1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Parisc performance counters
4 * Copyright (C) 2001 Randolph Chung <tausq@debian.org>
6 * This code is derived, with permission, from HP/UX sources.
10 * Edited comment from original sources:
12 * This driver programs the PCX-U/PCX-W performance counters
13 * on the PA-RISC 2.0 chips. The driver keeps all images now
14 * internally to the kernel to hopefully eliminate the possibility
15 * of a bad image halting the CPU. Also, there are different
16 * images for the PCX-W and later chips vs the PCX-U chips.
18 * Only 1 process is allowed to access the driver at any time,
19 * so the only protection that is needed is at open and close.
20 * A variable "perf_enabled" is used to hold the state of the
21 * driver. The spinlock "perf_lock" is used to protect the
22 * modification of the state during open/close operations so
23 * multiple processes don't get into the driver simultaneously.
25 * This driver accesses the processor directly vs going through
26 * the PDC INTRIGUE calls. This is done to eliminate bugs introduced
27 * in various PDC revisions. The code is much more maintainable
28 * and reliable this way vs having to debug on every version of PDC
32 #include <linux/capability.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/miscdevice.h>
36 #include <linux/spinlock.h>
38 #include <linux/uaccess.h>
40 #include <asm/parisc-device.h>
41 #include <asm/processor.h>
42 #include <asm/runway.h>
43 #include <asm/io.h> /* for __raw_read() */
45 #include "perf_images.h"
47 #define MAX_RDR_WORDS 24
48 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */
50 /* definition of RDR regs */
54 uint8_t write_control
;
57 static int perf_processor_interface __read_mostly
= UNKNOWN_INTF
;
58 static int perf_enabled __read_mostly
;
59 static DEFINE_SPINLOCK(perf_lock
);
60 struct parisc_device
*cpu_device __read_mostly
;
62 /* RDRs to write for PCX-W */
63 static const int perf_rdrs_W
[] =
64 { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
66 /* RDRs to write for PCX-U */
67 static const int perf_rdrs_U
[] =
68 { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
70 /* RDR register descriptions for PCX-W */
71 static const struct rdr_tbl_ent perf_rdr_tbl_W
[] = {
72 { 19, 1, 8 }, /* RDR 0 */
73 { 16, 1, 16 }, /* RDR 1 */
74 { 72, 2, 0 }, /* RDR 2 */
75 { 81, 2, 0 }, /* RDR 3 */
76 { 328, 6, 0 }, /* RDR 4 */
77 { 160, 3, 0 }, /* RDR 5 */
78 { 336, 6, 0 }, /* RDR 6 */
79 { 164, 3, 0 }, /* RDR 7 */
80 { 0, 0, 0 }, /* RDR 8 */
81 { 35, 1, 0 }, /* RDR 9 */
82 { 6, 1, 0 }, /* RDR 10 */
83 { 18, 1, 0 }, /* RDR 11 */
84 { 13, 1, 0 }, /* RDR 12 */
85 { 8, 1, 0 }, /* RDR 13 */
86 { 8, 1, 0 }, /* RDR 14 */
87 { 8, 1, 0 }, /* RDR 15 */
88 { 1530, 24, 0 }, /* RDR 16 */
89 { 16, 1, 0 }, /* RDR 17 */
90 { 4, 1, 0 }, /* RDR 18 */
91 { 0, 0, 0 }, /* RDR 19 */
92 { 152, 3, 24 }, /* RDR 20 */
93 { 152, 3, 24 }, /* RDR 21 */
94 { 233, 4, 48 }, /* RDR 22 */
95 { 233, 4, 48 }, /* RDR 23 */
96 { 71, 2, 0 }, /* RDR 24 */
97 { 71, 2, 0 }, /* RDR 25 */
98 { 11, 1, 0 }, /* RDR 26 */
99 { 18, 1, 0 }, /* RDR 27 */
100 { 128, 2, 0 }, /* RDR 28 */
101 { 0, 0, 0 }, /* RDR 29 */
102 { 16, 1, 0 }, /* RDR 30 */
103 { 16, 1, 0 }, /* RDR 31 */
106 /* RDR register descriptions for PCX-U */
107 static const struct rdr_tbl_ent perf_rdr_tbl_U
[] = {
108 { 19, 1, 8 }, /* RDR 0 */
109 { 32, 1, 16 }, /* RDR 1 */
110 { 20, 1, 0 }, /* RDR 2 */
111 { 0, 0, 0 }, /* RDR 3 */
112 { 344, 6, 0 }, /* RDR 4 */
113 { 176, 3, 0 }, /* RDR 5 */
114 { 336, 6, 0 }, /* RDR 6 */
115 { 0, 0, 0 }, /* RDR 7 */
116 { 0, 0, 0 }, /* RDR 8 */
117 { 0, 0, 0 }, /* RDR 9 */
118 { 28, 1, 0 }, /* RDR 10 */
