1 // SPDX-License-Identifier: GPL-2.0-only
3 * IEEE754 floating point arithmetic
4 * single precision: MADDF.f (Fused Multiply Add)
5 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
7 * MIPS floating point support
8 * Copyright (C) 2015 Imagination Technologies, Ltd.
9 * Author: Markos Chandras <markos.chandras@imgtec.com>
12 #include "ieee754sp.h"
15 static union ieee754sp
_sp_maddf(union ieee754sp z
, union ieee754sp x
,
16 union ieee754sp y
, enum maddf_flags flags
)
40 if (flags
& MADDF_NEGATE_PRODUCT
)
42 if (flags
& MADDF_NEGATE_ADDITION
)
46 * Handle the cases when at least one of x, y or z is a NaN.
47 * Order of precedence is sNaN, qNaN and z, x, y.
49 if (zc
== IEEE754_CLASS_SNAN
)
50 return ieee754sp_nanxcpt(z
);
51 if (xc
== IEEE754_CLASS_SNAN
)
52 return ieee754sp_nanxcpt(x
);
53 if (yc
== IEEE754_CLASS_SNAN
)
54 return ieee754sp_nanxcpt(y
);
55 if (zc
== IEEE754_CLASS_QNAN
)
57 if (xc
== IEEE754_CLASS_QNAN
)
59 if (yc
== IEEE754_CLASS_QNAN
)
62 if (zc
== IEEE754_CLASS_DNORM
)
64 /* ZERO z cases are handled separately below */
66 switch (CLPAIR(xc
, yc
)) {
72 case CLPAIR(IEEE754_CLASS_INF
, IEEE754_CLASS_ZERO
):
73 case CLPAIR(IEEE754_CLASS_ZERO
, IEEE754_CLASS_INF
):
74 ieee754_setcx(IEEE754_INVALID_OPERATION
);
75 return ieee754sp_indef();
77 case CLPAIR(IEEE754_CLASS_NORM
, IEEE754_CLASS_INF
):
78 case CLPAIR(IEEE754_CLASS_DNORM
, IEEE754_CLASS_INF
):
79 case CLPAIR(IEEE754_CLASS_INF
, IEEE754_CLASS_NORM
):
80 case CLPAIR(IEEE754_CLASS_INF
, IEEE754_CLASS_DNORM
):
81 case CLPAIR(IEEE754_CLASS_INF
, IEEE754_CLASS_INF
):
82 if ((zc
== IEEE754_CLASS_INF
) && (zs
!= rs
)) {
84 * Cases of addition of infinities with opposite signs
85 * or subtraction of infinities with same signs.
87 ieee754_setcx(IEEE754_INVALID_OPERATION
);
88 return ieee754sp_indef();
91 * z is here either not an infinity, or an infinity having the
92 * same sign as product (x*y). The result must be an infinity,
93 * and its sign is determined only by the sign of product (x*y).
95 return ieee754sp_inf(rs
);
97 case CLPAIR(IEEE754_CLASS_ZERO
, IEEE754_CLASS_ZERO
):
98 case CLPAIR(IEEE754_CLASS_ZERO
, IEEE754_CLASS_NORM
):
99 case CLPAIR(IEEE754_CLASS_ZERO
, IEEE754_CLASS_DNORM
):
100 case CLPAIR(IEEE754_CLASS_NORM
, IEEE754_CLASS_ZERO
):
101 case CLPAIR(IEEE754_CLASS_DNORM
, IEEE754_CLASS_ZERO
):
102 if (zc
== IEEE754_CLASS_INF
)
103 return ieee754sp_inf(zs
);
104 if (zc
== IEEE754_CLASS_ZERO
) {
105 /* Handle cases +0 + (-0) and similar ones. */
108 * Cases of addition of zeros of equal signs
109 * or subtraction of zeroes of opposite signs.
110 * The sign of the resulting zero is in any
111 * such case determined only by the sign of z.
