WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / kernel / process.c
bloba66f435dabbfe93f58bfa5d3eabee06ff04bec06
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
77 extern unsigned long _get_SP(void);
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 * Are we running in "Suspend disabled" mode? If so we have to block any
82 * sigreturn that would get us into suspended state, and we also warn in some
83 * other paths that we should never reach with suspend disabled.
85 bool tm_suspend_disabled __ro_after_init = false;
87 static void check_if_tm_restore_required(struct task_struct *tsk)
90 * If we are saving the current thread's registers, and the
91 * thread is in a transactional state, set the TIF_RESTORE_TM
92 * bit so that we know to restore the registers before
93 * returning to userspace.
95 if (tsk == current && tsk->thread.regs &&
96 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 !test_thread_flag(TIF_RESTORE_TM)) {
98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 set_thread_flag(TIF_RESTORE_TM);
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
110 static int __init enable_strict_msr_control(char *str)
112 strict_msr_control = true;
113 pr_info("Enabling strict facility control\n");
115 return 0;
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
122 unsigned long oldmsr = mfmsr();
123 unsigned long newmsr;
125 newmsr = oldmsr | bits;
127 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
128 newmsr |= MSR_VSX;
130 if (oldmsr != newmsr)
131 mtmsr_isync(newmsr);
133 return newmsr;
135 EXPORT_SYMBOL_GPL(msr_check_and_set);
137 /* notrace because it's called by restore_math */
138 void notrace __msr_check_and_clear(unsigned long bits)
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
143 newmsr = oldmsr & ~bits;
145 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
146 newmsr &= ~MSR_VSX;
148 if (oldmsr != newmsr)
149 mtmsr_isync(newmsr);
151 EXPORT_SYMBOL(__msr_check_and_clear);
153 #ifdef CONFIG_PPC_FPU
154 static void __giveup_fpu(struct task_struct *tsk)
156 unsigned long msr;
158 save_fpu(tsk);
159 msr = tsk->thread.regs->msr;
160 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
161 if (cpu_has_feature(CPU_FTR_VSX))
162 msr &= ~MSR_VSX;
163 tsk->thread.regs->msr = msr;
166 void giveup_fpu(struct task_struct *tsk)
168 check_if_tm_restore_required(tsk);
170 msr_check_and_set(MSR_FP);
171 __giveup_fpu(tsk);
172 msr_check_and_clear(MSR_FP);
174 EXPORT_SYMBOL(giveup_fpu);
177 * Make sure the floating-point register state in the
178 * the thread_struct is up to date for task tsk.
180 void flush_fp_to_thread(struct task_struct *tsk)
182 if (tsk->thread.regs) {
184 * We need to disable preemption here because if we didn't,
185 * another process could get scheduled after the regs->msr
186 * test but before we have finished saving the FP registers
187 * to the thread_struct. That process could take over the
188 * FPU, and then when we get scheduled again we would store
189 * bogus values for the remaining FP registers.
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_FP) {
194 * This should only ever be called for current or
195 * for a stopped child process. Since we save away
196 * the FP register state on context switch,
197 * there is something wrong if a stopped child appears
198 * to still have its FP state in the CPU registers.
200 BUG_ON(tsk != current);
201 giveup_fpu(tsk);
203 preempt_enable();
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 void enable_kernel_fp(void)
210 unsigned long cpumsr;
212 WARN_ON(preemptible());
214 cpumsr = msr_check_and_set(MSR_FP);
216 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
217 check_if_tm_restore_required(current);
219 * If a thread has already been reclaimed then the
220 * checkpointed registers are on the CPU but have definitely
221 * been saved by the reclaim code. Don't need to and *cannot*
222 * giveup as this would save to the 'live' structure not the
223 * checkpointed structure.
225 if (!MSR_TM_ACTIVE(cpumsr) &&
226 MSR_TM_ACTIVE(current->thread.regs->msr))
227 return;
228 __giveup_fpu(current);
231 EXPORT_SYMBOL(enable_kernel_fp);
232 #else
233 static inline void __giveup_fpu(struct task_struct *tsk) { }
234 #endif /* CONFIG_PPC_FPU */
236 #ifdef CONFIG_ALTIVEC
237 static void __giveup_altivec(struct task_struct *tsk)
239 unsigned long msr;
241 save_altivec(tsk);
242 msr = tsk->thread.regs->msr;
243 msr &= ~MSR_VEC;
244 if (cpu_has_feature(CPU_FTR_VSX))
245 msr &= ~MSR_VSX;
246 tsk->thread.regs->msr = msr;
249 void giveup_altivec(struct task_struct *tsk)
251 check_if_tm_restore_required(tsk);
253 msr_check_and_set(MSR_VEC);
254 __giveup_altivec(tsk);
255 msr_check_and_clear(MSR_VEC);
257 EXPORT_SYMBOL(giveup_altivec);
259 void enable_kernel_altivec(void)
261 unsigned long cpumsr;
263 WARN_ON(preemptible());
265 cpumsr = msr_check_and_set(MSR_VEC);
267 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
268 check_if_tm_restore_required(current);
270 * If a thread has already been reclaimed then the
271 * checkpointed registers are on the CPU but have definitely
272 * been saved by the reclaim code. Don't need to and *cannot*
273 * giveup as this would save to the 'live' structure not the
274 * checkpointed structure.
276 if (!MSR_TM_ACTIVE(cpumsr) &&
277 MSR_TM_ACTIVE(current->thread.regs->msr))
278 return;
279 __giveup_altivec(current);
282 EXPORT_SYMBOL(enable_kernel_altivec);
285 * Make sure the VMX/Altivec register state in the
286 * the thread_struct is up to date for task tsk.
288 void flush_altivec_to_thread(struct task_struct *tsk)
290 if (tsk->thread.regs) {
291 preempt_disable();
292 if (tsk->thread.regs->msr & MSR_VEC) {
293 BUG_ON(tsk != current);
294 giveup_altivec(tsk);
296 preempt_enable();
299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
300 #endif /* CONFIG_ALTIVEC */
302 #ifdef CONFIG_VSX
303 static void __giveup_vsx(struct task_struct *tsk)
305 unsigned long msr = tsk->thread.regs->msr;
308 * We should never be ssetting MSR_VSX without also setting
309 * MSR_FP and MSR_VEC
311 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
313 /* __giveup_fpu will clear MSR_VSX */
314 if (msr & MSR_FP)
315 __giveup_fpu(tsk);
316 if (msr & MSR_VEC)
317 __giveup_altivec(tsk);
320 static void giveup_vsx(struct task_struct *tsk)
322 check_if_tm_restore_required(tsk);
324 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
325 __giveup_vsx(tsk);
326 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
329 void enable_kernel_vsx(void)
331 unsigned long cpumsr;
333 WARN_ON(preemptible());
335 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
337 if (current->thread.regs &&
338 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
339 check_if_tm_restore_required(current);
341 * If a thread has already been reclaimed then the
342 * checkpointed registers are on the CPU but have definitely
343 * been saved by the reclaim code. Don't need to and *cannot*
344 * giveup as this would save to the 'live' structure not the
345 * checkpointed structure.
