WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / kernel / hw_breakpoint.c
blob8fc7a14e4d7100d748f294581d6637914cd782dd
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
4 * using the CPU's debug registers. Derived from
5 * "arch/x86/kernel/hw_breakpoint.c"
7 * Copyright 2010 IBM Corporation
8 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
9 */
11 #include <linux/hw_breakpoint.h>
12 #include <linux/notifier.h>
13 #include <linux/kprobes.h>
14 #include <linux/percpu.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/debugfs.h>
19 #include <linux/init.h>
21 #include <asm/hw_breakpoint.h>
22 #include <asm/processor.h>
23 #include <asm/sstep.h>
24 #include <asm/debug.h>
25 #include <asm/debugfs.h>
26 #include <asm/hvcall.h>
27 #include <asm/inst.h>
28 #include <linux/uaccess.h>
31 * Stores the breakpoints currently in use on each breakpoint address
32 * register for every cpu
34 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
37 * Returns total number of data or instruction breakpoints available.
39 int hw_breakpoint_slots(int type)
41 if (type == TYPE_DATA)
42 return nr_wp_slots();
43 return 0; /* no instruction breakpoints available */
46 static bool single_step_pending(void)
48 int i;
50 for (i = 0; i < nr_wp_slots(); i++) {
51 if (current->thread.last_hit_ubp[i])
52 return true;
54 return false;
58 * Install a perf counter breakpoint.
60 * We seek a free debug address register and use it for this
61 * breakpoint.
63 * Atomic: we hold the counter->ctx->lock and we only handle variables
64 * and registers local to this cpu.
66 int arch_install_hw_breakpoint(struct perf_event *bp)
68 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
69 struct perf_event **slot;
70 int i;
72 for (i = 0; i < nr_wp_slots(); i++) {
73 slot = this_cpu_ptr(&bp_per_reg[i]);
74 if (!*slot) {
75 *slot = bp;
76 break;
80 if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
81 return -EBUSY;
84 * Do not install DABR values if the instruction must be single-stepped.
85 * If so, DABR will be populated in single_step_dabr_instruction().
87 if (!single_step_pending())
88 __set_breakpoint(i, info);
90 return 0;
94 * Uninstall the breakpoint contained in the given counter.
96 * First we search the debug address register it uses and then we disable
97 * it.
99 * Atomic: we hold the counter->ctx->lock and we only handle variables
100 * and registers local to this cpu.
102 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
104 struct arch_hw_breakpoint null_brk = {0};
105 struct perf_event **slot;
106 int i;
108 for (i = 0; i < nr_wp_slots(); i++) {
109 slot = this_cpu_ptr(&bp_per_reg[i]);
110 if (*slot == bp) {
111 *slot = NULL;
112 break;
116 if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
117 return;
119 __set_breakpoint(i, &null_brk);
122 static bool is_ptrace_bp(struct perf_event *bp)
124 return bp->overflow_handler == ptrace_triggered;
127 struct breakpoint {
128 struct list_head list;
129 struct perf_event *bp;
130 bool ptrace_bp;
133 static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
134 static LIST_HEAD(task_bps);
136 static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
138 struct breakpoint *tmp;
140 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
141 if (!tmp)
142 return ERR_PTR(-ENOMEM);
143 tmp->bp = bp;
144 tmp->ptrace_bp = is_ptrace_bp(bp);
145 return tmp;
148 static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
150 __u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
152 bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
153 bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
154 bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
155 bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
157 return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
160 static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
162 return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
165 static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
167 return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
170 static int task_bps_add(struct perf_event *bp)
172 struct breakpoint *tmp;
174 tmp = alloc_breakpoint(bp);
175 if (IS_ERR(tmp))
176 return PTR_ERR(tmp);
178 list_add(&tmp->list, &task_bps);
179 return 0;
182 static void task_bps_remove(struct perf_event *bp)
184 struct list_head *pos, *q;
186 list_for_each_safe(pos, q, &task_bps) {
187 struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
189 if (tmp->bp == bp) {
190 list_del(&tmp->list);
191 kfree(tmp);
192 break;
198 * If any task has breakpoint from alternate infrastructure,
199 * return true. Otherwise return false.
