 update_kprobe_inst_flag(template, slot
, major_opcode
, kprobe_inst
, p
);
321 static void __kprobes
get_kprobe_inst(bundle_t
*bundle
, uint slot
,
322 unsigned long *kprobe_inst
, uint
*major_opcode
)
324 unsigned long kprobe_inst_p0
, kprobe_inst_p1
;
325 unsigned int template;
327 template = bundle
->quad0
.template;
331 *major_opcode
= (bundle
->quad0
.slot0
>> SLOT0_OPCODE_SHIFT
);
332 *kprobe_inst
= bundle
->quad0
.slot0
;
335 *major_opcode
= (bundle
->quad1
.slot1_p1
>> SLOT1_p1_OPCODE_SHIFT
);
336 kprobe_inst_p0
= bundle
->quad0
.slot1_p0
;
337 kprobe_inst_p1
= bundle
->quad1
.slot1_p1
;
338 *kprobe_inst
= kprobe_inst_p0
| (kprobe_inst_p1
<< (64-46));
341 *major_opcode
= (bundle
->quad1
.slot2
>> SLOT2_OPCODE_SHIFT
);
342 *kprobe_inst
= bundle
->quad1
.slot2
;
347 /* Returns non-zero if the addr is in the Interrupt Vector Table */
348 static int __kprobes
in_ivt_functions(unsigned long addr
)
350 return (addr
>= (unsigned long)__start_ivt_text
351 && addr
< (unsigned long)__end_ivt_text
);
354 static int __kprobes
valid_kprobe_addr(int template, int slot
,
357 if ((slot
> 2) || ((bundle_encoding
[template][1] == L
) && slot
> 1)) {
358 printk(KERN_WARNING
"Attempting to insert unaligned kprobe "
363 if (in_ivt_functions(addr
)) {
364 printk(KERN_WARNING
"Kprobes can't be inserted inside "
365 "IVT functions at 0x%lx\n", addr
);
372 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
375 i
= atomic_add_return(1, &kcb
->prev_kprobe_index
);
376 kcb
->prev_kprobe
[i
-1].kp
= kprobe_running();
377 kcb
->prev_kprobe
[i
-1].status
= kcb
->kprobe_status
;
380 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
383 i
= atomic_read(&kcb
->prev_kprobe_index
);
384 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
[i
-1].kp
);
385 kcb
->kprobe_status
= kcb
->prev_kprobe
[i
-1].status
;
386 atomic_sub(1, &kcb
->prev_kprobe_index
);
389 static void __kprobes
set_current_kprobe(struct kprobe
*p
,
390 struct kprobe_ctlblk
*kcb
)
392 __this_cpu_write(current_kprobe
, p
);
395 static void kretprobe_trampoline(void)
399 int __kprobes
trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
401 regs
->cr_iip
= __kretprobe_trampoline_handler(regs
, kretprobe_trampoline
, NULL
);
403 * By returning a non-zero value, we are telling
404 * kprobe_handler() that we don't want the post_handler
405 * to run (and have re-enabled preemption)
410 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
411 struct pt_regs
*regs
)
413 ri
->ret_addr
= (kprobe_opcode_t
*)regs
->b0
;
416 /* Replace the return addr with trampoline addr */
417 regs
->b0
= ((struct fnptr
*)kretprobe_trampoline
)->ip
;
420 /* Check the instruction in the slot is break */
421 static int __kprobes
__is_ia64_break_inst(bundle_t
*bundle
, uint slot
)
423 unsigned int major_opcode
;
424 unsigned int template = bundle
->quad0
.template;
425 unsigned long kprobe_inst
;
427 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
428 if (slot
== 1 && bundle_encoding
[template][1] == L
)
431 /* Get Kprobe probe instruction at given slot*/
432 get_kprobe_inst(bundle
, slot
, &kprobe_inst
, &major_opcode
);
434 /* For break instruction,
435 * Bits 37:40 Major opcode to be zero
436 * Bits 27:32 X6 to be zero
437 * Bits 32:35 X3 to be zero
439 if (major_opcode
|| ((kprobe_inst
>> 27) & 0x1FF)) {
440 /* Not a break instruction */
444 /* Is a break instruction */
449 * In this function, we check whether the target bundle modifies IP or
450 * it triggers an exception. If so, it cannot be boostable.