347 if (!MSR_TM_ACTIVE(cpumsr) &&
348 MSR_TM_ACTIVE(current->thread.regs->msr))
349 return;
350 __giveup_vsx(current);
353 EXPORT_SYMBOL(enable_kernel_vsx);
355 void flush_vsx_to_thread(struct task_struct *tsk)
357 if (tsk->thread.regs) {
358 preempt_disable();
359 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
360 BUG_ON(tsk != current);
361 giveup_vsx(tsk);
363 preempt_enable();
366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
367 #endif /* CONFIG_VSX */
369 #ifdef CONFIG_SPE
370 void giveup_spe(struct task_struct *tsk)
372 check_if_tm_restore_required(tsk);
374 msr_check_and_set(MSR_SPE);
375 __giveup_spe(tsk);
376 msr_check_and_clear(MSR_SPE);
378 EXPORT_SYMBOL(giveup_spe);
380 void enable_kernel_spe(void)
382 WARN_ON(preemptible());
384 msr_check_and_set(MSR_SPE);
386 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
387 check_if_tm_restore_required(current);
388 __giveup_spe(current);
391 EXPORT_SYMBOL(enable_kernel_spe);
393 void flush_spe_to_thread(struct task_struct *tsk)
395 if (tsk->thread.regs) {
396 preempt_disable();
397 if (tsk->thread.regs->msr & MSR_SPE) {
398 BUG_ON(tsk != current);
399 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
400 giveup_spe(tsk);
402 preempt_enable();
405 #endif /* CONFIG_SPE */
407 static unsigned long msr_all_available;
409 static int __init init_msr_all_available(void)
411 if (IS_ENABLED(CONFIG_PPC_FPU))
412 msr_all_available |= MSR_FP;
413 if (cpu_has_feature(CPU_FTR_ALTIVEC))
414 msr_all_available |= MSR_VEC;
415 if (cpu_has_feature(CPU_FTR_VSX))
416 msr_all_available |= MSR_VSX;
417 if (cpu_has_feature(CPU_FTR_SPE))
418 msr_all_available |= MSR_SPE;
420 return 0;
422 early_initcall(init_msr_all_available);
424 void giveup_all(struct task_struct *tsk)
426 unsigned long usermsr;
428 if (!tsk->thread.regs)
429 return;
431 check_if_tm_restore_required(tsk);
433 usermsr = tsk->thread.regs->msr;
435 if ((usermsr & msr_all_available) == 0)
436 return;
438 msr_check_and_set(msr_all_available);
440 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
442 if (usermsr & MSR_FP)
443 __giveup_fpu(tsk);
444 if (usermsr & MSR_VEC)
445 __giveup_altivec(tsk);
446 if (usermsr & MSR_SPE)
447 __giveup_spe(tsk);
449 msr_check_and_clear(msr_all_available);
451 EXPORT_SYMBOL(giveup_all);
453 #ifdef CONFIG_PPC_BOOK3S_64
454 #ifdef CONFIG_PPC_FPU
455 static bool should_restore_fp(void)
457 if (current->thread.load_fp) {
458 current->thread.load_fp++;
459 return true;
461 return false;
464 static void do_restore_fp(void)
466 load_fp_state(&current->thread.fp_state);
468 #else
469 static bool should_restore_fp(void) { return false; }
470 static void do_restore_fp(void) { }
471 #endif /* CONFIG_PPC_FPU */
473 #ifdef CONFIG_ALTIVEC
474 static bool should_restore_altivec(void)
476 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
477 current->thread.load_vec++;
478 return true;
480 return false;
483 static void do_restore_altivec(void)
485 load_vr_state(&current->thread.vr_state);
486 current->thread.used_vr = 1;
488 #else
489 static bool should_restore_altivec(void) { return false; }
490 static void do_restore_altivec(void) { }
491 #endif /* CONFIG_ALTIVEC */
493 static bool should_restore_vsx(void)
495 if (cpu_has_feature(CPU_FTR_VSX))
496 return true;
497 return false;
499 #ifdef CONFIG_VSX
500 static void do_restore_vsx(void)
502 current->thread.used_vsr = 1;
504 #else
505 static void do_restore_vsx(void) { }
506 #endif /* CONFIG_VSX */
509 * The exception exit path calls restore_math() with interrupts hard disabled
510 * but the soft irq state not "reconciled". ftrace code that calls
511 * local_irq_save/restore causes warnings.
513 * Rather than complicate the exit path, just don't trace restore_math. This
514 * could be done by having ftrace entry code check for this un-reconciled
515 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
516 * temporarily fix it up for the duration of the ftrace call.
518 void notrace restore_math(struct pt_regs *regs)
520 unsigned long msr;
521 unsigned long new_msr = 0;
523 msr = regs->msr;
526 * new_msr tracks the facilities that are to be restored. Only reload
527 * if the bit is not set in the user MSR (if it is set, the registers
528 * are live for the user thread).
530 if ((!(msr & MSR_FP)) && should_restore_fp())
531 new_msr |= MSR_FP;
533 if ((!(msr & MSR_VEC)) && should_restore_altivec())
534 new_msr |= MSR_VEC;
536 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
537 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
538 new_msr |= MSR_VSX;
541 if (new_msr) {
542 unsigned long fpexc_mode = 0;
544 msr_check_and_set(new_msr);
546 if (new_msr & MSR_FP) {
547 do_restore_fp();
549 // This also covers VSX, because VSX implies FP
550 fpexc_mode = current->thread.fpexc_mode;
553 if (new_msr & MSR_VEC)
554 do_restore_altivec();
556 if (new_msr & MSR_VSX)
557 do_restore_vsx();
559 msr_check_and_clear(new_msr);
561 regs->msr |= new_msr | fpexc_mode;
564 #endif /* CONFIG_PPC_BOOK3S_64 */
566 static void save_all(struct task_struct *tsk)
568 unsigned long usermsr;
570 if (!tsk->thread.regs)
571 return;
573 usermsr = tsk->thread.regs->msr;
575 if ((usermsr & msr_all_available) == 0)
576 return;
578 msr_check_and_set(msr_all_available);
580 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
582 if (usermsr & MSR_FP)
583 save_fpu(tsk);
585 if (usermsr & MSR_VEC)
586 save_altivec(tsk);
588 if (usermsr & MSR_SPE)
589 __giveup_spe(tsk);
591 msr_check_and_clear(msr_all_available);
594 void flush_all_to_thread(struct task_struct *tsk)
596 if (tsk->thread.regs) {
597 preempt_disable();
598 BUG_ON(tsk != current);
599 #ifdef CONFIG_SPE
600 if (tsk->thread.regs->msr & MSR_SPE)
601 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
602 #endif
603 save_all(tsk);
605 preempt_enable();
608 EXPORT_SYMBOL(flush_all_to_thread);
610 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
611 void do_send_trap(struct pt_regs *regs, unsigned long address,
612 unsigned long error_code, int breakpt)
614 current->thread.trap_nr = TRAP_HWBKPT;
615 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
616 11, SIGSEGV) == NOTIFY_STOP)
617 return;
619 /* Deliver the signal to userspace */
620 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
621 (void __user *)address);
623 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
625 static void do_break_handler(struct pt_regs *regs)
627 struct arch_hw_breakpoint null_brk = {0};
628 struct arch_hw_breakpoint *info;
629 struct ppc_inst instr = ppc_inst(0);
630 int type = 0;
631 int size = 0;
632 unsigned long ea;
633 int i;
636 * If underneath hw supports only one watchpoint, we know it
637 * caused exception. 8xx also falls into this category.
