1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* multi_arith.h: multi-precision integer arithmetic functions, needed
3 to do extended-precision floating point.
5 (c) 1998 David Huggins-Daines.
7 Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
14 These are not general multi-precision math routines. Rather, they
15 implement the subset of integer arithmetic that we need in order to
16 multiply, divide, and normalize 128-bit unsigned mantissae. */
21 static inline void fp_denormalize(struct fp_ext
*reg
, unsigned int cnt
)
27 reg
->lowmant
= reg
->mant
.m32
[1] << (8 - cnt
);
28 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] >> cnt
) |
29 (reg
->mant
.m32
[0] << (32 - cnt
));
30 reg
->mant
.m32
[0] = reg
->mant
.m32
[0] >> cnt
;
33 reg
->lowmant
= reg
->mant
.m32
[1] >> (cnt
- 8);
34 if (reg
->mant
.m32
[1] << (40 - cnt
))
36 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] >> cnt
) |
37 (reg
->mant
.m32
[0] << (32 - cnt
));
38 reg
->mant
.m32
[0] = reg
->mant
.m32
[0] >> cnt
;
41 asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg
->lowmant
)
42 : "m" (reg
->mant
.m32
[0]), "d" (64 - cnt
));
43 if (reg
->mant
.m32
[1] << (40 - cnt
))
45 reg
->mant
.m32
[1] = reg
->mant
.m32
[0] >> (cnt
- 32);
49 reg
->lowmant
= reg
->mant
.m32
[0] >> (cnt
- 40);
50 if ((reg
->mant
.m32
[0] << (72 - cnt
)) || reg
->mant
.m32
[1])
52 reg
->mant
.m32
[1] = reg
->mant
.m32
[0] >> (cnt
- 32);
56 reg
->lowmant
= reg
->mant
.m32
[0] || reg
->mant
.m32
[1];
63 static inline int fp_overnormalize(struct fp_ext
*reg
)
67 if (reg
->mant
.m32
[0]) {
68 asm ("bfffo %1{#0,#32},%0" : "=d" (shift
) : "dm" (reg
->mant
.m32
[0]));
69 reg
->mant
.m32
[0] = (reg
->mant
.m32
[0] << shift
) | (reg
->mant
.m32
[1] >> (32 - shift
));
70 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] << shift
);
72 asm ("bfffo %1{#0,#32},%0" : "=d" (shift
) : "dm" (reg
->mant
.m32
[1]));
73 reg
->mant
.m32
[0] = (reg
->mant
.m32
[1] << shift
);
81 static inline int fp_addmant(struct fp_ext
*dest
, struct fp_ext
*src
)
85 /* we assume here, gcc only insert move and a clr instr */
86 asm volatile ("add.b %1,%0" : "=d,g" (dest
->lowmant
)
87 : "g,d" (src
->lowmant
), "0,0" (dest
->lowmant
));
88 asm volatile ("addx.l %1,%0" : "=d" (dest
->mant
.m32
[1])
89 : "d" (src
->mant
.m32
[1]), "0" (dest
->mant
.m32
[1]));
90 asm volatile ("addx.l %1,%0" : "=d" (dest
->mant
.m32
[0])
91 : "d" (src
->mant
.m32
[0]), "0" (dest
->mant
.m32
[0]));
92 asm volatile ("addx.l %0,%0" : "=d" (carry
) : "0" (0));
97 static inline int fp_addcarry(struct fp_ext
*reg
)
99 if (++reg
->exp
== 0x7fff) {
101 fp_set_sr(FPSR_EXC_INEX2
);
103 fp_set_sr(FPSR_EXC_OVFL
);
106 reg
->lowmant
= (reg
->mant
.m32
[1] << 7) | (reg
->lowmant
? 1 : 0);
107 reg
->mant
.m32
[1] = (reg
->mant
.m32
[1] >> 1) |
108 (reg
->mant
.m32
[0] << 31);
109 reg
->mant
.m32
[0] = (reg
->mant
.m32
[0] >> 1) | 0x80000000;
114 static inline void fp_submant(struct fp_ext
*dest
, struct fp_ext
*src1
,
117 /* we assume here, gcc only insert move and a clr instr */
118 asm volatile ("sub.b %1,%0" : "=d,g" (dest
->lowmant
)
119 : "g,d" (src2
->lowmant
), "0,0" (src1
->lowmant
));
120 asm volatile ("subx.l %1,%0" : "=d" (dest
->mant
.m32
[1])
121 : "d" (src2
->mant
.m32
[1]), "0" (src1
->mant
.m32
[1]));
122 asm volatile ("subx.l %1,%0" : "=d" (dest
->mant
.m32
[0])
123 : "d" (src2
->mant
.m32
[0]), "0" (src1
->mant
.m32
[0]));
126 #define fp_mul64(desth, destl, src1, src2) ({ \
127 asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \
128 : "dm" (src1), "0" (src2)); \
130 #define fp_div64(quot, rem, srch, srcl, div) \
131 asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \
132 : "dm" (div), "1" (srch), "0" (srcl))
133 #define fp_add64(dest1, dest2, src1, src2) ({ \
134 asm ("add.l %1,%0" : "=d,dm" (dest2) \
135 : "dm,d" (src2), "0,0" (dest2)); \
136 asm ("addx.l %1,%0" : "=d" (dest1) \
137 : "d" (src1), "0" (dest1)); \
139 #define fp_addx96(dest, src) ({ \
140 /* we assume here, gcc only insert move and a clr instr */ \
141 asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \
142 : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \
143 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \
144 : "d" (temp.m32[0]), "0" (dest->m32[1])); \