452 static int __kprobes
can_boost(bundle_t
*bundle
, uint slot
,
453 unsigned long bundle_addr
)
455 unsigned int template = bundle
->quad0
.template;
458 if (search_exception_tables(bundle_addr
+ slot
) ||
459 __is_ia64_break_inst(bundle
, slot
))
460 return 0; /* exception may occur in this bundle*/
461 } while ((++slot
) < 3);
463 if (template >= 0x10 /* including B unit */ ||
464 template == 0x04 /* including X unit */ ||
465 template == 0x06) /* undefined */
471 /* Prepare long jump bundle and disables other boosters if need */
472 static void __kprobes
prepare_booster(struct kprobe
*p
)
474 unsigned long addr
= (unsigned long)p
->addr
& ~0xFULL
;
475 unsigned int slot
= (unsigned long)p
->addr
& 0xf;
476 struct kprobe
*other_kp
;
478 if (can_boost(&p
->ainsn
.insn
[0].bundle
, slot
, addr
)) {
479 set_brl_inst(&p
->ainsn
.insn
[1].bundle
, (bundle_t
*)addr
+ 1);
480 p
->ainsn
.inst_flag
|= INST_FLAG_BOOSTABLE
;
483 /* disables boosters in previous slots */
484 for (; addr
< (unsigned long)p
->addr
; addr
++) {
485 other_kp
= get_kprobe((void *)addr
);
487 other_kp
->ainsn
.inst_flag
&= ~INST_FLAG_BOOSTABLE
;
491 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
493 unsigned long addr
= (unsigned long) p
->addr
;
494 unsigned long *kprobe_addr
= (unsigned long *)(addr
& ~0xFULL
);
495 unsigned long kprobe_inst
=0;
496 unsigned int slot
= addr
& 0xf, template, major_opcode
= 0;
500 bundle
= &((kprobe_opcode_t
*)kprobe_addr
)->bundle
;
501 template = bundle
->quad0
.template;
503 if(valid_kprobe_addr(template, slot
, addr
))
506 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
507 if (slot
== 1 && bundle_encoding
[template][1] == L
)
510 /* Get kprobe_inst and major_opcode from the bundle */
511 get_kprobe_inst(bundle
, slot
, &kprobe_inst
, &major_opcode
);
513 qp
= unsupported_inst(template, slot
, major_opcode
, kprobe_inst
, addr
);
517 p
->ainsn
.insn
= get_insn_slot();
520 memcpy(&p
->opcode
, kprobe_addr
, sizeof(kprobe_opcode_t
));
521 memcpy(p
->ainsn
.insn
, kprobe_addr
, sizeof(kprobe_opcode_t
));
523 prepare_break_inst(template, slot
, major_opcode
, kprobe_inst
, p
, qp
);
530 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
532 unsigned long arm_addr
;
533 bundle_t
*src
, *dest
;
535 arm_addr
= ((unsigned long)p
->addr
) & ~0xFUL
;
536 dest
= &((kprobe_opcode_t
*)arm_addr
)->bundle
;
537 src
= &p
->opcode
.bundle
;
539 flush_icache_range((unsigned long)p
->ainsn
.insn
,
540 (unsigned long)p
->ainsn
.insn
+
541 sizeof(kprobe_opcode_t
) * MAX_INSN_SIZE
);
543 switch (p
->ainsn
.slot
) {
545 dest
->quad0
.slot0
= src
->quad0
.slot0
;
548 dest
->quad1
.slot1_p1
= src
->quad1
.slot1_p1
;
551 dest
->quad1
.slot2
= src
->quad1
.slot2
;
554 flush_icache_range(arm_addr
, arm_addr
+ sizeof(kprobe_opcode_t
));
557 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
559 unsigned long arm_addr
;
560 bundle_t
*src
, *dest
;
562 arm_addr
= ((unsigned long)p
->addr
) & ~0xFUL
;
563 dest
= &((kprobe_opcode_t
*)arm_addr
)->bundle
;
564 /* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
565 src
= &p
->ainsn
.insn
->bundle
;
566 switch (p
->ainsn
.slot
) {
568 dest
->quad0
.slot0
= src
->quad0
.slot0
;
571 dest
->quad1
.slot1_p1
= src
->quad1
.slot1_p1
;
574 dest
->quad1
.slot2
= src
->quad1
.slot2
;
577 flush_icache_range(arm_addr
, arm_addr
+ sizeof(kprobe_opcode_t
));
580 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
583 free_insn_slot(p
->ainsn
.insn
,
584 p
->ainsn
.inst_flag
& INST_FLAG_BOOSTABLE
);
585 p
->ainsn
.insn
= NULL
;
589 * We are resuming execution after a single step fault, so the pt_regs
590 * structure reflects the register state after we executed the instruction
591 * located in the kprobe (p->ainsn.insn->bundle). We still need to adjust
592 * the ip to point back to the original stack address. To set the IP address
593 * to original stack address, handle the case where we need to fixup the
594 * relative IP address and/or fixup branch register.