639 if (nr_wp_slots() == 1) {
640 __set_breakpoint(0, &null_brk);
641 current->thread.hw_brk[0] = null_brk;
642 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
643 return;
646 /* Otherwise findout which DAWR caused exception and disable it. */
647 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
649 for (i = 0; i < nr_wp_slots(); i++) {
650 info = &current->thread.hw_brk[i];
651 if (!info->address)
652 continue;
654 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
655 __set_breakpoint(i, &null_brk);
656 current->thread.hw_brk[i] = null_brk;
657 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
662 void do_break (struct pt_regs *regs, unsigned long address,
663 unsigned long error_code)
665 current->thread.trap_nr = TRAP_HWBKPT;
666 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
667 11, SIGSEGV) == NOTIFY_STOP)
668 return;
670 if (debugger_break_match(regs))
671 return;
674 * We reach here only when watchpoint exception is generated by ptrace
675 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
676 * watchpoint is already handled by hw_breakpoint_handler() so we don't
677 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
678 * we need to manually handle the watchpoint here.
680 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
681 do_break_handler(regs);
683 /* Deliver the signal to userspace */
684 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
686 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
688 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
692 * Set the debug registers back to their default "safe" values.
694 static void set_debug_reg_defaults(struct thread_struct *thread)
696 thread->debug.iac1 = thread->debug.iac2 = 0;
697 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
698 thread->debug.iac3 = thread->debug.iac4 = 0;
699 #endif
700 thread->debug.dac1 = thread->debug.dac2 = 0;
701 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
702 thread->debug.dvc1 = thread->debug.dvc2 = 0;
703 #endif
704 thread->debug.dbcr0 = 0;
705 #ifdef CONFIG_BOOKE
707 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
710 DBCR1_IAC3US | DBCR1_IAC4US;
712 * Force Data Address Compare User/Supervisor bits to be User-only
713 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
716 #else
717 thread->debug.dbcr1 = 0;
718 #endif
721 static void prime_debug_regs(struct debug_reg *debug)
724 * We could have inherited MSR_DE from userspace, since
725 * it doesn't get cleared on exception entry. Make sure
726 * MSR_DE is clear before we enable any debug events.
728 mtmsr(mfmsr() & ~MSR_DE);
730 mtspr(SPRN_IAC1, debug->iac1);
731 mtspr(SPRN_IAC2, debug->iac2);
732 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
733 mtspr(SPRN_IAC3, debug->iac3);
734 mtspr(SPRN_IAC4, debug->iac4);
735 #endif
736 mtspr(SPRN_DAC1, debug->dac1);
737 mtspr(SPRN_DAC2, debug->dac2);
738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
739 mtspr(SPRN_DVC1, debug->dvc1);
740 mtspr(SPRN_DVC2, debug->dvc2);
741 #endif
742 mtspr(SPRN_DBCR0, debug->dbcr0);
743 mtspr(SPRN_DBCR1, debug->dbcr1);
744 #ifdef CONFIG_BOOKE
745 mtspr(SPRN_DBCR2, debug->dbcr2);
746 #endif
749 * Unless neither the old or new thread are making use of the
750 * debug registers, set the debug registers from the values
751 * stored in the new thread.
753 void switch_booke_debug_regs(struct debug_reg *new_debug)
755 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
756 || (new_debug->dbcr0 & DBCR0_IDM))
757 prime_debug_regs(new_debug);
759 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
760 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
761 #ifndef CONFIG_HAVE_HW_BREAKPOINT
762 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764 preempt_disable();
765 __set_breakpoint(i, brk);
766 preempt_enable();
769 static void set_debug_reg_defaults(struct thread_struct *thread)
771 int i;
772 struct arch_hw_breakpoint null_brk = {0};
774 for (i = 0; i < nr_wp_slots(); i++) {
775 thread->hw_brk[i] = null_brk;
776 if (ppc_breakpoint_available())
777 set_breakpoint(i, &thread->hw_brk[i]);
781 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
782 struct arch_hw_breakpoint *b)
784 if (a->address != b->address)
785 return false;
786 if (a->type != b->type)
787 return false;
788 if (a->len != b->len)
789 return false;
790 /* no need to check hw_len. it's calculated from address and len */
791 return true;
794 static void switch_hw_breakpoint(struct task_struct *new)
796 int i;
798 for (i = 0; i < nr_wp_slots(); i++) {
799 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
800 &new->thread.hw_brk[i])))
801 continue;
803 __set_breakpoint(i, &new->thread.hw_brk[i]);
806 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
807 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
809 static inline int set_dabr(struct arch_hw_breakpoint *brk)
811 unsigned long dabr, dabrx;
813 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
814 dabrx = ((brk->type >> 3) & 0x7);
816 if (ppc_md.set_dabr)
817 return ppc_md.set_dabr(dabr, dabrx);
819 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
820 mtspr(SPRN_DAC1, dabr);
821 if (IS_ENABLED(CONFIG_PPC_47x))
822 isync();
823 return 0;
824 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
825 mtspr(SPRN_DABR, dabr);
826 if (cpu_has_feature(CPU_FTR_DABRX))
827 mtspr(SPRN_DABRX, dabrx);
828 return 0;
829 } else {
830 return -EINVAL;
834 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
836 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
837 LCTRL1_CRWF_RW;
838 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
839 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
840 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
842 if (start_addr == 0)
843 lctrl2 |= LCTRL2_LW0LA_F;
844 else if (end_addr == 0)
845 lctrl2 |= LCTRL2_LW0LA_E;
846 else
847 lctrl2 |= LCTRL2_LW0LA_EandF;
849 mtspr(SPRN_LCTRL2, 0);
851 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
852 return 0;
854 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
855 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
856 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
857 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
859 mtspr(SPRN_CMPE, start_addr - 1);
860 mtspr(SPRN_CMPF, end_addr);
861 mtspr(SPRN_LCTRL1, lctrl1);
862 mtspr(SPRN_LCTRL2, lctrl2);
864 return 0;
867 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
869 memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
871 if (dawr_enabled())
872 // Power8 or later
873 set_dawr(nr, brk);
874 else if (IS_ENABLED(CONFIG_PPC_8xx))
875 set_breakpoint_8xx(brk);
876 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
877 // Power7 or earlier
878 set_dabr(brk);
879 else
880 // Shouldn't happen due to higher level checks
881 WARN_ON_ONCE(1);
884 /* Check if we have DAWR or DABR hardware */
885 bool ppc_breakpoint_available(void)
887 if (dawr_enabled())
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
892 return true;
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
896 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898 static inline bool tm_enabled(struct task_struct *tsk)
900 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
903 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
906 * Use the current MSR TM suspended bit to track if we have
907 * checkpointed state outstanding.
908 * On signal delivery, we'd normally reclaim the checkpointed
909 * state to obtain stack pointer (see:get_tm_stackpointer()).
910 * This will then directly return to userspace without going
911 * through __switch_to(). However, if the stack frame is bad,
912 * we need to exit this thread which calls __switch_to() which
913 * will again attempt to reclaim the already saved tm state.
914 * Hence we need to check that we've not already reclaimed
915 * this state.
916 * We do this using the current MSR, rather tracking it in
917 * some specific thread_struct bit, as it has the additional
918 * benefit of checking for a potential TM bad thing exception.
920 if (!MSR_TM_SUSPENDED(mfmsr()))
921 return;
923 giveup_all(container_of(thr, struct task_struct, thread));
925 tm_reclaim(thr, cause);
928 * If we are in a transaction and FP is off then we can't have
929 * used FP inside that transaction. Hence the checkpointed
930 * state is the same as the live state. We need to copy the
931 * live state to the checkpointed state so that when the
932 * transaction is restored, the checkpointed state is correct
933 * and the aborted transaction sees the correct state. We use
934 * ckpt_regs.msr here as that's what tm_reclaim will use to
935 * determine if it's going to write the checkpointed state or
936 * not. So either this will write the checkpointed registers,
937 * or reclaim will. Similarly for VMX.