201 static bool all_task_bps_check(struct perf_event *bp)
203 struct breakpoint *tmp;
205 list_for_each_entry(tmp, &task_bps, list) {
206 if (!can_co_exist(tmp, bp))
207 return true;
209 return false;
213 * If same task has breakpoint from alternate infrastructure,
214 * return true. Otherwise return false.
216 static bool same_task_bps_check(struct perf_event *bp)
218 struct breakpoint *tmp;
220 list_for_each_entry(tmp, &task_bps, list) {
221 if (tmp->bp->hw.target == bp->hw.target &&
222 !can_co_exist(tmp, bp))
223 return true;
225 return false;
228 static int cpu_bps_add(struct perf_event *bp)
230 struct breakpoint **cpu_bp;
231 struct breakpoint *tmp;
232 int i = 0;
234 tmp = alloc_breakpoint(bp);
235 if (IS_ERR(tmp))
236 return PTR_ERR(tmp);
238 cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
239 for (i = 0; i < nr_wp_slots(); i++) {
240 if (!cpu_bp[i]) {
241 cpu_bp[i] = tmp;
242 break;
245 return 0;
248 static void cpu_bps_remove(struct perf_event *bp)
250 struct breakpoint **cpu_bp;
251 int i = 0;
253 cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
254 for (i = 0; i < nr_wp_slots(); i++) {
255 if (!cpu_bp[i])
256 continue;
258 if (cpu_bp[i]->bp == bp) {
259 kfree(cpu_bp[i]);
260 cpu_bp[i] = NULL;
261 break;
266 static bool cpu_bps_check(int cpu, struct perf_event *bp)
268 struct breakpoint **cpu_bp;
269 int i;
271 cpu_bp = per_cpu_ptr(cpu_bps, cpu);
272 for (i = 0; i < nr_wp_slots(); i++) {
273 if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp))
274 return true;
276 return false;
279 static bool all_cpu_bps_check(struct perf_event *bp)
281 int cpu;
283 for_each_online_cpu(cpu) {
284 if (cpu_bps_check(cpu, bp))
285 return true;
287 return false;
291 * We don't use any locks to serialize accesses to cpu_bps or task_bps
292 * because are already inside nr_bp_mutex.
294 int arch_reserve_bp_slot(struct perf_event *bp)
296 int ret;
298 /* ptrace breakpoint */
299 if (is_ptrace_bp(bp)) {
300 if (all_cpu_bps_check(bp))
301 return -ENOSPC;
303 if (same_task_bps_check(bp))
304 return -ENOSPC;
306 return task_bps_add(bp);
309 /* perf breakpoint */
310 if (is_kernel_addr(bp->attr.bp_addr))
311 return 0;
313 if (bp->hw.target && bp->cpu == -1) {
314 if (same_task_bps_check(bp))
315 return -ENOSPC;
317 return task_bps_add(bp);
318 } else if (!bp->hw.target && bp->cpu != -1) {
319 if (all_task_bps_check(bp))
320 return -ENOSPC;
322 return cpu_bps_add(bp);
325 if (same_task_bps_check(bp))
326 return -ENOSPC;
328 ret = cpu_bps_add(bp);
329 if (ret)
330 return ret;
331 ret = task_bps_add(bp);
332 if (ret)
333 cpu_bps_remove(bp);
335 return ret;
338 void arch_release_bp_slot(struct perf_event *bp)
340 if (!is_kernel_addr(bp->attr.bp_addr)) {
341 if (bp->hw.target)
342 task_bps_remove(bp);
343 if (bp->cpu != -1)
344 cpu_bps_remove(bp);
349 * Perform cleanup of arch-specific counters during unregistration
350 * of the perf-event
352 void arch_unregister_hw_breakpoint(struct perf_event *bp)
355 * If the breakpoint is unregistered between a hw_breakpoint_handler()
356 * and the single_step_dabr_instruction(), then cleanup the breakpoint
357 * restoration variables to prevent dangling pointers.
358 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
360 if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
361 int i;
363 for (i = 0; i < nr_wp_slots(); i++) {
364 if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
365 bp->ctx->task->thread.last_hit_ubp[i] = NULL;
371 * Check for virtual address in kernel space.