596 static void __kprobes
resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
598 unsigned long bundle_addr
= (unsigned long) (&p
->ainsn
.insn
->bundle
);
599 unsigned long resume_addr
= (unsigned long)p
->addr
& ~0xFULL
;
600 unsigned long template;
601 int slot
= ((unsigned long)p
->addr
& 0xf);
603 template = p
->ainsn
.insn
->bundle
.quad0
.template;
605 if (slot
== 1 && bundle_encoding
[template][1] == L
)
608 if (p
->ainsn
.inst_flag
& ~INST_FLAG_BOOSTABLE
) {
610 if (p
->ainsn
.inst_flag
& INST_FLAG_FIX_RELATIVE_IP_ADDR
) {
611 /* Fix relative IP address */
612 regs
->cr_iip
= (regs
->cr_iip
- bundle_addr
) +
616 if (p
->ainsn
.inst_flag
& INST_FLAG_FIX_BRANCH_REG
) {
618 * Fix target branch register, software convention is
619 * to use either b0 or b6 or b7, so just checking
620 * only those registers
622 switch (p
->ainsn
.target_br_reg
) {
624 if ((regs
->b0
== bundle_addr
) ||
625 (regs
->b0
== bundle_addr
+ 0x10)) {
626 regs
->b0
= (regs
->b0
- bundle_addr
) +
631 if ((regs
->b6
== bundle_addr
) ||
632 (regs
->b6
== bundle_addr
+ 0x10)) {
633 regs
->b6
= (regs
->b6
- bundle_addr
) +
638 if ((regs
->b7
== bundle_addr
) ||
639 (regs
->b7
== bundle_addr
+ 0x10)) {
640 regs
->b7
= (regs
->b7
- bundle_addr
) +
650 if (regs
->cr_iip
== bundle_addr
+ 0x10) {
651 regs
->cr_iip
= resume_addr
+ 0x10;
654 if (regs
->cr_iip
== bundle_addr
) {
655 regs
->cr_iip
= resume_addr
;
660 /* Turn off Single Step bit */
661 ia64_psr(regs
)->ss
= 0;
664 static void __kprobes
prepare_ss(struct kprobe
*p
, struct pt_regs
*regs
)
666 unsigned long bundle_addr
= (unsigned long) &p
->ainsn
.insn
->bundle
;
667 unsigned long slot
= (unsigned long)p
->addr
& 0xf;
669 /* single step inline if break instruction */
670 if (p
->ainsn
.inst_flag
== INST_FLAG_BREAK_INST
)
671 regs
->cr_iip
= (unsigned long)p
->addr
& ~0xFULL
;
673 regs
->cr_iip
= bundle_addr
& ~0xFULL
;
678 ia64_psr(regs
)->ri
= slot
;
680 /* turn on single stepping */
681 ia64_psr(regs
)->ss
= 1;
684 static int __kprobes
is_ia64_break_inst(struct pt_regs
*regs
)
686 unsigned int slot
= ia64_psr(regs
)->ri
;
687 unsigned long *kprobe_addr
= (unsigned long *)regs
->cr_iip
;
690 memcpy(&bundle
, kprobe_addr
, sizeof(bundle_t
));
692 return __is_ia64_break_inst(&bundle
, slot
);
695 static int __kprobes
pre_kprobes_handler(struct die_args
*args
)
699 struct pt_regs
*regs
= args
->regs
;
700 kprobe_opcode_t
*addr
= (kprobe_opcode_t
*)instruction_pointer(regs
);
701 struct kprobe_ctlblk
*kcb
;
704 * We don't want to be preempted for the entire
705 * duration of kprobe processing
708 kcb
= get_kprobe_ctlblk();
710 /* Handle recursion cases */
711 if (kprobe_running()) {
712 p
= get_kprobe(addr
);
714 if ((kcb
->kprobe_status
== KPROBE_HIT_SS
) &&
715 (p
->ainsn
.inst_flag
== INST_FLAG_BREAK_INST
)) {
716 ia64_psr(regs
)->ss
= 0;
719 /* We have reentered the pre_kprobe_handler(), since
720 * another probe was hit while within the handler.
721 * We here save the original kprobes variables and
722 * just single step on the instruction of the new probe
723 * without calling any user handlers.