939 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
940 memcpy(&thr->ckfp_state, &thr->fp_state,
941 sizeof(struct thread_fp_state));
942 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
943 memcpy(&thr->ckvr_state, &thr->vr_state,
944 sizeof(struct thread_vr_state));
947 void tm_reclaim_current(uint8_t cause)
949 tm_enable();
950 tm_reclaim_thread(&current->thread, cause);
953 static inline void tm_reclaim_task(struct task_struct *tsk)
955 /* We have to work out if we're switching from/to a task that's in the
956 * middle of a transaction.
958 * In switching we need to maintain a 2nd register state as
959 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
960 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
961 * ckvr_state
963 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965 struct thread_struct *thr = &tsk->thread;
967 if (!thr->regs)
968 return;
970 if (!MSR_TM_ACTIVE(thr->regs->msr))
971 goto out_and_saveregs;
973 WARN_ON(tm_suspend_disabled);
975 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
976 "ccr=%lx, msr=%lx, trap=%lx)\n",
977 tsk->pid, thr->regs->nip,
978 thr->regs->ccr, thr->regs->msr,
979 thr->regs->trap);
981 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
983 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
984 tsk->pid);
986 out_and_saveregs:
987 /* Always save the regs here, even if a transaction's not active.
988 * This context-switches a thread's TM info SPRs. We do it here to
989 * be consistent with the restore path (in recheckpoint) which
990 * cannot happen later in _switch().
992 tm_save_sprs(thr);
995 extern void __tm_recheckpoint(struct thread_struct *thread);
997 void tm_recheckpoint(struct thread_struct *thread)
999 unsigned long flags;
1001 if (!(thread->regs->msr & MSR_TM))
1002 return;
1004 /* We really can't be interrupted here as the TEXASR registers can't
1005 * change and later in the trecheckpoint code, we have a userspace R1.
1006 * So let's hard disable over this region.
1008 local_irq_save(flags);
1009 hard_irq_disable();
1011 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1012 * before the trecheckpoint and no explosion occurs.
1014 tm_restore_sprs(thread);
1016 __tm_recheckpoint(thread);
1018 local_irq_restore(flags);
1021 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1023 if (!cpu_has_feature(CPU_FTR_TM))
1024 return;
1026 /* Recheckpoint the registers of the thread we're about to switch to.
1028 * If the task was using FP, we non-lazily reload both the original and
1029 * the speculative FP register states. This is because the kernel
1030 * doesn't see if/when a TM rollback occurs, so if we take an FP
1031 * unavailable later, we are unable to determine which set of FP regs
1032 * need to be restored.
1034 if (!tm_enabled(new))
1035 return;
1037 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1038 tm_restore_sprs(&new->thread);
1039 return;
1041 /* Recheckpoint to restore original checkpointed register state. */
1042 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1043 new->pid, new->thread.regs->msr);
1045 tm_recheckpoint(&new->thread);
1048 * The checkpointed state has been restored but the live state has
1049 * not, ensure all the math functionality is turned off to trigger
1050 * restore_math() to reload.
1052 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1054 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1055 "(kernel msr 0x%lx)\n",
1056 new->pid, mfmsr());
1059 static inline void __switch_to_tm(struct task_struct *prev,
1060 struct task_struct *new)
1062 if (cpu_has_feature(CPU_FTR_TM)) {
1063 if (tm_enabled(prev) || tm_enabled(new))
1064 tm_enable();
1066 if (tm_enabled(prev)) {
1067 prev->thread.load_tm++;
1068 tm_reclaim_task(prev);
1069 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1070 prev->thread.regs->msr &= ~MSR_TM;
1073 tm_recheckpoint_new_task(new);
1078 * This is called if we are on the way out to userspace and the
1079 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1080 * FP and/or vector state and does so if necessary.
1081 * If userspace is inside a transaction (whether active or
1082 * suspended) and FP/VMX/VSX instructions have ever been enabled
1083 * inside that transaction, then we have to keep them enabled
1084 * and keep the FP/VMX/VSX state loaded while ever the transaction
1085 * continues. The reason is that if we didn't, and subsequently
1086 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1087 * we don't know whether it's the same transaction, and thus we
1088 * don't know which of the checkpointed state and the transactional
1089 * state to use.
1091 void restore_tm_state(struct pt_regs *regs)
1093 unsigned long msr_diff;
1096 * This is the only moment we should clear TIF_RESTORE_TM as
1097 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1098 * again, anything else could lead to an incorrect ckpt_msr being
1099 * saved and therefore incorrect signal contexts.
1101 clear_thread_flag(TIF_RESTORE_TM);
1102 if (!MSR_TM_ACTIVE(regs->msr))
1103 return;
1105 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1106 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1108 /* Ensure that restore_math() will restore */
1109 if (msr_diff & MSR_FP)
1110 current->thread.load_fp = 1;
1111 #ifdef CONFIG_ALTIVEC
1112 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1113 current->thread.load_vec = 1;
1114 #endif
1115 restore_math(regs);
1117 regs->msr |= msr_diff;
1120 #else
1121 #define tm_recheckpoint_new_task(new)
1122 #define __switch_to_tm(prev, new)
1123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1125 static inline void save_sprs(struct thread_struct *t)
1127 #ifdef CONFIG_ALTIVEC
1128 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1129 t->vrsave = mfspr(SPRN_VRSAVE);
1130 #endif
1131 #ifdef CONFIG_PPC_BOOK3S_64
1132 if (cpu_has_feature(CPU_FTR_DSCR))
1133 t->dscr = mfspr(SPRN_DSCR);
1135 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1136 t->bescr = mfspr(SPRN_BESCR);
1137 t->ebbhr = mfspr(SPRN_EBBHR);
1138 t->ebbrr = mfspr(SPRN_EBBRR);
1140 t->fscr = mfspr(SPRN_FSCR);
1143 * Note that the TAR is not available for use in the kernel.
1144 * (To provide this, the TAR should be backed up/restored on
1145 * exception entry/exit instead, and be in pt_regs. FIXME,
1146 * this should be in pt_regs anyway (for debug).)
1148 t->tar = mfspr(SPRN_TAR);
1150 #endif
1153 static inline void restore_sprs(struct thread_struct *old_thread,
1154 struct thread_struct *new_thread)
1156 #ifdef CONFIG_ALTIVEC
1157 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1158 old_thread->vrsave != new_thread->vrsave)
1159 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1160 #endif
1161 #ifdef CONFIG_PPC_BOOK3S_64
1162 if (cpu_has_feature(CPU_FTR_DSCR)) {
1163 u64 dscr = get_paca()->dscr_default;
1164 if (new_thread->dscr_inherit)
1165 dscr = new_thread->dscr;
1167 if (old_thread->dscr != dscr)
1168 mtspr(SPRN_DSCR, dscr);
1171 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1172 if (old_thread->bescr != new_thread->bescr)
1173 mtspr(SPRN_BESCR, new_thread->bescr);
1174 if (old_thread->ebbhr != new_thread->ebbhr)
1175 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1176 if (old_thread->ebbrr != new_thread->ebbrr)
1177 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1179 if (old_thread->fscr != new_thread->fscr)
1180 mtspr(SPRN_FSCR, new_thread->fscr);
1182 if (old_thread->tar != new_thread->tar)
1183 mtspr(SPRN_TAR, new_thread->tar);
1186 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1187 old_thread->tidr != new_thread->tidr)
1188 mtspr(SPRN_TIDR, new_thread->tidr);
1189 #endif
1193 struct task_struct *__switch_to(struct task_struct *prev,
1194 struct task_struct *new)
1196 struct thread_struct *new_thread, *old_thread;
1197 struct task_struct *last;
1198 #ifdef CONFIG_PPC_BOOK3S_64
1199 struct ppc64_tlb_batch *batch;
1200 #endif
1202 new_thread = &new->thread;
1203 old_thread = &current->thread;
1205 WARN_ON(!irqs_disabled());
1207 #ifdef CONFIG_PPC_BOOK3S_64
1208 batch = this_cpu_ptr(&ppc64_tlb_batch);
1209 if (batch->active) {
1210 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1211 if (batch->index)
1212 __flush_tlb_pending(batch);
1213 batch->active = 0;
1215 #endif /* CONFIG_PPC_BOOK3S_64 */
1217 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1218 switch_booke_debug_regs(&new->thread.debug);
1219 #else
1221 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1222 * schedule DABR
1224 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1225 switch_hw_breakpoint(new);
1226 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1227 #endif
1230 * We need to save SPRs before treclaim/trecheckpoint as these will
1231 * change a number of them.
