1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3 #define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
5 #include <asm-generic/pgtable-nopmd.h>
7 #include <asm/book3s/32/hash.h>
9 /* And here we include common definitions */
11 #define _PAGE_KERNEL_RO 0
12 #define _PAGE_KERNEL_ROX (_PAGE_EXEC)
13 #define _PAGE_KERNEL_RW (_PAGE_DIRTY | _PAGE_RW)
14 #define _PAGE_KERNEL_RWX (_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
16 #define _PAGE_HPTEFLAGS _PAGE_HASHPTE
20 static inline bool pte_user(pte_t pte
)
22 return pte_val(pte
) & _PAGE_USER
;
24 #endif /* __ASSEMBLY__ */
27 * Location of the PFN in the PTE. Most 32-bit platforms use the same
28 * as _PAGE_SHIFT here (ie, naturally aligned).
29 * Platform who don't just pre-define the value so we don't override it here.
31 #define PTE_RPN_SHIFT (PAGE_SHIFT)
34 * The mask covered by the RPN must be a ULL on 32-bit platforms with
37 #ifdef CONFIG_PTE_64BIT
38 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
39 #define MAX_POSSIBLE_PHYSMEM_BITS 36
41 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
42 #define MAX_POSSIBLE_PHYSMEM_BITS 32
46 * _PAGE_CHG_MASK masks of bits that are to be preserved across
49 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
50 _PAGE_ACCESSED | _PAGE_SPECIAL)
53 * We define 2 sets of base prot bits, one for basic pages (ie,
54 * cacheable kernel and user pages) and one for non cacheable
55 * pages. We always set _PAGE_COHERENT when SMP is enabled or
56 * the processor might need it for DMA coherency.
58 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
59 #define _PAGE_BASE (_PAGE_BASE_NC | _PAGE_COHERENT)
62 * Permission masks used to generate the __P and __S table.
64 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
66 * Write permissions imply read permissions for now.
68 #define PAGE_NONE __pgprot(_PAGE_BASE)
69 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
70 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
71 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
72 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
73 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
74 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
76 /* Permission masks used for kernel mappings */
77 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
78 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
79 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
80 _PAGE_NO_CACHE | _PAGE_GUARDED)
81 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
82 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
83 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
86 * Protection used for kernel text. We want the debuggers to be able to
87 * set breakpoints anywhere, so don't write protect the kernel text
88 * on platforms where such control is possible.
90 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
91 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
92 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
94 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
97 /* Make modules code happy. We don't set RO yet */
98 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
100 /* Advertise special mapping type for AGP */
101 #define PAGE_AGP (PAGE_KERNEL_NC)
102 #define HAVE_PAGE_AGP
104 #define PTE_INDEX_SIZE PTE_SHIFT
105 #define PMD_INDEX_SIZE 0
106 #define PUD_INDEX_SIZE 0
107 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
109 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
110 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
113 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
114 #define PMD_TABLE_SIZE 0
115 #define PUD_TABLE_SIZE 0
116 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
118 /* Bits to mask out from a PMD to get to the PTE page */
119 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
120 #endif /* __ASSEMBLY__ */
122 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
123 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
126 * The normal case is that PTEs are 32-bits and we have a 1-page
127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
129 * For any >32-bit physical address platform, we can use the following
130 * two level page table layout where the pgdir is 8KB and the MS 13 bits
131 * are an index to the second level table. The combined pgdir/pmd first
132 * level has 2048 entries and the second level has 512 64-bit PTE entries.
135 /* PGDIR_SHIFT determines what a top-level page table entry can map */
136 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
137 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
138 #define PGDIR_MASK (~(PGDIR_SIZE-1))
140 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
144 int map_kernel_page(unsigned long va
, phys_addr_t pa
, pgprot_t prot
);
146 #endif /* !__ASSEMBLY__ */
149 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
150 * value (for now) on others, from where we can start layout kernel
151 * virtual space that goes below PKMAP and FIXMAP
153 #include <asm/fixmap.h>
156 * ioremap_bot starts at that address. Early ioremaps move down from there,
157 * until mem_init() at which point this becomes the top of the vmalloc
160 #ifdef CONFIG_HIGHMEM
161 #define IOREMAP_TOP PKMAP_BASE
163 #define IOREMAP_TOP FIXADDR_START
166 /* PPC32 shares vmalloc area with ioremap */
167 #define IOREMAP_START VMALLOC_START
168 #define IOREMAP_END VMALLOC_END
171 * Just any arbitrary offset to the start of the vmalloc VM area: the
172 * current 16MB value just means that there will be a 64MB "hole" after the
173 * physical memory until the kernel virtual memory starts. That means that
174 * any out-of-bounds memory accesses will hopefully be caught.