119 { 33, 1, 0 }, /* RDR 11 */
120 { 0, 0, 0 }, /* RDR 12 */
121 { 230, 4, 0 }, /* RDR 13 */
122 { 32, 1, 0 }, /* RDR 14 */
123 { 128, 2, 0 }, /* RDR 15 */
124 { 1494, 24, 0 }, /* RDR 16 */
125 { 18, 1, 0 }, /* RDR 17 */
126 { 4, 1, 0 }, /* RDR 18 */
127 { 0, 0, 0 }, /* RDR 19 */
128 { 158, 3, 24 }, /* RDR 20 */
129 { 158, 3, 24 }, /* RDR 21 */
130 { 194, 4, 48 }, /* RDR 22 */
131 { 194, 4, 48 }, /* RDR 23 */
132 { 71, 2, 0 }, /* RDR 24 */
133 { 71, 2, 0 }, /* RDR 25 */
134 { 28, 1, 0 }, /* RDR 26 */
135 { 33, 1, 0 }, /* RDR 27 */
136 { 88, 2, 0 }, /* RDR 28 */
137 { 32, 1, 0 }, /* RDR 29 */
138 { 24, 1, 0 }, /* RDR 30 */
139 { 16, 1, 0 }, /* RDR 31 */
143 * A non-zero write_control in the above tables is a byte offset into
146 static const uint64_t perf_bitmasks
[] = {
147 0x0000000000000000ul
, /* first dbl word must be zero */
148 0xfdffe00000000000ul
, /* RDR0 bitmask */
149 0x003f000000000000ul
, /* RDR1 bitmask */
150 0x00fffffffffffffful
, /* RDR20-RDR21 bitmask (152 bits) */
151 0xfffffffffffffffful
,
152 0xfffffffc00000000ul
,
153 0xfffffffffffffffful
, /* RDR22-RDR23 bitmask (233 bits) */
154 0xfffffffffffffffful
,
155 0xfffffffffffffffcul
,
160 * Write control bitmasks for Pa-8700 processor given
161 * some things have changed slightly.
163 static const uint64_t perf_bitmasks_piranha
[] = {
164 0x0000000000000000ul
, /* first dbl word must be zero */
165 0xfdffe00000000000ul
, /* RDR0 bitmask */
166 0x003f000000000000ul
, /* RDR1 bitmask */
167 0x00fffffffffffffful
, /* RDR20-RDR21 bitmask (158 bits) */
168 0xfffffffffffffffful
,
169 0xfffffffc00000000ul
,
170 0xfffffffffffffffful
, /* RDR22-RDR23 bitmask (210 bits) */
171 0xfffffffffffffffful
,
172 0xfffffffffffffffful
,
176 static const uint64_t *bitmask_array
; /* array of bitmasks to use */
178 /******************************************************************************
179 * Function Prototypes
180 *****************************************************************************/
181 static int perf_config(uint32_t *image_ptr
);
182 static int perf_release(struct inode
*inode
, struct file
*file
);
183 static int perf_open(struct inode
*inode
, struct file
*file
);
184 static ssize_t
perf_read(struct file
*file
, char __user
*buf
, size_t cnt
, loff_t
*ppos
);
185 static ssize_t
perf_write(struct file
*file
, const char __user
*buf
,
186 size_t count
, loff_t
*ppos
);
187 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
188 static void perf_start_counters(void);
189 static int perf_stop_counters(uint32_t *raddr
);
190 static const struct rdr_tbl_ent
* perf_rdr_get_entry(uint32_t rdr_num
);
191 static int perf_rdr_read_ubuf(uint32_t rdr_num
, uint64_t *buffer
);
192 static int perf_rdr_clear(uint32_t rdr_num
);
193 static int perf_write_image(uint64_t *memaddr
);
194 static void perf_rdr_write(uint32_t rdr_num
, uint64_t *buffer
);
196 /* External Assembly Routines */
197 extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num
, uint16_t width
);
198 extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num
, uint16_t width
);
199 extern void perf_rdr_shift_out_W (uint32_t rdr_num
, uint64_t buffer
);
200 extern void perf_rdr_shift_out_U (uint32_t rdr_num
, uint64_t buffer
);
201 extern void perf_intrigue_enable_perf_counters (void);
202 extern void perf_intrigue_disable_perf_counters (void);
204 /******************************************************************************
205 * Function Definitions
206 *****************************************************************************/
212 * Configure the cpu with a given data image. First turn off the counters,
213 * then download the image, then turn the counters back on.