1233 save_sprs(&prev->thread);
1235 /* Save FPU, Altivec, VSX and SPE state */
1236 giveup_all(prev);
1238 __switch_to_tm(prev, new);
1240 if (!radix_enabled()) {
1242 * We can't take a PMU exception inside _switch() since there
1243 * is a window where the kernel stack SLB and the kernel stack
1244 * are out of sync. Hard disable here.
1246 hard_irq_disable();
1250 * Call restore_sprs() before calling _switch(). If we move it after
1251 * _switch() then we miss out on calling it for new tasks. The reason
1252 * for this is we manually create a stack frame for new tasks that
1253 * directly returns through ret_from_fork() or
1254 * ret_from_kernel_thread(). See copy_thread() for details.
1256 restore_sprs(old_thread, new_thread);
1258 last = _switch(old_thread, new_thread);
1260 #ifdef CONFIG_PPC_BOOK3S_64
1261 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1262 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1263 batch = this_cpu_ptr(&ppc64_tlb_batch);
1264 batch->active = 1;
1267 if (current->thread.regs) {
1268 restore_math(current->thread.regs);
1271 * On POWER9 the copy-paste buffer can only paste into
1272 * foreign real addresses, so unprivileged processes can not
1273 * see the data or use it in any way unless they have
1274 * foreign real mappings. If the new process has the foreign
1275 * real address mappings, we must issue a cp_abort to clear
1276 * any state and prevent snooping, corruption or a covert
1277 * channel. ISA v3.1 supports paste into local memory.
1279 if (current->mm &&
1280 (cpu_has_feature(CPU_FTR_ARCH_31) ||
1281 atomic_read(&current->mm->context.vas_windows)))
1282 asm volatile(PPC_CP_ABORT);
1284 #endif /* CONFIG_PPC_BOOK3S_64 */
1286 return last;
1289 #define NR_INSN_TO_PRINT 16
1291 static void show_instructions(struct pt_regs *regs)
1293 int i;
1294 unsigned long nip = regs->nip;
1295 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1297 printk("Instruction dump:");
1300 * If we were executing with the MMU off for instructions, adjust pc
1301 * rather than printing XXXXXXXX.
1303 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1304 pc = (unsigned long)phys_to_virt(pc);
1305 nip = (unsigned long)phys_to_virt(regs->nip);
1308 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1309 int instr;
1311 if (!(i % 8))
1312 pr_cont("\n");
1314 if (!__kernel_text_address(pc) ||
1315 get_kernel_nofault(instr, (const void *)pc)) {
1316 pr_cont("XXXXXXXX ");
1317 } else {
1318 if (nip == pc)
1319 pr_cont("<%08x> ", instr);
1320 else
1321 pr_cont("%08x ", instr);
1324 pc += sizeof(int);
1327 pr_cont("\n");
1330 void show_user_instructions(struct pt_regs *regs)
1332 unsigned long pc;
1333 int n = NR_INSN_TO_PRINT;
1334 struct seq_buf s;
1335 char buf[96]; /* enough for 8 times 9 + 2 chars */
1337 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1339 seq_buf_init(&s, buf, sizeof(buf));
1341 while (n) {
1342 int i;
1344 seq_buf_clear(&s);
1346 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1347 int instr;
1349 if (copy_from_user_nofault(&instr, (void __user *)pc,
1350 sizeof(instr))) {
1351 seq_buf_printf(&s, "XXXXXXXX ");
1352 continue;
1354 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1357 if (!seq_buf_has_overflowed(&s))
1358 pr_info("%s[%d]: code: %s\n", current->comm,
1359 current->pid, s.buffer);
1363 struct regbit {
1364 unsigned long bit;
1365 const char *name;
1368 static struct regbit msr_bits[] = {
1369 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1370 {MSR_SF, "SF"},
1371 {MSR_HV, "HV"},
1372 #endif
1373 {MSR_VEC, "VEC"},
1374 {MSR_VSX, "VSX"},
1375 #ifdef CONFIG_BOOKE
1376 {MSR_CE, "CE"},
1377 #endif
1378 {MSR_EE, "EE"},
1379 {MSR_PR, "PR"},
1380 {MSR_FP, "FP"},
1381 {MSR_ME, "ME"},
1382 #ifdef CONFIG_BOOKE
1383 {MSR_DE, "DE"},
1384 #else
1385 {MSR_SE, "SE"},
1386 {MSR_BE, "BE"},
1387 #endif
1388 {MSR_IR, "IR"},
1389 {MSR_DR, "DR"},
1390 {MSR_PMM, "PMM"},
1391 #ifndef CONFIG_BOOKE
1392 {MSR_RI, "RI"},
1393 {MSR_LE, "LE"},
1394 #endif
1395 {0, NULL}
1398 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1400 const char *s = "";
1402 for (; bits->bit; ++bits)
1403 if (val & bits->bit) {
1404 pr_cont("%s%s", s, bits->name);
1405 s = sep;
1409 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1410 static struct regbit msr_tm_bits[] = {
1411 {MSR_TS_T, "T"},
1412 {MSR_TS_S, "S"},
1413 {MSR_TM, "E"},
1414 {0, NULL}
1417 static void print_tm_bits(unsigned long val)
1420 * This only prints something if at least one of the TM bit is set.
1421 * Inside the TM[], the output means:
1422 * E: Enabled (bit 32)
1423 * S: Suspended (bit 33)
1424 * T: Transactional (bit 34)
1426 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1427 pr_cont(",TM[");
1428 print_bits(val, msr_tm_bits, "");
1429 pr_cont("]");
1432 #else
1433 static void print_tm_bits(unsigned long val) {}
1434 #endif
1436 static void print_msr_bits(unsigned long val)
1438 pr_cont("<");
1439 print_bits(val, msr_bits, ",");
1440 print_tm_bits(val);
1441 pr_cont(">");
1444 #ifdef CONFIG_PPC64
1445 #define REG "%016lx"
1446 #define REGS_PER_LINE 4
1447 #define LAST_VOLATILE 13
1448 #else
1449 #define REG "%08lx"
1450 #define REGS_PER_LINE 8
1451 #define LAST_VOLATILE 12
1452 #endif
1454 static void __show_regs(struct pt_regs *regs)
1456 int i, trap;
1458 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1459 regs->nip, regs->link, regs->ctr);
1460 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1461 regs, regs->trap, print_tainted(), init_utsname()->release);
1462 printk("MSR: "REG" ", regs->msr);
1463 print_msr_bits(regs->msr);
1464 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1465 trap = TRAP(regs);
1466 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1467 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1468 if (trap == 0x200 || trap == 0x300 || trap == 0x600) {
1469 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1470 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1471 else
1472 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1475 #ifdef CONFIG_PPC64
1476 pr_cont("IRQMASK: %lx ", regs->softe);
1477 #endif
1478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1479 if (MSR_TM_ACTIVE(regs->msr))
1480 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1481 #endif
1483 for (i = 0; i < 32; i++) {
1484 if ((i % REGS_PER_LINE) == 0)
1485 pr_cont("\nGPR%02d: ", i);
1486 pr_cont(REG " ", regs->gpr[i]);
1487 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1488 break;
1490 pr_cont("\n");
1492 * Lookup NIP late so we have the best change of getting the
1493 * above info out without failing
1495 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1496 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1497 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1501 void show_regs(struct pt_regs *regs)
1503 show_regs_print_info(KERN_DEFAULT);
1504 __show_regs(regs);
1505 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1506 if (!user_mode(regs))
1507 show_instructions(regs);
1510 void flush_thread(void)
1512 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1513 flush_ptrace_hw_breakpoint(current);
1514 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1515 set_debug_reg_defaults(&current->thread);
1516 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1519 void arch_setup_new_exec(void)
1522 #ifdef CONFIG_PPC_BOOK3S_64
1523 if (!radix_enabled())
1524 hash__setup_new_exec();
1525 #endif
1527 * If we exec out of a kernel thread then thread.regs will not be
1528 * set. Do it now.