373 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
375 return is_kernel_addr(hw->address);
378 int arch_bp_generic_fields(int type, int *gen_bp_type)
380 *gen_bp_type = 0;
381 if (type & HW_BRK_TYPE_READ)
382 *gen_bp_type |= HW_BREAKPOINT_R;
383 if (type & HW_BRK_TYPE_WRITE)
384 *gen_bp_type |= HW_BREAKPOINT_W;
385 if (*gen_bp_type == 0)
386 return -EINVAL;
387 return 0;
391 * Watchpoint match range is always doubleword(8 bytes) aligned on
392 * powerpc. If the given range is crossing doubleword boundary, we
393 * need to increase the length such that next doubleword also get
394 * covered. Ex,
396 * address len = 6 bytes
397 * |=========.
398 * |------------v--|------v--------|
399 * | | | | | | | | | | | | | | | | |
400 * |---------------|---------------|
401 * <---8 bytes--->
403 * In this case, we should configure hw as:
404 * start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
405 * len = 16 bytes
407 * @start_addr is inclusive but @end_addr is exclusive.
409 static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
411 u16 max_len = DABR_MAX_LEN;
412 u16 hw_len;
413 unsigned long start_addr, end_addr;
415 start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
416 end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
417 hw_len = end_addr - start_addr;
419 if (dawr_enabled()) {
420 max_len = DAWR_MAX_LEN;
421 /* DAWR region can't cross 512 bytes boundary on p10 predecessors */
422 if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
423 (ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
424 return -EINVAL;
425 } else if (IS_ENABLED(CONFIG_PPC_8xx)) {
426 /* 8xx can setup a range without limitation */
427 max_len = U16_MAX;
430 if (hw_len > max_len)
431 return -EINVAL;
433 hw->hw_len = hw_len;
434 return 0;
438 * Validate the arch-specific HW Breakpoint register settings
440 int hw_breakpoint_arch_parse(struct perf_event *bp,
441 const struct perf_event_attr *attr,
442 struct arch_hw_breakpoint *hw)
444 int ret = -EINVAL;
446 if (!bp || !attr->bp_len)
447 return ret;
449 hw->type = HW_BRK_TYPE_TRANSLATE;
450 if (attr->bp_type & HW_BREAKPOINT_R)
451 hw->type |= HW_BRK_TYPE_READ;
452 if (attr->bp_type & HW_BREAKPOINT_W)
453 hw->type |= HW_BRK_TYPE_WRITE;
454 if (hw->type == HW_BRK_TYPE_TRANSLATE)
455 /* must set alteast read or write */
456 return ret;
457 if (!attr->exclude_user)
458 hw->type |= HW_BRK_TYPE_USER;
459 if (!attr->exclude_kernel)
460 hw->type |= HW_BRK_TYPE_KERNEL;
461 if (!attr->exclude_hv)
462 hw->type |= HW_BRK_TYPE_HYP;
463 hw->address = attr->bp_addr;
464 hw->len = attr->bp_len;
466 if (!ppc_breakpoint_available())
467 return -ENODEV;
469 return hw_breakpoint_validate_len(hw);
473 * Restores the breakpoint on the debug registers.
474 * Invoke this function if it is known that the execution context is
475 * about to change to cause loss of MSR_SE settings.
477 void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
479 struct arch_hw_breakpoint *info;
480 int i;
482 for (i = 0; i < nr_wp_slots(); i++) {
483 if (unlikely(tsk->thread.last_hit_ubp[i]))
484 goto reset;
486 return;
488 reset:
489 regs->msr &= ~MSR_SE;
490 for (i = 0; i < nr_wp_slots(); i++) {
491 info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
492 __set_breakpoint(i, info);
493 tsk->thread.last_hit_ubp[i] = NULL;
497 static bool is_larx_stcx_instr(int type)
499 return type == LARX || type == STCX;
502 static bool is_octword_vsx_instr(int type, int size)
504 return ((type == LOAD_VSX || type == STORE_VSX) && size == 32);
508 * We've failed in reliably handling the hw-breakpoint. Unregister
509 * it and throw a warning message to let the user know about it.