215 static int perf_config(uint32_t *image_ptr
)
220 /* Stop the counters*/
221 error
= perf_stop_counters(raddr
);
223 printk("perf_config: perf_stop_counters = %ld\n", error
);
227 printk("Preparing to write image\n");
228 /* Write the image to the chip */
229 error
= perf_write_image((uint64_t *)image_ptr
);
231 printk("perf_config: DOWNLOAD = %ld\n", error
);
235 printk("Preparing to start counters\n");
237 /* Start the counters */
238 perf_start_counters();
240 return sizeof(uint32_t);
244 * Open the device and initialize all of its memory. The device is only
245 * opened once, but can be "queried" by multiple processes that know its
248 static int perf_open(struct inode
*inode
, struct file
*file
)
250 spin_lock(&perf_lock
);
252 spin_unlock(&perf_lock
);
256 spin_unlock(&perf_lock
);
264 static int perf_release(struct inode
*inode
, struct file
*file
)
266 spin_lock(&perf_lock
);
268 spin_unlock(&perf_lock
);
274 * Read does nothing for this driver
276 static ssize_t
perf_read(struct file
*file
, char __user
*buf
, size_t cnt
, loff_t
*ppos
)
284 * This routine downloads the image to the chip. It must be
285 * called on the processor that the download should happen
288 static ssize_t
perf_write(struct file
*file
, const char __user
*buf
,
289 size_t count
, loff_t
*ppos
)
293 uint32_t interface_type
;
296 if (perf_processor_interface
== ONYX_INTF
)
297 image_size
= PCXU_IMAGE_SIZE
;
298 else if (perf_processor_interface
== CUDA_INTF
)
299 image_size
= PCXW_IMAGE_SIZE
;
303 if (!perfmon_capable())
306 if (count
!= sizeof(uint32_t))
309 if (copy_from_user(&image_type
, buf
, sizeof(uint32_t)))
312 /* Get the interface type and test type */
313 interface_type
= (image_type
>> 16) & 0xffff;
314 test
= (image_type
& 0xffff);
316 /* Make sure everything makes sense */
318 /* First check the machine type is correct for
319 the requested image */
320 if (((perf_processor_interface
== CUDA_INTF
) &&
321 (interface_type
!= CUDA_INTF
)) ||
322 ((perf_processor_interface
== ONYX_INTF
) &&
323 (interface_type
!= ONYX_INTF
)))
326 /* Next check to make sure the requested image
328 if (((interface_type
== CUDA_INTF
) &&
329 (test
>= MAX_CUDA_IMAGES
)) ||
330 ((interface_type
== ONYX_INTF
) &&
331 (test
>= MAX_ONYX_IMAGES
)))
334 /* Copy the image into the processor */
335 if (interface_type
== CUDA_INTF
)
336 return perf_config(cuda_images
[test
]);
338 return perf_config(onyx_images
[test
]);
344 * Patch the images that need to know the IVA addresses.
346 static void perf_patch_images(void)
350 * NOTE: this routine is VERY specific to the current TLB image.
351 * If the image is changed, this routine might also need to be changed.