175 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
176 * area for the same reason. ;)
178 * We no longer map larger than phys RAM with the BATs so we don't have
179 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
180 * about clashes between our early calls to ioremap() that start growing down
181 * from ioremap_base being run into the VM area allocations (growing upwards
182 * from VMALLOC_START). For this reason we have ioremap_bot to check when
183 * we actually run into our mappings setup in the early boot with the VM
184 * system. This really does become a problem for machines with good amounts
187 #define VMALLOC_OFFSET (0x1000000) /* 16M */
189 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
191 #ifdef CONFIG_KASAN_VMALLOC
192 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
194 #define VMALLOC_END ioremap_bot
197 #ifdef CONFIG_STRICT_KERNEL_RWX
198 #define MODULES_END ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
199 #define MODULES_VADDR (MODULES_END - SZ_256M)
203 #include <linux/sched.h>
204 #include <linux/threads.h>
206 /* Bits to mask out from a PGD to get to the PUD page */
207 #define PGD_MASKED_BITS 0
209 #define pte_ERROR(e) \
210 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
211 (unsigned long long)pte_val(e))
212 #define pgd_ERROR(e) \
213 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
215 * Bits in a linux-style PTE. These match the bits in the
216 * (hardware-defined) PowerPC PTE as closely as possible.
219 #define pte_clear(mm, addr, ptep) \
220 do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
222 #define pmd_none(pmd) (!pmd_val(pmd))
223 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
224 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
225 static inline void pmd_clear(pmd_t
*pmdp
)
232 * When flushing the tlb entry for a page, we also need to flush the hash
233 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
235 extern int flush_hash_pages(unsigned context
, unsigned long va
,
236 unsigned long pmdval
, int count
);
238 /* Add an HPTE to the hash table */
239 extern void add_hash_page(unsigned context
, unsigned long va
,
240 unsigned long pmdval
);
242 /* Flush an entry from the TLB/hash table */
243 static inline void flush_hash_entry(struct mm_struct
*mm
, pte_t
*ptep
, unsigned long addr
)
245 if (mmu_has_feature(MMU_FTR_HPTE_TABLE
)) {
246 unsigned long ptephys
= __pa(ptep
) & PAGE_MASK
;
248 flush_hash_pages(mm
->context
.id
, addr
, ptephys
, 1);
253 * PTE updates. This function is called whenever an existing
254 * valid PTE is updated. This does -not- include set_pte_at()
255 * which nowadays only sets a new PTE.
257 * Depending on the type of MMU, we may need to use atomic updates
258 * and the PTE may be either 32 or 64 bit wide. In the later case,
259 * when using atomic updates, only the low part of the PTE is
260 * accessed atomically.
262 static inline pte_basic_t
pte_update(struct mm_struct
*mm
, unsigned long addr
, pte_t
*p
,
263 unsigned long clr
, unsigned long set
, int huge
)
268 __asm__
__volatile__(
269 #ifndef CONFIG_PTE_64BIT
270 "1: lwarx %0, 0, %3\n"
273 "1: lwarx %L0, 0, %3\n"
275 " andc %1, %L0, %4\n"
278 " stwcx. %1, 0, %3\n"
280 : "=&r" (old
), "=&r" (tmp
), "=m" (*p
)
281 #ifndef CONFIG_PTE_64BIT
284 : "b" ((unsigned long)(p
) + 4),
286 "r" (clr
), "r" (set
), "m" (*p
)
293 * 2.6 calls this without flushing the TLB entry; this is wrong
294 * for our hash-based implementation, we fix that up here.