511 static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
513 WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
514 info->address);
515 perf_event_disable_inatomic(bp);
518 static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
520 printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
521 info->address);
522 perf_event_disable_inatomic(bp);
525 static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
526 struct arch_hw_breakpoint **info, int *hit,
527 struct ppc_inst instr)
529 int i;
530 int stepped;
532 /* Do not emulate user-space instructions, instead single-step them */
533 if (user_mode(regs)) {
534 for (i = 0; i < nr_wp_slots(); i++) {
535 if (!hit[i])
536 continue;
537 current->thread.last_hit_ubp[i] = bp[i];
538 info[i] = NULL;
540 regs->msr |= MSR_SE;
541 return false;
544 stepped = emulate_step(regs, instr);
545 if (!stepped) {
546 for (i = 0; i < nr_wp_slots(); i++) {
547 if (!hit[i])
548 continue;
549 handler_error(bp[i], info[i]);
550 info[i] = NULL;
552 return false;
554 return true;
557 static void handle_p10dd1_spurious_exception(struct arch_hw_breakpoint **info,
558 int *hit, unsigned long ea)
560 int i;
561 unsigned long hw_end_addr;
564 * Handle spurious exception only when any bp_per_reg is set.
565 * Otherwise this might be created by xmon and not actually a
566 * spurious exception.
568 for (i = 0; i < nr_wp_slots(); i++) {
569 if (!info[i])
570 continue;
572 hw_end_addr = ALIGN(info[i]->address + info[i]->len, HW_BREAKPOINT_SIZE);
575 * Ending address of DAWR range is less than starting
576 * address of op.
578 if ((hw_end_addr - 1) >= ea)
579 continue;
582 * Those addresses need to be in the same or in two
583 * consecutive 512B blocks;
585 if (((hw_end_addr - 1) >> 10) != (ea >> 10))
586 continue;
589 * 'op address + 64B' generates an address that has a
590 * carry into bit 52 (crosses 2K boundary).
592 if ((ea & 0x800) == ((ea + 64) & 0x800))
593 continue;
595 break;
598 if (i == nr_wp_slots())
599 return;
601 for (i = 0; i < nr_wp_slots(); i++) {
602 if (info[i]) {
603 hit[i] = 1;
604 info[i]->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
609 int hw_breakpoint_handler(struct die_args *args)
611 bool err = false;
612 int rc = NOTIFY_STOP;
613 struct perf_event *bp[HBP_NUM_MAX] = { NULL };
614 struct pt_regs *regs = args->regs;
615 struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
616 int i;
617 int hit[HBP_NUM_MAX] = {0};
618 int nr_hit = 0;
619 bool ptrace_bp = false;
620 struct ppc_inst instr = ppc_inst(0);
621 int type = 0;
622 int size = 0;
623 unsigned long ea;
625 /* Disable breakpoints during exception handling */
626 hw_breakpoint_disable();
629 * The counter may be concurrently released but that can only
630 * occur from a call_rcu() path. We can then safely fetch
631 * the breakpoint, use its callback, touch its counter
632 * while we are in an rcu_read_lock() path.
634 rcu_read_lock();
636 if (!IS_ENABLED(CONFIG_PPC_8xx))
637 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
639 for (i = 0; i < nr_wp_slots(); i++) {
640 bp[i] = __this_cpu_read(bp_per_reg[i]);
641 if (!bp[i])
642 continue;
644 info[i] = counter_arch_bp(bp[i]);
645 info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
647 if (wp_check_constraints(regs, instr, ea, type, size, info[i])) {
648 if (!IS_ENABLED(CONFIG_PPC_8xx) &&
649 ppc_inst_equal(instr, ppc_inst(0))) {
650 handler_error(bp[i], info[i]);
651 info[i] = NULL;
652 err = 1;
653 continue;
656 if (is_ptrace_bp(bp[i]))
657 ptrace_bp = true;
658 hit[i] = 1;
659 nr_hit++;
663 if (err)
664 goto reset;
666 if (!nr_hit) {
667 /* Workaround for Power10 DD1 */
668 if (!IS_ENABLED(CONFIG_PPC_8xx) && mfspr(SPRN_PVR) == 0x800100 &&
669 is_octword_vsx_instr(type, size)) {
670 handle_p10dd1_spurious_exception(info, hit, ea);
671 } else {
672 rc = NOTIFY_DONE;
673 goto out;
678 * Return early after invoking user-callback function without restoring
679 * DABR if the breakpoint is from ptrace which always operates in
680 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
681 * generated in do_dabr().