353 extern void $
i_itlb_miss_2_0();
354 extern void $
i_dtlb_miss_2_0();
355 extern void PA2_0_iva();
358 * We can only use the lower 32-bits, the upper 32-bits should be 0
359 * anyway given this is in the kernel
361 uint32_t itlb_addr
= (uint32_t)&($i_itlb_miss_2_0
);
362 uint32_t dtlb_addr
= (uint32_t)&($i_dtlb_miss_2_0
);
363 uint32_t IVAaddress
= (uint32_t)&PA2_0_iva
;
365 if (perf_processor_interface
== ONYX_INTF
) {
366 /* clear last 2 bytes */
367 onyx_images
[TLBMISS
][15] &= 0xffffff00;
369 onyx_images
[TLBMISS
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
370 onyx_images
[TLBMISS
][16] = (dtlb_addr
<< 8)&0xffffff00;
371 onyx_images
[TLBMISS
][17] = itlb_addr
;
373 /* clear last 2 bytes */
374 onyx_images
[TLBHANDMISS
][15] &= 0xffffff00;
376 onyx_images
[TLBHANDMISS
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
377 onyx_images
[TLBHANDMISS
][16] = (dtlb_addr
<< 8)&0xffffff00;
378 onyx_images
[TLBHANDMISS
][17] = itlb_addr
;
380 /* clear last 2 bytes */
381 onyx_images
[BIG_CPI
][15] &= 0xffffff00;
383 onyx_images
[BIG_CPI
][15] |= (0x000000ff&((dtlb_addr
) >> 24));
384 onyx_images
[BIG_CPI
][16] = (dtlb_addr
<< 8)&0xffffff00;
385 onyx_images
[BIG_CPI
][17] = itlb_addr
;
387 onyx_images
[PANIC
][15] &= 0xffffff00; /* clear last 2 bytes */
388 onyx_images
[PANIC
][15] |= (0x000000ff&((IVAaddress
) >> 24)); /* set 2 bytes */
389 onyx_images
[PANIC
][16] = (IVAaddress
<< 8)&0xffffff00;
392 } else if (perf_processor_interface
== CUDA_INTF
) {
394 cuda_images
[TLBMISS
][16] =
395 (cuda_images
[TLBMISS
][16]&0xffff0000) |
396 ((dtlb_addr
>> 8)&0x0000ffff);
397 cuda_images
[TLBMISS
][17] =
398 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
399 cuda_images
[TLBMISS
][18] = (itlb_addr
<< 16)&0xffff0000;
401 cuda_images
[TLBHANDMISS
][16] =
402 (cuda_images
[TLBHANDMISS
][16]&0xffff0000) |
403 ((dtlb_addr
>> 8)&0x0000ffff);
404 cuda_images
[TLBHANDMISS
][17] =
405 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
406 cuda_images
[TLBHANDMISS
][18] = (itlb_addr
<< 16)&0xffff0000;
408 cuda_images
[BIG_CPI
][16] =
409 (cuda_images
[BIG_CPI
][16]&0xffff0000) |
410 ((dtlb_addr
>> 8)&0x0000ffff);
411 cuda_images
[BIG_CPI
][17] =
412 ((dtlb_addr
<< 24)&0xff000000) | ((itlb_addr
>> 16)&0x000000ff);
413 cuda_images
[BIG_CPI
][18] = (itlb_addr
<< 16)&0xffff0000;
423 * All routines effect the processor that they are executed on. Thus you
424 * must be running on the processor that you wish to change.
427 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
436 /* Start the counters */
437 perf_start_counters();
441 error_start
= perf_stop_counters(raddr
);
442 if (error_start
!= 0) {
443 printk(KERN_ERR
"perf_off: perf_stop_counters = %ld\n", error_start
);
448 /* copy out the Counters */
449 if (copy_to_user((void __user
*)arg
, raddr
,
450 sizeof (raddr
)) != 0) {
456 case PA_PERF_VERSION
:
457 /* Return the version # */
458 error
= put_user(PERF_VERSION
, (int *)arg
);
468 static const struct file_operations perf_fops
= {
472 .unlocked_ioctl
= perf_ioctl
,
473 .compat_ioctl
= perf_ioctl
,
475 .release
= perf_release
478 static struct miscdevice perf_dev
= {
485 * Initialize the module
487 static int __init
perf_init(void)
491 /* Determine correct processor interface to use */
492 bitmask_array
= perf_bitmasks
;
494 if (boot_cpu_data
.cpu_type
== pcxu
||
495 boot_cpu_data
.cpu_type
== pcxu_
) {
496 perf_processor_interface
= ONYX_INTF
;
497 } else if (boot_cpu_data
.cpu_type
== pcxw
||
498 boot_cpu_data
.cpu_type
== pcxw_
||
499 boot_cpu_data
.cpu_type
== pcxw2
||
500 boot_cpu_data
.cpu_type
== mako
||
501 boot_cpu_data
.cpu_type
== mako2
) {
502 perf_processor_interface
= CUDA_INTF
;
503 if (boot_cpu_data
.cpu_type
== pcxw2
||
504 boot_cpu_data
.cpu_type
== mako
||
505 boot_cpu_data
.cpu_type
== mako2
)
506 bitmask_array
= perf_bitmasks_piranha
;
508 perf_processor_interface
= UNKNOWN_INTF
;
509 printk("Performance monitoring counters not supported on this processor\n");
513 ret
= misc_register(&perf_dev
);
515 printk(KERN_ERR
"Performance monitoring counters: "
516 "cannot register misc device.\n");
520 /* Patch the images to match the system */
523 /* TODO: this only lets us access the first cpu.. what to do for SMP? */
524 cpu_device
= per_cpu(cpu_data
, 0).dev
;
525 printk("Performance monitoring counters enabled for %s\n",
526 per_cpu(cpu_data
, 0).dev
->name
);
530 device_initcall(perf_init
);
533 * perf_start_counters(void)
535 * Start the counters.