296 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
297 static inline int __ptep_test_and_clear_young(struct mm_struct
*mm
,
298 unsigned long addr
, pte_t
*ptep
)
301 old
= pte_update(mm
, addr
, ptep
, _PAGE_ACCESSED
, 0, 0);
302 if (old
& _PAGE_HASHPTE
)
303 flush_hash_entry(mm
, ptep
, addr
);
305 return (old
& _PAGE_ACCESSED
) != 0;
307 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
308 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
310 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
311 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
, unsigned long addr
,
314 return __pte(pte_update(mm
, addr
, ptep
, ~_PAGE_HASHPTE
, 0, 0));
317 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
318 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long addr
,
321 pte_update(mm
, addr
, ptep
, _PAGE_RW
, 0, 0);
324 static inline void __ptep_set_access_flags(struct vm_area_struct
*vma
,
325 pte_t
*ptep
, pte_t entry
,
326 unsigned long address
,
329 unsigned long set
= pte_val(entry
) &
330 (_PAGE_DIRTY
| _PAGE_ACCESSED
| _PAGE_RW
| _PAGE_EXEC
);
332 pte_update(vma
->vm_mm
, address
, ptep
, 0, set
, 0);
334 flush_tlb_page(vma
, address
);
337 #define __HAVE_ARCH_PTE_SAME
338 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
340 #define pmd_page(pmd) \
341 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
344 * Encode and decode a swap entry.
345 * Note that the bits we use in a PTE for representing a swap entry
346 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
349 #define __swp_type(entry) ((entry).val & 0x1f)
350 #define __swp_offset(entry) ((entry).val >> 5)
351 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
352 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
353 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
355 /* Generic accessors to PTE bits */
356 static inline int pte_write(pte_t pte
) { return !!(pte_val(pte
) & _PAGE_RW
);}
357 static inline int pte_read(pte_t pte
) { return 1; }
358 static inline int pte_dirty(pte_t pte
) { return !!(pte_val(pte
) & _PAGE_DIRTY
); }
359 static inline int pte_young(pte_t pte
) { return !!(pte_val(pte
) & _PAGE_ACCESSED
); }
360 static inline int pte_special(pte_t pte
) { return !!(pte_val(pte
) & _PAGE_SPECIAL
); }
361 static inline int pte_none(pte_t pte
) { return (pte_val(pte
) & ~_PTE_NONE_MASK
) == 0; }
362 static inline bool pte_exec(pte_t pte
) { return pte_val(pte
) & _PAGE_EXEC
; }
364 static inline int pte_present(pte_t pte
)
366 return pte_val(pte
) & _PAGE_PRESENT
;
369 static inline bool pte_hw_valid(pte_t pte
)
371 return pte_val(pte
) & _PAGE_PRESENT
;
374 static inline bool pte_hashpte(pte_t pte
)
376 return !!(pte_val(pte
) & _PAGE_HASHPTE
);
379 static inline bool pte_ci(pte_t pte
)
381 return !!(pte_val(pte
) & _PAGE_NO_CACHE
);
385 * We only find page table entry in the last level
386 * Hence no need for other accessors
388 #define pte_access_permitted pte_access_permitted
389 static inline bool pte_access_permitted(pte_t pte
, bool write
)
392 * A read-only access is controlled by _PAGE_USER bit.
393 * We have _PAGE_READ set for WRITE and EXECUTE
395 if (!pte_present(pte
) || !pte_user(pte
) || !pte_read(pte
))
398 if (write
&& !pte_write(pte
))
404 /* Conversion functions: convert a page and protection to a page entry,
405 * and a page entry and page directory to the page they refer to.