683 if (ptrace_bp) {
684 for (i = 0; i < nr_wp_slots(); i++) {
685 if (!hit[i])
686 continue;
687 perf_bp_event(bp[i], regs);
688 info[i] = NULL;
690 rc = NOTIFY_DONE;
691 goto reset;
694 if (!IS_ENABLED(CONFIG_PPC_8xx)) {
695 if (is_larx_stcx_instr(type)) {
696 for (i = 0; i < nr_wp_slots(); i++) {
697 if (!hit[i])
698 continue;
699 larx_stcx_err(bp[i], info[i]);
700 info[i] = NULL;
702 goto reset;
705 if (!stepping_handler(regs, bp, info, hit, instr))
706 goto reset;
710 * As a policy, the callback is invoked in a 'trigger-after-execute'
711 * fashion
713 for (i = 0; i < nr_wp_slots(); i++) {
714 if (!hit[i])
715 continue;
716 if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
717 perf_bp_event(bp[i], regs);
720 reset:
721 for (i = 0; i < nr_wp_slots(); i++) {
722 if (!info[i])
723 continue;
724 __set_breakpoint(i, info[i]);
727 out:
728 rcu_read_unlock();
729 return rc;
731 NOKPROBE_SYMBOL(hw_breakpoint_handler);
734 * Handle single-step exceptions following a DABR hit.
736 static int single_step_dabr_instruction(struct die_args *args)
738 struct pt_regs *regs = args->regs;
739 struct perf_event *bp = NULL;
740 struct arch_hw_breakpoint *info;
741 int i;
742 bool found = false;
745 * Check if we are single-stepping as a result of a
746 * previous HW Breakpoint exception
748 for (i = 0; i < nr_wp_slots(); i++) {
749 bp = current->thread.last_hit_ubp[i];
751 if (!bp)
752 continue;
754 found = true;
755 info = counter_arch_bp(bp);
758 * We shall invoke the user-defined callback function in the
759 * single stepping handler to confirm to 'trigger-after-execute'
760 * semantics
762 if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
763 perf_bp_event(bp, regs);
764 current->thread.last_hit_ubp[i] = NULL;
767 if (!found)
768 return NOTIFY_DONE;
770 for (i = 0; i < nr_wp_slots(); i++) {
771 bp = __this_cpu_read(bp_per_reg[i]);
772 if (!bp)
773 continue;
775 info = counter_arch_bp(bp);
776 __set_breakpoint(i, info);
780 * If the process was being single-stepped by ptrace, let the
781 * other single-step actions occur (e.g. generate SIGTRAP).
783 if (test_thread_flag(TIF_SINGLESTEP))
784 return NOTIFY_DONE;
786 return NOTIFY_STOP;
788 NOKPROBE_SYMBOL(single_step_dabr_instruction);
791 * Handle debug exception notifications.
793 int hw_breakpoint_exceptions_notify(
794 struct notifier_block *unused, unsigned long val, void *data)
796 int ret = NOTIFY_DONE;
798 switch (val) {
799 case DIE_DABR_MATCH:
800 ret = hw_breakpoint_handler(data);
801 break;
802 case DIE_SSTEP:
803 ret = single_step_dabr_instruction(data);
804 break;
807 return ret;
809 NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
812 * Release the user breakpoints used by ptrace
814 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
816 int i;
817 struct thread_struct *t = &tsk->thread;
819 for (i = 0; i < nr_wp_slots(); i++) {
820 unregister_hw_breakpoint(t->ptrace_bps[i]);
821 t->ptrace_bps[i] = NULL;
825 void hw_breakpoint_pmu_read(struct perf_event *bp)
827 /* TODO */
830 void ptrace_triggered(struct perf_event *bp,
831 struct perf_sample_data *data, struct pt_regs *regs)
833 struct perf_event_attr attr;
836 * Disable the breakpoint request here since ptrace has defined a
837 * one-shot behaviour for breakpoint exceptions in PPC64.
838 * The SIGTRAP signal is generated automatically for us in do_dabr().
839 * We don't have to do anything about that here
841 attr = bp->attr;
842 attr.disabled = true;
843 modify_user_hw_breakpoint(bp, &attr);