537 static void perf_start_counters(void)
539 /* Enable performance monitor counters */
540 perf_intrigue_enable_perf_counters();
546 * Stop the performance counters and save counts
547 * in a per_processor array.
549 static int perf_stop_counters(uint32_t *raddr
)
551 uint64_t userbuf
[MAX_RDR_WORDS
];
553 /* Disable performance counters */
554 perf_intrigue_disable_perf_counters();
556 if (perf_processor_interface
== ONYX_INTF
) {
561 if (!perf_rdr_read_ubuf(16, userbuf
))
564 /* Counter0 is bits 1398 to 1429 */
565 tmp64
= (userbuf
[21] << 22) & 0x00000000ffc00000;
566 tmp64
|= (userbuf
[22] >> 42) & 0x00000000003fffff;
567 /* OR sticky0 (bit 1430) to counter0 bit 32 */
568 tmp64
|= (userbuf
[22] >> 10) & 0x0000000080000000;
569 raddr
[0] = (uint32_t)tmp64
;
571 /* Counter1 is bits 1431 to 1462 */
572 tmp64
= (userbuf
[22] >> 9) & 0x00000000ffffffff;
573 /* OR sticky1 (bit 1463) to counter1 bit 32 */
574 tmp64
|= (userbuf
[22] << 23) & 0x0000000080000000;
575 raddr
[1] = (uint32_t)tmp64
;
577 /* Counter2 is bits 1464 to 1495 */
578 tmp64
= (userbuf
[22] << 24) & 0x00000000ff000000;
579 tmp64
|= (userbuf
[23] >> 40) & 0x0000000000ffffff;
580 /* OR sticky2 (bit 1496) to counter2 bit 32 */
581 tmp64
|= (userbuf
[23] >> 8) & 0x0000000080000000;
582 raddr
[2] = (uint32_t)tmp64
;
584 /* Counter3 is bits 1497 to 1528 */
585 tmp64
= (userbuf
[23] >> 7) & 0x00000000ffffffff;
586 /* OR sticky3 (bit 1529) to counter3 bit 32 */
587 tmp64
|= (userbuf
[23] << 25) & 0x0000000080000000;
588 raddr
[3] = (uint32_t)tmp64
;
591 * Zero out the counters
595 * The counters and sticky-bits comprise the last 132 bits
596 * (1398 - 1529) of RDR16 on a U chip. We'll zero these
597 * out the easy way: zero out last 10 bits of dword 21,
598 * all of dword 22 and 58 bits (plus 6 don't care bits) of
601 userbuf
[21] &= 0xfffffffffffffc00ul
; /* 0 to last 10 bits */
606 * Write back the zeroed bytes + the image given
607 * the read was destructive.
609 perf_rdr_write(16, userbuf
);
613 * Read RDR-15 which contains the counters and sticky bits
615 if (!perf_rdr_read_ubuf(15, userbuf
)) {
620 * Clear out the counters
627 raddr
[0] = (uint32_t)((userbuf
[0] >> 32) & 0x00000000ffffffffUL
);
628 raddr
[1] = (uint32_t)(userbuf
[0] & 0x00000000ffffffffUL
);
629 raddr
[2] = (uint32_t)((userbuf
[1] >> 32) & 0x00000000ffffffffUL
);
630 raddr
[3] = (uint32_t)(userbuf
[1] & 0x00000000ffffffffUL
);
639 * Retrieve a pointer to the description of what this
642 static const struct rdr_tbl_ent
* perf_rdr_get_entry(uint32_t rdr_num
)
644 if (perf_processor_interface
== ONYX_INTF
) {
645 return &perf_rdr_tbl_U
[rdr_num
];
647 return &perf_rdr_tbl_W
[rdr_num
];
654 * Read the RDR value into the buffer specified.