1530 if (!current->thread.regs) {
1531 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1532 current->thread.regs = regs - 1;
1535 #ifdef CONFIG_PPC_MEM_KEYS
1536 current->thread.regs->amr = default_amr;
1537 current->thread.regs->iamr = default_iamr;
1538 #endif
1541 #ifdef CONFIG_PPC64
1543 * Assign a TIDR (thread ID) for task @t and set it in the thread
1544 * structure. For now, we only support setting TIDR for 'current' task.
1546 * Since the TID value is a truncated form of it PID, it is possible
1547 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1548 * that 2 threads share the same TID and are waiting, one of the following
1549 * cases will happen:
1551 * 1. The correct thread is running, the wrong thread is not
1552 * In this situation, the correct thread is woken and proceeds to pass it's
1553 * condition check.
1555 * 2. Neither threads are running
1556 * In this situation, neither thread will be woken. When scheduled, the waiting
1557 * threads will execute either a wait, which will return immediately, followed
1558 * by a condition check, which will pass for the correct thread and fail
1559 * for the wrong thread, or they will execute the condition check immediately.
1561 * 3. The wrong thread is running, the correct thread is not
1562 * The wrong thread will be woken, but will fail it's condition check and
1563 * re-execute wait. The correct thread, when scheduled, will execute either
1564 * it's condition check (which will pass), or wait, which returns immediately
1565 * when called the first time after the thread is scheduled, followed by it's
1566 * condition check (which will pass).
1568 * 4. Both threads are running
1569 * Both threads will be woken. The wrong thread will fail it's condition check
1570 * and execute another wait, while the correct thread will pass it's condition
1571 * check.
1573 * @t: the task to set the thread ID for
1575 int set_thread_tidr(struct task_struct *t)
1577 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1578 return -EINVAL;
1580 if (t != current)
1581 return -EINVAL;
1583 if (t->thread.tidr)
1584 return 0;
1586 t->thread.tidr = (u16)task_pid_nr(t);
1587 mtspr(SPRN_TIDR, t->thread.tidr);
1589 return 0;
1591 EXPORT_SYMBOL_GPL(set_thread_tidr);
1593 #endif /* CONFIG_PPC64 */
1595 void
1596 release_thread(struct task_struct *t)
1601 * this gets called so that we can store coprocessor state into memory and
1602 * copy the current task into the new thread.
1604 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1606 flush_all_to_thread(src);
1608 * Flush TM state out so we can copy it. __switch_to_tm() does this
1609 * flush but it removes the checkpointed state from the current CPU and
1610 * transitions the CPU out of TM mode. Hence we need to call
1611 * tm_recheckpoint_new_task() (on the same task) to restore the
1612 * checkpointed state back and the TM mode.
1614 * Can't pass dst because it isn't ready. Doesn't matter, passing
1615 * dst is only important for __switch_to()
1617 __switch_to_tm(src, src);
1619 *dst = *src;
1621 clear_task_ebb(dst);
1623 return 0;
1626 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1628 #ifdef CONFIG_PPC_BOOK3S_64
1629 unsigned long sp_vsid;
1630 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1632 if (radix_enabled())
1633 return;
1635 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1636 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1637 << SLB_VSID_SHIFT_1T;
1638 else
1639 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1640 << SLB_VSID_SHIFT;
1641 sp_vsid |= SLB_VSID_KERNEL | llp;
1642 p->thread.ksp_vsid = sp_vsid;
1643 #endif
1647 * Copy a thread..
1651 * Copy architecture-specific thread state
1653 int copy_thread(unsigned long clone_flags, unsigned long usp,
1654 unsigned long kthread_arg, struct task_struct *p,
1655 unsigned long tls)
1657 struct pt_regs *childregs, *kregs;
1658 extern void ret_from_fork(void);
1659 extern void ret_from_fork_scv(void);
1660 extern void ret_from_kernel_thread(void);
1661 void (*f)(void);
1662 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1663 struct thread_info *ti = task_thread_info(p);
1664 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1665 int i;
1666 #endif
1668 klp_init_thread_info(p);
1670 /* Copy registers */
1671 sp -= sizeof(struct pt_regs);
1672 childregs = (struct pt_regs *) sp;
1673 if (unlikely(p->flags & PF_KTHREAD)) {
1674 /* kernel thread */
1675 memset(childregs, 0, sizeof(struct pt_regs));
1676 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1677 /* function */
1678 if (usp)
1679 childregs->gpr[14] = ppc_function_entry((void *)usp);
1680 #ifdef CONFIG_PPC64
1681 clear_tsk_thread_flag(p, TIF_32BIT);
1682 childregs->softe = IRQS_ENABLED;
1683 #endif
1684 childregs->gpr[15] = kthread_arg;
1685 p->thread.regs = NULL; /* no user register state */
1686 ti->flags |= _TIF_RESTOREALL;
1687 f = ret_from_kernel_thread;
1688 } else {
1689 /* user thread */
1690 struct pt_regs *regs = current_pt_regs();
1691 CHECK_FULL_REGS(regs);
1692 *childregs = *regs;
1693 if (usp)
1694 childregs->gpr[1] = usp;
1695 p->thread.regs = childregs;
1696 /* 64s sets this in ret_from_fork */
1697 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1698 childregs->gpr[3] = 0; /* Result from fork() */
1699 if (clone_flags & CLONE_SETTLS) {
1700 if (!is_32bit_task())
1701 childregs->gpr[13] = tls;
1702 else
1703 childregs->gpr[2] = tls;
1706 if (trap_is_scv(regs))
1707 f = ret_from_fork_scv;
1708 else
1709 f = ret_from_fork;
1711 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1712 sp -= STACK_FRAME_OVERHEAD;
1715 * The way this works is that at some point in the future
1716 * some task will call _switch to switch to the new task.
1717 * That will pop off the stack frame created below and start
1718 * the new task running at ret_from_fork. The new task will
1719 * do some house keeping and then return from the fork or clone
1720 * system call, using the stack frame created above.
