WIP FPC-III support
[linux/fpc-iii.git] / arch / microblaze / mm / fault.c
blobb3fed2cecf84be2c36f5c43ad0715b9c1cc3f126
1 /*
2 * arch/microblaze/mm/fault.c
4 * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
6 * Derived from "arch/ppc/mm/fault.c"
7 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Modified by Cort Dougan and Paul Mackerras.
14 * This file is subject to the terms and conditions of the GNU General
15 * Public License. See the file COPYING in the main directory of this
16 * archive for more details.
20 #include <linux/extable.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/perf_event.h>
33 #include <asm/page.h>
34 #include <asm/mmu.h>
35 #include <linux/mmu_context.h>
36 #include <linux/uaccess.h>
37 #include <asm/exceptions.h>
39 static unsigned long pte_misses; /* updated by do_page_fault() */
40 static unsigned long pte_errors; /* updated by do_page_fault() */
43 * Check whether the instruction at regs->pc is a store using
44 * an update addressing form which will update r1.
46 static int store_updates_sp(struct pt_regs *regs)
48 unsigned int inst;
50 if (get_user(inst, (unsigned int __user *)regs->pc))
51 return 0;
52 /* check for 1 in the rD field */
53 if (((inst >> 21) & 0x1f) != 1)
54 return 0;
55 /* check for store opcodes */
56 if ((inst & 0xd0000000) == 0xd0000000)
57 return 1;
58 return 0;
63 * bad_page_fault is called when we have a bad access from the kernel.
64 * It is called from do_page_fault above and from some of the procedures
65 * in traps.c.
67 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
69 const struct exception_table_entry *fixup;
70 /* MS: no context */
71 /* Are we prepared to handle this fault? */
72 fixup = search_exception_tables(regs->pc);
73 if (fixup) {
74 regs->pc = fixup->fixup;
75 return;
78 /* kernel has accessed a bad area */
79 die("kernel access of bad area", regs, sig);
83 * The error_code parameter is ESR for a data fault,
84 * 0 for an instruction fault.
86 void do_page_fault(struct pt_regs *regs, unsigned long address,
87 unsigned long error_code)
89 struct vm_area_struct *vma;
90 struct mm_struct *mm = current->mm;
91 int code = SEGV_MAPERR;
92 int is_write = error_code & ESR_S;
93 vm_fault_t fault;
94 unsigned int flags = FAULT_FLAG_DEFAULT;
96 regs->ear = address;
97 regs->esr = error_code;
99 /* On a kernel SLB miss we can only check for a valid exception entry */
100 if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) {
101 pr_warn("kernel task_size exceed");
102 _exception(SIGSEGV, regs, code, address);
105 /* for instr TLB miss and instr storage exception ESR_S is undefined */
106 if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
107 is_write = 0;
109 if (unlikely(faulthandler_disabled() || !mm)) {
110 if (kernel_mode(regs))
111 goto bad_area_nosemaphore;
113 /* faulthandler_disabled() in user mode is really bad,
114 as is current->mm == NULL. */
115 pr_emerg("Page fault in user mode with faulthandler_disabled(), mm = %p\n",
116 mm);
117 pr_emerg("r15 = %lx MSR = %lx\n",
118 regs->r15, regs->msr);
119 die("Weird page fault", regs, SIGSEGV);
122 if (user_mode(regs))
123 flags |= FAULT_FLAG_USER;
125 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
127 /* When running in the kernel we expect faults to occur only to
128 * addresses in user space. All other faults represent errors in the
129 * kernel and should generate an OOPS. Unfortunately, in the case of an
130 * erroneous fault occurring in a code path which already holds mmap_lock
131 * we will deadlock attempting to validate the fault against the
132 * address space. Luckily the kernel only validly references user
133 * space from well defined areas of code, which are listed in the
134 * exceptions table.
136 * As the vast majority of faults will be valid we will only perform
137 * the source reference check when there is a possibility of a deadlock.
138 * Attempt to lock the address space, if we cannot we then validate the
139 * source. If this is invalid we can skip the address space check,
140 * thus avoiding the deadlock.