145 asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \
146 : "d" (0), "0" (dest->m32[0])); \
148 #define fp_sub64(dest, src) ({ \
149 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \
150 : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \
151 asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \
152 : "d" (src.m32[0]), "0" (dest.m32[0])); \
154 #define fp_sub96c(dest, srch, srcm, srcl) ({ \
156 asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \
157 : "dm,d" (srcl), "0,0" (dest.m32[2])); \
158 asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \
159 : "d" (srcm), "0" (dest.m32[1])); \
160 asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \
161 : "d" (srch), "1" (dest.m32[0])); \
165 static inline void fp_multiplymant(union fp_mant128
*dest
, struct fp_ext
*src1
,
168 union fp_mant64 temp
;
170 fp_mul64(dest
->m32
[0], dest
->m32
[1], src1
->mant
.m32
[0], src2
->mant
.m32
[0]);
171 fp_mul64(dest
->m32
[2], dest
->m32
[3], src1
->mant
.m32
[1], src2
->mant
.m32
[1]);
173 fp_mul64(temp
.m32
[0], temp
.m32
[1], src1
->mant
.m32
[0], src2
->mant
.m32
[1]);
174 fp_addx96(dest
, temp
);
176 fp_mul64(temp
.m32
[0], temp
.m32
[1], src1
->mant
.m32
[1], src2
->mant
.m32
[0]);
177 fp_addx96(dest
, temp
);
180 static inline void fp_dividemant(union fp_mant128
*dest
, struct fp_ext
*src
,
183 union fp_mant128 tmp
;
184 union fp_mant64 tmp64
;
185 unsigned long *mantp
= dest
->m32
;
186 unsigned long fix
, rem
, first
, dummy
;
189 /* the algorithm below requires dest to be smaller than div,
190 but both have the high bit set */
191 if (src
->mant
.m64
>= div
->mant
.m64
) {
192 fp_sub64(src
->mant
, div
->mant
);
198 /* basic idea behind this algorithm: we can't divide two 64bit numbers
199 (AB/CD) directly, but we can calculate AB/C0, but this means this
200 quotient is off by C0/CD, so we have to multiply the first result
201 to fix the result, after that we have nearly the correct result
202 and only a few corrections are needed. */
204 /* C0/CD can be precalculated, but it's an 64bit division again, but
205 we can make it a bit easier, by dividing first through C so we get
206 10/1D and now only a single shift and the value fits into 32bit. */
208 dummy
= div
->mant
.m32
[1] / div
->mant
.m32
[0] + 1;
209 dummy
= (dummy
>> 1) | fix
;
210 fp_div64(fix
, dummy
, fix
, 0, dummy
);
213 for (i
= 0; i
< 3; i
++, mantp
++) {
214 if (src
->mant
.m32
[0] == div
->mant
.m32
[0]) {
215 fp_div64(first
, rem
, 0, src
->mant
.m32
[1], div
->mant
.m32
[0]);
217 fp_mul64(*mantp
, dummy
, first
, fix
);
220 fp_div64(first
, rem
, src
->mant
.m32
[0], src
->mant
.m32
[1], div
->mant
.m32
[0]);
222 fp_mul64(*mantp
, dummy
, first
, fix
);
225 fp_mul64(tmp
.m32
[0], tmp
.m32
[1], div
->mant
.m32
[0], first
- *mantp
);
226 fp_add64(tmp
.m32
[0], tmp
.m32
[1], 0, rem
);
229 fp_mul64(tmp64
.m32
[0], tmp64
.m32
[1], *mantp
, div
->mant
.m32
[1]);
230 fp_sub96c(tmp
, 0, tmp64
.m32
[0], tmp64
.m32
[1]);
232 src
->mant
.m32
[0] = tmp
.m32
[1];
233 src
->mant
.m32
[1] = tmp
.m32
[2];
235 while (!fp_sub96c(tmp
, 0, div
->mant
.m32
[0], div
->mant
.m32
[1])) {
236 src
->mant
.m32
[0] = tmp
.m32
[1];
237 src
->mant
.m32
[1] = tmp
.m32
[2];
243 static inline void fp_putmant128(struct fp_ext
*dest
, union fp_mant128
*src
,
250 dest
->mant
.m64
= src
->m64
[0];
251 dest
->lowmant
= src
->m32
[2] >> 24;
252 if (src
->m32
[3] || (src
->m32
[2] << 8))
256 asm volatile ("lsl.l #1,%0"
257 : "=d" (tmp
) : "0" (src
->m32
[2]));
258 asm volatile ("roxl.l #1,%0"
259 : "=d" (dest
->mant
.m32
[1]) : "0" (src
->m32
[1]));
260 asm volatile ("roxl.l #1,%0"
261 : "=d" (dest
->mant
.m32
[0]) : "0" (src
->m32
[0]));
262 dest
->lowmant
= tmp
>> 24;
263 if (src
->m32
[3] || (tmp
<< 8))
267 asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
268 : "=d" (dest
->mant
.m32
[0])
269 : "d" (src
->m32
[0]), "0" (src
->m32
[1]));
270 asm volatile ("roxr.l #1,%0"
271 : "=d" (dest
->mant
.m32
[1]) : "0" (src
->m32
[2]));
272 asm volatile ("roxr.l #1,%0"
273 : "=d" (tmp
) : "0" (src
->m32
[3]));
274 dest
->lowmant
= tmp
>> 24;
275 if (src
->m32
[3] << 7)
279 dest
->mant
.m32
[0] = src
->m32
[1];
280 dest
->mant
.m32
[1] = src
->m32
[2];
281 dest
->lowmant
= src
->m32
[3] >> 24;
282 if (src
->m32
[3] << 8)
288 #endif /* MULTI_ARITH_H */