1722 ((unsigned long *)sp)[0] = 0;
1723 sp -= sizeof(struct pt_regs);
1724 kregs = (struct pt_regs *) sp;
1725 sp -= STACK_FRAME_OVERHEAD;
1726 p->thread.ksp = sp;
1727 #ifdef CONFIG_PPC32
1728 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1729 #endif
1730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1731 for (i = 0; i < nr_wp_slots(); i++)
1732 p->thread.ptrace_bps[i] = NULL;
1733 #endif
1735 #ifdef CONFIG_PPC_FPU_REGS
1736 p->thread.fp_save_area = NULL;
1737 #endif
1738 #ifdef CONFIG_ALTIVEC
1739 p->thread.vr_save_area = NULL;
1740 #endif
1742 setup_ksp_vsid(p, sp);
1744 #ifdef CONFIG_PPC64
1745 if (cpu_has_feature(CPU_FTR_DSCR)) {
1746 p->thread.dscr_inherit = current->thread.dscr_inherit;
1747 p->thread.dscr = mfspr(SPRN_DSCR);
1749 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1750 childregs->ppr = DEFAULT_PPR;
1752 p->thread.tidr = 0;
1753 #endif
1755 * Run with the current AMR value of the kernel
1757 #ifdef CONFIG_PPC_PKEY
1758 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1759 kregs->amr = AMR_KUAP_BLOCKED;
1761 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1762 kregs->iamr = AMR_KUEP_BLOCKED;
1763 #endif
1764 kregs->nip = ppc_function_entry(f);
1765 return 0;
1768 void preload_new_slb_context(unsigned long start, unsigned long sp);
1771 * Set up a thread for executing a new program
1773 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1775 #ifdef CONFIG_PPC64
1776 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1778 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1779 preload_new_slb_context(start, sp);
1780 #endif
1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1784 * Clear any transactional state, we're exec()ing. The cause is
1785 * not important as there will never be a recheckpoint so it's not
1786 * user visible.
1788 if (MSR_TM_SUSPENDED(mfmsr()))
1789 tm_reclaim_current(0);
1790 #endif
1792 memset(regs->gpr, 0, sizeof(regs->gpr));
1793 regs->ctr = 0;
1794 regs->link = 0;
1795 regs->xer = 0;
1796 regs->ccr = 0;
1797 regs->gpr[1] = sp;
1800 * We have just cleared all the nonvolatile GPRs, so make
1801 * FULL_REGS(regs) return true. This is necessary to allow
1802 * ptrace to examine the thread immediately after exec.
1804 SET_FULL_REGS(regs);
1806 #ifdef CONFIG_PPC32
1807 regs->mq = 0;
1808 regs->nip = start;
1809 regs->msr = MSR_USER;
1810 #else
1811 if (!is_32bit_task()) {
1812 unsigned long entry;
1814 if (is_elf2_task()) {
1815 /* Look ma, no function descriptors! */
1816 entry = start;
1819 * Ulrich says:
1820 * The latest iteration of the ABI requires that when
1821 * calling a function (at its global entry point),
1822 * the caller must ensure r12 holds the entry point
1823 * address (so that the function can quickly
1824 * establish addressability).
1826 regs->gpr[12] = start;
1827 /* Make sure that's restored on entry to userspace. */
1828 set_thread_flag(TIF_RESTOREALL);
1829 } else {
1830 unsigned long toc;
1832 /* start is a relocated pointer to the function
1833 * descriptor for the elf _start routine. The first
1834 * entry in the function descriptor is the entry
1835 * address of _start and the second entry is the TOC
1836 * value we need to use.
1838 __get_user(entry, (unsigned long __user *)start);
1839 __get_user(toc, (unsigned long __user *)start+1);
1841 /* Check whether the e_entry function descriptor entries
1842 * need to be relocated before we can use them.
1844 if (load_addr != 0) {
1845 entry += load_addr;
1846 toc += load_addr;
1848 regs->gpr[2] = toc;
1850 regs->nip = entry;
1851 regs->msr = MSR_USER64;
1852 } else {
1853 regs->nip = start;
1854 regs->gpr[2] = 0;
1855 regs->msr = MSR_USER32;
1857 #endif
1858 #ifdef CONFIG_VSX
1859 current->thread.used_vsr = 0;
1860 #endif
1861 current->thread.load_slb = 0;
1862 current->thread.load_fp = 0;
1863 #ifdef CONFIG_PPC_FPU_REGS
1864 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1865 current->thread.fp_save_area = NULL;
1866 #endif
1867 #ifdef CONFIG_ALTIVEC
1868 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1869 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1870 current->thread.vr_save_area = NULL;
1871 current->thread.vrsave = 0;
1872 current->thread.used_vr = 0;
1873 current->thread.load_vec = 0;
1874 #endif /* CONFIG_ALTIVEC */
1875 #ifdef CONFIG_SPE
1876 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1877 current->thread.acc = 0;
1878 current->thread.spefscr = 0;
1879 current->thread.used_spe = 0;
1880 #endif /* CONFIG_SPE */
1881 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1882 current->thread.tm_tfhar = 0;
1883 current->thread.tm_texasr = 0;
1884 current->thread.tm_tfiar = 0;
1885 current->thread.load_tm = 0;
1886 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1889 EXPORT_SYMBOL(start_thread);
1891 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1892 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1894 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1896 struct pt_regs *regs = tsk->thread.regs;
1898 /* This is a bit hairy. If we are an SPE enabled processor
1899 * (have embedded fp) we store the IEEE exception enable flags in
1900 * fpexc_mode. fpexc_mode is also used for setting FP exception
1901 * mode (asyn, precise, disabled) for 'Classic' FP. */
1902 if (val & PR_FP_EXC_SW_ENABLE) {
1903 if (cpu_has_feature(CPU_FTR_SPE)) {
1905 * When the sticky exception bits are set
1906 * directly by userspace, it must call prctl
1907 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1908 * in the existing prctl settings) or
1909 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1910 * the bits being set). <fenv.h> functions
1911 * saving and restoring the whole
1912 * floating-point environment need to do so
1913 * anyway to restore the prctl settings from
1914 * the saved environment.
1916 #ifdef CONFIG_SPE
1917 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1918 tsk->thread.fpexc_mode = val &
1919 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1920 #endif
1921 return 0;
1922 } else {
1923 return -EINVAL;
1927 /* on a CONFIG_SPE this does not hurt us. The bits that
1928 * __pack_fe01 use do not overlap with bits used for
1929 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1930 * on CONFIG_SPE implementations are reserved so writing to
1931 * them does not change anything */
1932 if (val > PR_FP_EXC_PRECISE)
1933 return -EINVAL;
1934 tsk->thread.fpexc_mode = __pack_fe01(val);
1935 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1936 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1937 | tsk->thread.fpexc_mode;
1938 return 0;
1941 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1943 unsigned int val = 0;
1945 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1946 if (cpu_has_feature(CPU_FTR_SPE)) {
1948 * When the sticky exception bits are set
1949 * directly by userspace, it must call prctl
1950 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1951 * in the existing prctl settings) or
1952 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1953 * the bits being set). <fenv.h> functions
1954 * saving and restoring the whole
1955 * floating-point environment need to do so
1956 * anyway to restore the prctl settings from
1957 * the saved environment.