142 if (unlikely(!mmap_read_trylock(mm))) {
143 if (kernel_mode(regs) && !search_exception_tables(regs->pc))
144 goto bad_area_nosemaphore;
146 retry:
147 mmap_read_lock(mm);
150 vma = find_vma(mm, address);
151 if (unlikely(!vma))
152 goto bad_area;
154 if (vma->vm_start <= address)
155 goto good_area;
157 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
158 goto bad_area;
160 if (unlikely(!is_write))
161 goto bad_area;
164 * N.B. The ABI allows programs to access up to
165 * a few hundred bytes below the stack pointer (TBD).
166 * The kernel signal delivery code writes up to about 1.5kB
167 * below the stack pointer (r1) before decrementing it.
168 * The exec code can write slightly over 640kB to the stack
169 * before setting the user r1. Thus we allow the stack to
170 * expand to 1MB without further checks.
172 if (unlikely(address + 0x100000 < vma->vm_end)) {
174 /* get user regs even if this fault is in kernel mode */
175 struct pt_regs *uregs = current->thread.regs;
176 if (uregs == NULL)
177 goto bad_area;
180 * A user-mode access to an address a long way below
181 * the stack pointer is only valid if the instruction
182 * is one which would update the stack pointer to the
183 * address accessed if the instruction completed,
184 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
185 * (or the byte, halfword, float or double forms).
187 * If we don't check this then any write to the area
188 * between the last mapped region and the stack will
189 * expand the stack rather than segfaulting.
191 if (address + 2048 < uregs->r1
192 && (kernel_mode(regs) || !store_updates_sp(regs)))
193 goto bad_area;
195 if (expand_stack(vma, address))
196 goto bad_area;
198 good_area:
199 code = SEGV_ACCERR;
201 /* a write */
202 if (unlikely(is_write)) {
203 if (unlikely(!(vma->vm_flags & VM_WRITE)))
204 goto bad_area;
205 flags |= FAULT_FLAG_WRITE;
206 /* a read */
207 } else {
208 /* protection fault */
209 if (unlikely(error_code & 0x08000000))
210 goto bad_area;
211 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC))))
212 goto bad_area;
216 * If for any reason at all we couldn't handle the fault,
217 * make sure we exit gracefully rather than endlessly redo
218 * the fault.
220 fault = handle_mm_fault(vma, address, flags, regs);
222 if (fault_signal_pending(fault, regs))
223 return;
225 if (unlikely(fault & VM_FAULT_ERROR)) {
226 if (fault & VM_FAULT_OOM)
227 goto out_of_memory;
228 else if (fault & VM_FAULT_SIGSEGV)
229 goto bad_area;
230 else if (fault & VM_FAULT_SIGBUS)
231 goto do_sigbus;
232 BUG();
235 if (flags & FAULT_FLAG_ALLOW_RETRY) {
236 if (fault & VM_FAULT_RETRY) {
237 flags |= FAULT_FLAG_TRIED;
240 * No need to mmap_read_unlock(mm) as we would
241 * have already released it in __lock_page_or_retry
242 * in mm/filemap.c.
245 goto retry;
249 mmap_read_unlock(mm);
252 * keep track of tlb+htab misses that are good addrs but
253 * just need pte's created via handle_mm_fault()
254 * -- Cort
256 pte_misses++;
257 return;
259 bad_area:
260 mmap_read_unlock(mm);
262 bad_area_nosemaphore:
263 pte_errors++;
265 /* User mode accesses cause a SIGSEGV */
266 if (user_mode(regs)) {
267 _exception(SIGSEGV, regs, code, address);
268 return;
271 bad_page_fault(regs, address, SIGSEGV);
272 return;
275 * We ran out of memory, or some other thing happened to us that made
276 * us unable to handle the page fault gracefully.
278 out_of_memory:
279 mmap_read_unlock(mm);
280 if (!user_mode(regs))
281 bad_page_fault(regs, address, SIGKILL);
282 else
283 pagefault_out_of_memory();
284 return;
286 do_sigbus:
287 mmap_read_unlock(mm);
288 if (user_mode(regs)) {
289 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
290 return;
292 bad_page_fault(regs, address, SIGBUS);