725 save_previous_kprobe(kcb
);
726 set_current_kprobe(p
, kcb
);
727 kprobes_inc_nmissed_count(p
);
729 kcb
->kprobe_status
= KPROBE_REENTER
;
731 } else if (!is_ia64_break_inst(regs
)) {
732 /* The breakpoint instruction was removed by
733 * another cpu right after we hit, no further
734 * handling of this interrupt is appropriate
744 p
= get_kprobe(addr
);
746 if (!is_ia64_break_inst(regs
)) {
748 * The breakpoint instruction was removed right
749 * after we hit it. Another cpu has removed
750 * either a probepoint or a debugger breakpoint
751 * at this address. In either case, no further
752 * handling of this interrupt is appropriate.
758 /* Not one of our break, let kernel handle it */
762 set_current_kprobe(p
, kcb
);
763 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
765 if (p
->pre_handler
&& p
->pre_handler(p
, regs
)) {
766 reset_current_kprobe();
767 preempt_enable_no_resched();
771 #if !defined(CONFIG_PREEMPTION)
772 if (p
->ainsn
.inst_flag
== INST_FLAG_BOOSTABLE
&& !p
->post_handler
) {
773 /* Boost up -- we can execute copied instructions directly */
774 ia64_psr(regs
)->ri
= p
->ainsn
.slot
;
775 regs
->cr_iip
= (unsigned long)&p
->ainsn
.insn
->bundle
& ~0xFULL
;
776 /* turn single stepping off */
777 ia64_psr(regs
)->ss
= 0;
779 reset_current_kprobe();
780 preempt_enable_no_resched();
785 kcb
->kprobe_status
= KPROBE_HIT_SS
;
789 preempt_enable_no_resched();
793 static int __kprobes
post_kprobes_handler(struct pt_regs
*regs
)
795 struct kprobe
*cur
= kprobe_running();
796 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
801 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
802 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
803 cur
->post_handler(cur
, regs
, 0);
806 resume_execution(cur
, regs
);
808 /*Restore back the original saved kprobes variables and continue. */
809 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
810 restore_previous_kprobe(kcb
);
813 reset_current_kprobe();
816 preempt_enable_no_resched();
820 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
822 struct kprobe
*cur
= kprobe_running();
823 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
826 switch(kcb
->kprobe_status
) {
830 * We are here because the instruction being single
831 * stepped caused a page fault. We reset the current
832 * kprobe and the instruction pointer points back to
833 * the probe address and allow the page fault handler
834 * to continue as a normal page fault.
836 regs
->cr_iip
= ((unsigned long)cur
->addr
) & ~0xFULL
;
837 ia64_psr(regs
)->ri
= ((unsigned long)cur
->addr
) & 0xf;
838 if (kcb
->kprobe_status
== KPROBE_REENTER
)
839 restore_previous_kprobe(kcb
);
841 reset_current_kprobe();
842 preempt_enable_no_resched();
844 case KPROBE_HIT_ACTIVE
:
845 case KPROBE_HIT_SSDONE
:
847 * We increment the nmissed count for accounting,
848 * we can also use npre/npostfault count for accounting
849 * these specific fault cases.
851 kprobes_inc_nmissed_count(cur
);
854 * We come here because instructions in the pre/post
855 * handler caused the page_fault, this could happen
856 * if handler tries to access user space by
857 * copy_from_user(), get_user() etc. Let the
858 * user-specified handler try to fix it first.
860 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
863 * In case the user-specified fault handler returned
864 * zero, try to fix up.
866 if (ia64_done_with_exception(regs
))
870 * Let ia64_do_page_fault() fix it.
880 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
881 unsigned long val
, void *data
)
883 struct die_args
*args
= (struct die_args
*)data
;
884 int ret
= NOTIFY_DONE
;
886 if (args
->regs
&& user_mode(args
->regs
))
891 /* err is break number from ia64_bad_break() */
892 if ((args
->err
>> 12) == (__IA64_BREAK_KPROBE
>> 12)
894 if (pre_kprobes_handler(args
))
898 /* err is vector number from ia64_fault() */
900 if (post_kprobes_handler(args
->regs
))
909 unsigned long arch_deref_entry_point(void *entry
)
911 return ((struct fnptr
*)entry
)->ip
;
914 static struct kprobe trampoline_p
= {
915 .pre_handler
= trampoline_probe_handler
918 int __init
arch_init_kprobes(void)
921 (kprobe_opcode_t
*)((struct fnptr
*)kretprobe_trampoline
)->ip
;
922 return register_kprobe(&trampoline_p
);
925 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
928 (kprobe_opcode_t
*)((struct fnptr
*)kretprobe_trampoline
)->ip
)