1959 #ifdef CONFIG_SPE
1960 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1961 val = tsk->thread.fpexc_mode;
1962 #endif
1963 } else
1964 return -EINVAL;
1965 } else {
1966 val = __unpack_fe01(tsk->thread.fpexc_mode);
1968 return put_user(val, (unsigned int __user *) adr);
1971 int set_endian(struct task_struct *tsk, unsigned int val)
1973 struct pt_regs *regs = tsk->thread.regs;
1975 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1976 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1977 return -EINVAL;
1979 if (regs == NULL)
1980 return -EINVAL;
1982 if (val == PR_ENDIAN_BIG)
1983 regs->msr &= ~MSR_LE;
1984 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1985 regs->msr |= MSR_LE;
1986 else
1987 return -EINVAL;
1989 return 0;
1992 int get_endian(struct task_struct *tsk, unsigned long adr)
1994 struct pt_regs *regs = tsk->thread.regs;
1995 unsigned int val;
1997 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1998 !cpu_has_feature(CPU_FTR_REAL_LE))
1999 return -EINVAL;
2001 if (regs == NULL)
2002 return -EINVAL;
2004 if (regs->msr & MSR_LE) {
2005 if (cpu_has_feature(CPU_FTR_REAL_LE))
2006 val = PR_ENDIAN_LITTLE;
2007 else
2008 val = PR_ENDIAN_PPC_LITTLE;
2009 } else
2010 val = PR_ENDIAN_BIG;
2012 return put_user(val, (unsigned int __user *)adr);
2015 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2017 tsk->thread.align_ctl = val;
2018 return 0;
2021 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2023 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2026 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2027 unsigned long nbytes)
2029 unsigned long stack_page;
2030 unsigned long cpu = task_cpu(p);
2032 stack_page = (unsigned long)hardirq_ctx[cpu];
2033 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2034 return 1;
2036 stack_page = (unsigned long)softirq_ctx[cpu];
2037 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2038 return 1;
2040 return 0;
2043 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2044 unsigned long nbytes)
2046 #ifdef CONFIG_PPC64
2047 unsigned long stack_page;
2048 unsigned long cpu = task_cpu(p);
2050 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2051 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2052 return 1;
2054 # ifdef CONFIG_PPC_BOOK3S_64
2055 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2056 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2057 return 1;
2059 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2060 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2061 return 1;
2062 # endif
2063 #endif
2065 return 0;
2069 int validate_sp(unsigned long sp, struct task_struct *p,
2070 unsigned long nbytes)
2072 unsigned long stack_page = (unsigned long)task_stack_page(p);
2074 if (sp < THREAD_SIZE)
2075 return 0;
2077 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2078 return 1;
2080 if (valid_irq_stack(sp, p, nbytes))
2081 return 1;
2083 return valid_emergency_stack(sp, p, nbytes);
2086 EXPORT_SYMBOL(validate_sp);
2088 static unsigned long __get_wchan(struct task_struct *p)
2090 unsigned long ip, sp;
2091 int count = 0;
2093 if (!p || p == current || p->state == TASK_RUNNING)
2094 return 0;
2096 sp = p->thread.ksp;
2097 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2098 return 0;
2100 do {
2101 sp = *(unsigned long *)sp;
2102 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2103 p->state == TASK_RUNNING)
2104 return 0;
2105 if (count > 0) {
2106 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2107 if (!in_sched_functions(ip))
2108 return ip;
2110 } while (count++ < 16);
2111 return 0;
2114 unsigned long get_wchan(struct task_struct *p)
2116 unsigned long ret;
2118 if (!try_get_task_stack(p))
2119 return 0;
2121 ret = __get_wchan(p);
2123 put_task_stack(p);
2125 return ret;
2128 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2130 void show_stack(struct task_struct *tsk, unsigned long *stack,
2131 const char *loglvl)
2133 unsigned long sp, ip, lr, newsp;
2134 int count = 0;
2135 int firstframe = 1;
2136 unsigned long ret_addr;
2137 int ftrace_idx = 0;
2139 if (tsk == NULL)
2140 tsk = current;
2142 if (!try_get_task_stack(tsk))
2143 return;
2145 sp = (unsigned long) stack;
2146 if (sp == 0) {
2147 if (tsk == current)
2148 sp = current_stack_frame();
2149 else
2150 sp = tsk->thread.ksp;
2153 lr = 0;
2154 printk("%sCall Trace:\n", loglvl);
2155 do {
2156 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2157 break;
2159 stack = (unsigned long *) sp;
2160 newsp = stack[0];
2161 ip = stack[STACK_FRAME_LR_SAVE];
2162 if (!firstframe || ip != lr) {
2163 printk("%s["REG"] ["REG"] %pS",
2164 loglvl, sp, ip, (void *)ip);
2165 ret_addr = ftrace_graph_ret_addr(current,
2166 &ftrace_idx, ip, stack);
2167 if (ret_addr != ip)
2168 pr_cont(" (%pS)", (void *)ret_addr);
2169 if (firstframe)
2170 pr_cont(" (unreliable)");
2171 pr_cont("\n");
2173 firstframe = 0;
2176 * See if this is an exception frame.
2177 * We look for the "regshere" marker in the current frame.
2179 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2180 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2181 struct pt_regs *regs = (struct pt_regs *)
2182 (sp + STACK_FRAME_OVERHEAD);
2184 lr = regs->link;
2185 printk("%s--- interrupt: %lx at %pS\n",
2186 loglvl, regs->trap, (void *)regs->nip);
2187 __show_regs(regs);
2188 printk("%s--- interrupt: %lx\n",
2189 loglvl, regs->trap);
2191 firstframe = 1;
2194 sp = newsp;
2195 } while (count++ < kstack_depth_to_print);
2197 put_task_stack(tsk);
2200 #ifdef CONFIG_PPC64
2201 /* Called with hard IRQs off */
2202 void notrace __ppc64_runlatch_on(void)
2204 struct thread_info *ti = current_thread_info();
2206 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2208 * Least significant bit (RUN) is the only writable bit of
2209 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2210 * earliest ISA where this is the case, but it's convenient.
2212 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2213 } else {
2214 unsigned long ctrl;
2217 * Some architectures (e.g., Cell) have writable fields other
2218 * than RUN, so do the read-modify-write.
2220 ctrl = mfspr(SPRN_CTRLF);
2221 ctrl |= CTRL_RUNLATCH;
2222 mtspr(SPRN_CTRLT, ctrl);
2225 ti->local_flags |= _TLF_RUNLATCH;
2228 /* Called with hard IRQs off */
2229 void notrace __ppc64_runlatch_off(void)
2231 struct thread_info *ti = current_thread_info();
2233 ti->local_flags &= ~_TLF_RUNLATCH;
2235 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2236 mtspr(SPRN_CTRLT, 0);
2237 } else {
2238 unsigned long ctrl;
2240 ctrl = mfspr(SPRN_CTRLF);
2241 ctrl &= ~CTRL_RUNLATCH;
2242 mtspr(SPRN_CTRLT, ctrl);
2245 #endif /* CONFIG_PPC64 */
2247 unsigned long arch_align_stack(unsigned long sp)
2249 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2250 sp -= get_random_int() & ~PAGE_MASK;
2251 return sp & ~0xf;
2254 static inline unsigned long brk_rnd(void)
2256 unsigned long rnd = 0;
2258 /* 8MB for 32bit, 1GB for 64bit */
2259 if (is_32bit_task())
2260 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2261 else
2262 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2264 return rnd << PAGE_SHIFT;
2267 unsigned long arch_randomize_brk(struct mm_struct *mm)
2269 unsigned long base = mm->brk;
2270 unsigned long ret;
2272 #ifdef CONFIG_PPC_BOOK3S_64
2274 * If we are using 1TB segments and we are allowed to randomise
2275 * the heap, we can put it above 1TB so it is backed by a 1TB
2276 * segment. Otherwise the heap will be in the bottom 1TB
2277 * which always uses 256MB segments and this may result in a
2278 * performance penalty. We don't need to worry about radix. For
2279 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2281 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2282 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2283 #endif
2285 ret = PAGE_ALIGN(base + brk_rnd());
2287 if (ret < mm->brk)
2288 return mm->brk;
2290 return ret;