115 return ieee754sp_zero(ieee754_csr
.rm
== FPU_CSR_RD
);
117 /* x*y is here 0, and z is not 0, so just return z */
120 case CLPAIR(IEEE754_CLASS_DNORM
, IEEE754_CLASS_DNORM
):
123 case CLPAIR(IEEE754_CLASS_NORM
, IEEE754_CLASS_DNORM
):
124 if (zc
== IEEE754_CLASS_INF
)
125 return ieee754sp_inf(zs
);
129 case CLPAIR(IEEE754_CLASS_DNORM
, IEEE754_CLASS_NORM
):
130 if (zc
== IEEE754_CLASS_INF
)
131 return ieee754sp_inf(zs
);
135 case CLPAIR(IEEE754_CLASS_NORM
, IEEE754_CLASS_NORM
):
136 if (zc
== IEEE754_CLASS_INF
)
137 return ieee754sp_inf(zs
);
138 /* continue to real computations */
141 /* Finally get to do some computation */
144 * Do the multiplication bit first
146 * rm = xm * ym, re = xe + ye basically
148 * At this point xm and ym should have been normalized.
151 /* rm = xm * ym, re = xe+ye basically */
152 assert(xm
& SP_HIDDEN_BIT
);
153 assert(ym
& SP_HIDDEN_BIT
);
157 /* Multiple 24 bit xm and ym to give 48 bit results */
158 rm64
= (uint64_t)xm
* ym
;
160 /* Shunt to top of word */
163 /* Put explicit bit at bit 62 if necessary */
164 if ((int64_t) rm64
< 0) {
169 assert(rm64
& (1 << 62));
171 if (zc
== IEEE754_CLASS_ZERO
) {
173 * Move explicit bit from bit 62 to bit 26 since the
174 * ieee754sp_format code expects the mantissa to be
175 * 27 bits wide (24 + 3 rounding bits).
177 rm
= XSPSRS64(rm64
, (62 - 26));
178 return ieee754sp_format(rs
, re
, rm
);
181 /* Move explicit bit from bit 23 to bit 62 */
182 zm64
= (uint64_t)zm
<< (62 - 23);
183 assert(zm64
& (1 << 62));
185 /* Make the exponents the same */
188 * Have to shift r fraction right to align.
191 rm64
= XSPSRS64(rm64
, s
);
193 } else if (re
> ze
) {
195 * Have to shift z fraction right to align.
198 zm64
= XSPSRS64(zm64
, s
);
202 assert(ze
<= SP_EMAX
);
204 /* Do the addition */
207 * Generate 64 bit result by adding two 63 bit numbers
208 * leaving result in zm64, zs and ze.
211 if ((int64_t)zm64
< 0) { /* carry out */
212 zm64
= XSPSRS1(zm64
);
223 return ieee754sp_zero(ieee754_csr
.rm
== FPU_CSR_RD
);
226 * Put explicit bit at bit 62 if necessary.
228 while ((zm64
>> 62) == 0) {
235 * Move explicit bit from bit 62 to bit 26 since the
236 * ieee754sp_format code expects the mantissa to be
237 * 27 bits wide (24 + 3 rounding bits).
239 zm
= XSPSRS64(zm64
, (62 - 26));
241 return ieee754sp_format(zs
, ze
, zm
);
244 union ieee754sp
ieee754sp_maddf(union ieee754sp z
, union ieee754sp x
,
247 return _sp_maddf(z
, x
, y
, 0);
250 union ieee754sp
ieee754sp_msubf(union ieee754sp z
, union ieee754sp x
,
253 return _sp_maddf(z
, x
, y
, MADDF_NEGATE_PRODUCT
);
256 union ieee754sp
ieee754sp_madd(union ieee754sp z
, union ieee754sp x
,
259 return _sp_maddf(z
, x
, y
, 0);
262 union ieee754sp
ieee754sp_msub(union ieee754sp z
, union ieee754sp x
,
265 return _sp_maddf(z
, x
, y
, MADDF_NEGATE_ADDITION
);
268 union ieee754sp
ieee754sp_nmadd(union ieee754sp z
, union ieee754sp x
,
271 return _sp_maddf(z
, x
, y
, MADDF_NEGATE_PRODUCT
|MADDF_NEGATE_ADDITION
);
274 union ieee754sp
ieee754sp_nmsub(union ieee754sp z
, union ieee754sp x
,
277 return _sp_maddf(z
, x
, y
, MADDF_NEGATE_PRODUCT
);