656 static int perf_rdr_read_ubuf(uint32_t rdr_num
, uint64_t *buffer
)
658 uint64_t data
, data_mask
= 0;
659 uint32_t width
, xbits
, i
;
660 const struct rdr_tbl_ent
*tentry
;
662 tentry
= perf_rdr_get_entry(rdr_num
);
663 if ((width
= tentry
->width
) == 0)
666 /* Clear out buffer */
667 i
= tentry
->num_words
;
672 /* Check for bits an even number of 64 */
673 if ((xbits
= width
& 0x03f) != 0) {
675 data_mask
<<= (64 - xbits
);
679 /* Grab all of the data */
680 i
= tentry
->num_words
;
683 if (perf_processor_interface
== ONYX_INTF
) {
684 data
= perf_rdr_shift_in_U(rdr_num
, width
);
686 data
= perf_rdr_shift_in_W(rdr_num
, width
);
689 buffer
[i
] |= (data
<< (64 - xbits
));
691 buffer
[i
-1] |= ((data
>> xbits
) & data_mask
);
704 * Zero out the given RDR register
706 static int perf_rdr_clear(uint32_t rdr_num
)
708 const struct rdr_tbl_ent
*tentry
;
711 tentry
= perf_rdr_get_entry(rdr_num
);
713 if (tentry
->width
== 0) {
717 i
= tentry
->num_words
;
719 if (perf_processor_interface
== ONYX_INTF
) {
720 perf_rdr_shift_out_U(rdr_num
, 0UL);
722 perf_rdr_shift_out_W(rdr_num
, 0UL);
733 * Write the given image out to the processor
735 static int perf_write_image(uint64_t *memaddr
)
737 uint64_t buffer
[MAX_RDR_WORDS
];
740 const uint32_t *intrigue_rdr
;
741 const uint64_t *intrigue_bitmask
;
743 void __iomem
*runway
;
744 const struct rdr_tbl_ent
*tentry
;
747 /* Clear out counters */
748 if (perf_processor_interface
== ONYX_INTF
) {
752 /* Toggle performance monitor */
753 perf_intrigue_enable_perf_counters();
754 perf_intrigue_disable_perf_counters();
756 intrigue_rdr
= perf_rdrs_U
;
759 intrigue_rdr
= perf_rdrs_W
;
763 while (*intrigue_rdr
!= -1) {
764 tentry
= perf_rdr_get_entry(*intrigue_rdr
);
765 perf_rdr_read_ubuf(*intrigue_rdr
, buffer
);
767 dwords
= tentry
->num_words
;
768 if (tentry
->write_control
) {
769 intrigue_bitmask
= &bitmask_array
[tentry
->write_control
>> 3];
771 tmp64
= *intrigue_bitmask
& *memaddr
++;
772 tmp64
|= (~(*intrigue_bitmask
++)) & *bptr
;
777 *bptr
++ = *memaddr
++;
781 perf_rdr_write(*intrigue_rdr
, buffer
);
786 * Now copy out the Runway stuff which is not in RDRs
789 if (cpu_device
== NULL
)
791 printk(KERN_ERR
"write_image: cpu_device not yet initialized!\n");
795 runway
= ioremap(cpu_device
->hpa
.start
, 4096);
797 pr_err("perf_write_image: ioremap failed!\n");
801 /* Merge intrigue bits into Runway STATUS 0 */
802 tmp64
= __raw_readq(runway
+ RUNWAY_STATUS
) & 0xffecfffffffffffful
;
803 __raw_writeq(tmp64
| (*memaddr
++ & 0x0013000000000000ul
),
804 runway
+ RUNWAY_STATUS
);
806 /* Write RUNWAY DEBUG registers */
807 for (i
= 0; i
< 8; i
++) {
808 __raw_writeq(*memaddr
++, runway
+ RUNWAY_DEBUG
);
817 * Write the given RDR register with the contents
818 * of the given buffer.
820 static void perf_rdr_write(uint32_t rdr_num
, uint64_t *buffer
)
822 const struct rdr_tbl_ent
*tentry
;
825 printk("perf_rdr_write\n");
826 tentry
= perf_rdr_get_entry(rdr_num
);
827 if (tentry
->width
== 0) { return; }
829 i
= tentry
->num_words
;
831 if (perf_processor_interface
== ONYX_INTF
) {
832 perf_rdr_shift_out_U(rdr_num
, buffer
[i
]);
834 perf_rdr_shift_out_W(rdr_num
, buffer
[i
]);
837 printk("perf_rdr_write done\n");