407 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
410 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t pgprot
)
412 return __pte(((pte_basic_t
)(pfn
) << PTE_RPN_SHIFT
) |
416 static inline unsigned long pte_pfn(pte_t pte
)
418 return pte_val(pte
) >> PTE_RPN_SHIFT
;
421 /* Generic modifiers for PTE bits */
422 static inline pte_t
pte_wrprotect(pte_t pte
)
424 return __pte(pte_val(pte
) & ~_PAGE_RW
);
427 static inline pte_t
pte_exprotect(pte_t pte
)
429 return __pte(pte_val(pte
) & ~_PAGE_EXEC
);
432 static inline pte_t
pte_mkclean(pte_t pte
)
434 return __pte(pte_val(pte
) & ~_PAGE_DIRTY
);
437 static inline pte_t
pte_mkold(pte_t pte
)
439 return __pte(pte_val(pte
) & ~_PAGE_ACCESSED
);
442 static inline pte_t
pte_mkexec(pte_t pte
)
444 return __pte(pte_val(pte
) | _PAGE_EXEC
);
447 static inline pte_t
pte_mkpte(pte_t pte
)
452 static inline pte_t
pte_mkwrite(pte_t pte
)
454 return __pte(pte_val(pte
) | _PAGE_RW
);
457 static inline pte_t
pte_mkdirty(pte_t pte
)
459 return __pte(pte_val(pte
) | _PAGE_DIRTY
);
462 static inline pte_t
pte_mkyoung(pte_t pte
)
464 return __pte(pte_val(pte
) | _PAGE_ACCESSED
);
467 static inline pte_t
pte_mkspecial(pte_t pte
)
469 return __pte(pte_val(pte
) | _PAGE_SPECIAL
);
472 static inline pte_t
pte_mkhuge(pte_t pte
)
477 static inline pte_t
pte_mkprivileged(pte_t pte
)
479 return __pte(pte_val(pte
) & ~_PAGE_USER
);
482 static inline pte_t
pte_mkuser(pte_t pte
)
484 return __pte(pte_val(pte
) | _PAGE_USER
);
487 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
489 return __pte((pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
));
494 /* This low level function performs the actual PTE insertion
495 * Setting the PTE depends on the MMU type and other factors. It's
496 * an horrible mess that I'm not going to try to clean up now but
497 * I'm keeping it in one place rather than spread around
499 static inline void __set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
500 pte_t
*ptep
, pte_t pte
, int percpu
)
502 #if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
503 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
504 * helper pte_update() which does an atomic update. We need to do that
505 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
506 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
507 * the hash bits instead (ie, same as the non-SMP case)
510 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
511 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
513 pte_update(mm
, addr
, ptep
, ~_PAGE_HASHPTE
, pte_val(pte
), 0);
515 #elif defined(CONFIG_PTE_64BIT)
516 /* Second case is 32-bit with 64-bit PTE. In this case, we
517 * can just store as long as we do the two halves in the right order
518 * with a barrier in between. This is possible because we take care,
519 * in the hash code, to pre-invalidate if the PTE was already hashed,
520 * which synchronizes us with any concurrent invalidation.
521 * In the percpu case, we also fallback to the simple update preserving
525 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
526 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
529 if (pte_val(*ptep
) & _PAGE_HASHPTE
)
530 flush_hash_entry(mm
, ptep
, addr
);
531 __asm__
__volatile__("\
535 : "=m" (*ptep
), "=m" (*((unsigned char *)ptep
+4))
536 : "r" (pte
) : "memory");
539 /* Third case is 32-bit hash table in UP mode, we need to preserve
540 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
541 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
542 * and see we need to keep track that this PTE needs invalidating
544 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
545 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
550 * Macro to mark a page protection value as "uncacheable".
553 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
556 #define pgprot_noncached pgprot_noncached
557 static inline pgprot_t
pgprot_noncached(pgprot_t prot
)
559 return __pgprot((pgprot_val(prot
) & ~_PAGE_CACHE_CTL
) |
560 _PAGE_NO_CACHE
| _PAGE_GUARDED
);
563 #define pgprot_noncached_wc pgprot_noncached_wc
564 static inline pgprot_t
pgprot_noncached_wc(pgprot_t prot
)
566 return __pgprot((pgprot_val(prot
) & ~_PAGE_CACHE_CTL
) |
570 #define pgprot_cached pgprot_cached
571 static inline pgprot_t
pgprot_cached(pgprot_t prot
)
573 return __pgprot((pgprot_val(prot
) & ~_PAGE_CACHE_CTL
) |
577 #define pgprot_cached_wthru pgprot_cached_wthru
578 static inline pgprot_t
pgprot_cached_wthru(pgprot_t prot
)
580 return __pgprot((pgprot_val(prot
) & ~_PAGE_CACHE_CTL
) |
581 _PAGE_COHERENT
| _PAGE_WRITETHRU
);
584 #define pgprot_cached_noncoherent pgprot_cached_noncoherent
585 static inline pgprot_t
pgprot_cached_noncoherent(pgprot_t prot
)
587 return __pgprot(pgprot_val(prot
) & ~_PAGE_CACHE_CTL
);
590 #define pgprot_writecombine pgprot_writecombine
591 static inline pgprot_t
pgprot_writecombine(pgprot_t prot
)
593 return pgprot_noncached_wc(prot
);
596 #endif /* !__ASSEMBLY__ */
598 #endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */