1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
45 #include <asm/processor.h>
48 #include <asm/machdep.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
54 #include <asm/debug.h>
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
59 #include <asm/code-patching.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
70 /* Transactional Memory debug */
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #define TM_DEBUG(x...) do { } while(0)
77 extern unsigned long _get_SP(void);
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 * Are we running in "Suspend disabled" mode? If so we have to block any
82 * sigreturn that would get us into suspended state, and we also warn in some
83 * other paths that we should never reach with suspend disabled.
85 bool tm_suspend_disabled __ro_after_init
= false;
87 static void check_if_tm_restore_required(struct task_struct
*tsk
)
90 * If we are saving the current thread's registers, and the
91 * thread is in a transactional state, set the TIF_RESTORE_TM
92 * bit so that we know to restore the registers before
93 * returning to userspace.
95 if (tsk
== current
&& tsk
->thread
.regs
&&
96 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
97 !test_thread_flag(TIF_RESTORE_TM
)) {
98 tsk
->thread
.ckpt_regs
.msr
= tsk
->thread
.regs
->msr
;
99 set_thread_flag(TIF_RESTORE_TM
);
104 static inline void check_if_tm_restore_required(struct task_struct
*tsk
) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107 bool strict_msr_control
;
108 EXPORT_SYMBOL(strict_msr_control
);
110 static int __init
enable_strict_msr_control(char *str
)
112 strict_msr_control
= true;
113 pr_info("Enabling strict facility control\n");
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control
);
119 /* notrace because it's called by restore_math */
120 unsigned long notrace
msr_check_and_set(unsigned long bits
)
122 unsigned long oldmsr
= mfmsr();
123 unsigned long newmsr
;
125 newmsr
= oldmsr
| bits
;
127 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
130 if (oldmsr
!= newmsr
)
135 EXPORT_SYMBOL_GPL(msr_check_and_set
);
137 /* notrace because it's called by restore_math */
138 void notrace
__msr_check_and_clear(unsigned long bits
)
140 unsigned long oldmsr
= mfmsr();
141 unsigned long newmsr
;
143 newmsr
= oldmsr
& ~bits
;
145 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
148 if (oldmsr
!= newmsr
)
151 EXPORT_SYMBOL(__msr_check_and_clear
);
153 #ifdef CONFIG_PPC_FPU
154 static void __giveup_fpu(struct task_struct
*tsk
)
159 msr
= tsk
->thread
.regs
->msr
;
160 msr
&= ~(MSR_FP
|MSR_FE0
|MSR_FE1
);
161 if (cpu_has_feature(CPU_FTR_VSX
))
163 tsk
->thread
.regs
->msr
= msr
;
166 void giveup_fpu(struct task_struct
*tsk
)
168 check_if_tm_restore_required(tsk
);
170 msr_check_and_set(MSR_FP
);
172 msr_check_and_clear(MSR_FP
);
174 EXPORT_SYMBOL(giveup_fpu
);
177 * Make sure the floating-point register state in the
178 * the thread_struct is up to date for task tsk.
180 void flush_fp_to_thread(struct task_struct
*tsk
)
182 if (tsk
->thread
.regs
) {
184 * We need to disable preemption here because if we didn't,
185 * another process could get scheduled after the regs->msr
186 * test but before we have finished saving the FP registers
187 * to the thread_struct. That process could take over the
188 * FPU, and then when we get scheduled again we would store
189 * bogus values for the remaining FP registers.
192 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
194 * This should only ever be called for current or
195 * for a stopped child process. Since we save away
196 * the FP register state on context switch,
197 * there is something wrong if a stopped child appears
198 * to still have its FP state in the CPU registers.
200 BUG_ON(tsk
!= current
);
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
208 void enable_kernel_fp(void)
210 unsigned long cpumsr
;
212 WARN_ON(preemptible());
214 cpumsr
= msr_check_and_set(MSR_FP
);
216 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
)) {
217 check_if_tm_restore_required(current
);
219 * If a thread has already been reclaimed then the
220 * checkpointed registers are on the CPU but have definitely
221 * been saved by the reclaim code. Don't need to and *cannot*
222 * giveup as this would save to the 'live' structure not the
223 * checkpointed structure.
225 if (!MSR_TM_ACTIVE(cpumsr
) &&
226 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
228 __giveup_fpu(current
);
231 EXPORT_SYMBOL(enable_kernel_fp
);
233 static inline void __giveup_fpu(struct task_struct
*tsk
) { }
234 #endif /* CONFIG_PPC_FPU */
236 #ifdef CONFIG_ALTIVEC
237 static void __giveup_altivec(struct task_struct
*tsk
)
242 msr
= tsk
->thread
.regs
->msr
;
244 if (cpu_has_feature(CPU_FTR_VSX
))
246 tsk
->thread
.regs
->msr
= msr
;
249 void giveup_altivec(struct task_struct
*tsk
)
251 check_if_tm_restore_required(tsk
);
253 msr_check_and_set(MSR_VEC
);
254 __giveup_altivec(tsk
);
255 msr_check_and_clear(MSR_VEC
);
257 EXPORT_SYMBOL(giveup_altivec
);
259 void enable_kernel_altivec(void)
261 unsigned long cpumsr
;
263 WARN_ON(preemptible());
265 cpumsr
= msr_check_and_set(MSR_VEC
);
267 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
)) {
268 check_if_tm_restore_required(current
);
270 * If a thread has already been reclaimed then the
271 * checkpointed registers are on the CPU but have definitely
272 * been saved by the reclaim code. Don't need to and *cannot*
273 * giveup as this would save to the 'live' structure not the
274 * checkpointed structure.
276 if (!MSR_TM_ACTIVE(cpumsr
) &&
277 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
279 __giveup_altivec(current
);
282 EXPORT_SYMBOL(enable_kernel_altivec
);
285 * Make sure the VMX/Altivec register state in the
286 * the thread_struct is up to date for task tsk.
288 void flush_altivec_to_thread(struct task_struct
*tsk
)
290 if (tsk
->thread
.regs
) {
292 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
293 BUG_ON(tsk
!= current
);
299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
300 #endif /* CONFIG_ALTIVEC */
303 static void __giveup_vsx(struct task_struct
*tsk
)
305 unsigned long msr
= tsk
->thread
.regs
->msr
;
308 * We should never be ssetting MSR_VSX without also setting
311 WARN_ON((msr
& MSR_VSX
) && !((msr
& MSR_FP
) && (msr
& MSR_VEC
)));
313 /* __giveup_fpu will clear MSR_VSX */
317 __giveup_altivec(tsk
);
320 static void giveup_vsx(struct task_struct
*tsk
)
322 check_if_tm_restore_required(tsk
);
324 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
326 msr_check_and_clear(MSR_FP
|MSR_VEC
|MSR_VSX
);
329 void enable_kernel_vsx(void)
331 unsigned long cpumsr
;
333 WARN_ON(preemptible());
335 cpumsr
= msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
337 if (current
->thread
.regs
&&
338 (current
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
))) {
339 check_if_tm_restore_required(current
);
341 * If a thread has already been reclaimed then the
342 * checkpointed registers are on the CPU but have definitely
343 * been saved by the reclaim code. Don't need to and *cannot*
344 * giveup as this would save to the 'live' structure not the
345 * checkpointed structure.
347 if (!MSR_TM_ACTIVE(cpumsr
) &&
348 MSR_TM_ACTIVE(current
->thread
.regs
->msr
))
350 __giveup_vsx(current
);
353 EXPORT_SYMBOL(enable_kernel_vsx
);
355 void flush_vsx_to_thread(struct task_struct
*tsk
)
357 if (tsk
->thread
.regs
) {
359 if (tsk
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
)) {
360 BUG_ON(tsk
!= current
);
366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
367 #endif /* CONFIG_VSX */
370 void giveup_spe(struct task_struct
*tsk
)
372 check_if_tm_restore_required(tsk
);
374 msr_check_and_set(MSR_SPE
);
376 msr_check_and_clear(MSR_SPE
);
378 EXPORT_SYMBOL(giveup_spe
);
380 void enable_kernel_spe(void)
382 WARN_ON(preemptible());
384 msr_check_and_set(MSR_SPE
);
386 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
)) {
387 check_if_tm_restore_required(current
);
388 __giveup_spe(current
);
391 EXPORT_SYMBOL(enable_kernel_spe
);
393 void flush_spe_to_thread(struct task_struct
*tsk
)
395 if (tsk
->thread
.regs
) {
397 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
398 BUG_ON(tsk
!= current
);
399 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
405 #endif /* CONFIG_SPE */
407 static unsigned long msr_all_available
;
409 static int __init
init_msr_all_available(void)
411 if (IS_ENABLED(CONFIG_PPC_FPU
))
412 msr_all_available
|= MSR_FP
;
413 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
414 msr_all_available
|= MSR_VEC
;
415 if (cpu_has_feature(CPU_FTR_VSX
))
416 msr_all_available
|= MSR_VSX
;
417 if (cpu_has_feature(CPU_FTR_SPE
))
418 msr_all_available
|= MSR_SPE
;
422 early_initcall(init_msr_all_available
);
424 void giveup_all(struct task_struct
*tsk
)
426 unsigned long usermsr
;
428 if (!tsk
->thread
.regs
)
431 check_if_tm_restore_required(tsk
);
433 usermsr
= tsk
->thread
.regs
->msr
;
435 if ((usermsr
& msr_all_available
) == 0)
438 msr_check_and_set(msr_all_available
);
440 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
442 if (usermsr
& MSR_FP
)
444 if (usermsr
& MSR_VEC
)
445 __giveup_altivec(tsk
);
446 if (usermsr
& MSR_SPE
)
449 msr_check_and_clear(msr_all_available
);
451 EXPORT_SYMBOL(giveup_all
);
453 #ifdef CONFIG_PPC_BOOK3S_64
454 #ifdef CONFIG_PPC_FPU
455 static bool should_restore_fp(void)
457 if (current
->thread
.load_fp
) {
458 current
->thread
.load_fp
++;
464 static void do_restore_fp(void)
466 load_fp_state(¤t
->thread
.fp_state
);
469 static bool should_restore_fp(void) { return false; }
470 static void do_restore_fp(void) { }
471 #endif /* CONFIG_PPC_FPU */
473 #ifdef CONFIG_ALTIVEC
474 static bool should_restore_altivec(void)
476 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && (current
->thread
.load_vec
)) {
477 current
->thread
.load_vec
++;
483 static void do_restore_altivec(void)
485 load_vr_state(¤t
->thread
.vr_state
);
486 current
->thread
.used_vr
= 1;
489 static bool should_restore_altivec(void) { return false; }
490 static void do_restore_altivec(void) { }
491 #endif /* CONFIG_ALTIVEC */
493 static bool should_restore_vsx(void)
495 if (cpu_has_feature(CPU_FTR_VSX
))
500 static void do_restore_vsx(void)
502 current
->thread
.used_vsr
= 1;
505 static void do_restore_vsx(void) { }
506 #endif /* CONFIG_VSX */
509 * The exception exit path calls restore_math() with interrupts hard disabled
510 * but the soft irq state not "reconciled". ftrace code that calls
511 * local_irq_save/restore causes warnings.
513 * Rather than complicate the exit path, just don't trace restore_math. This
514 * could be done by having ftrace entry code check for this un-reconciled
515 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
516 * temporarily fix it up for the duration of the ftrace call.
518 void notrace
restore_math(struct pt_regs
*regs
)
521 unsigned long new_msr
= 0;
526 * new_msr tracks the facilities that are to be restored. Only reload
527 * if the bit is not set in the user MSR (if it is set, the registers
528 * are live for the user thread).
530 if ((!(msr
& MSR_FP
)) && should_restore_fp())
533 if ((!(msr
& MSR_VEC
)) && should_restore_altivec())
536 if ((!(msr
& MSR_VSX
)) && should_restore_vsx()) {
537 if (((msr
| new_msr
) & (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
))
542 unsigned long fpexc_mode
= 0;
544 msr_check_and_set(new_msr
);
546 if (new_msr
& MSR_FP
) {
549 // This also covers VSX, because VSX implies FP
550 fpexc_mode
= current
->thread
.fpexc_mode
;
553 if (new_msr
& MSR_VEC
)
554 do_restore_altivec();
556 if (new_msr
& MSR_VSX
)
559 msr_check_and_clear(new_msr
);
561 regs
->msr
|= new_msr
| fpexc_mode
;
564 #endif /* CONFIG_PPC_BOOK3S_64 */
566 static void save_all(struct task_struct
*tsk
)
568 unsigned long usermsr
;
570 if (!tsk
->thread
.regs
)
573 usermsr
= tsk
->thread
.regs
->msr
;
575 if ((usermsr
& msr_all_available
) == 0)
578 msr_check_and_set(msr_all_available
);
580 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
582 if (usermsr
& MSR_FP
)
585 if (usermsr
& MSR_VEC
)
588 if (usermsr
& MSR_SPE
)
591 msr_check_and_clear(msr_all_available
);
594 void flush_all_to_thread(struct task_struct
*tsk
)
596 if (tsk
->thread
.regs
) {
598 BUG_ON(tsk
!= current
);
600 if (tsk
->thread
.regs
->msr
& MSR_SPE
)
601 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
608 EXPORT_SYMBOL(flush_all_to_thread
);
610 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
611 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
612 unsigned long error_code
, int breakpt
)
614 current
->thread
.trap_nr
= TRAP_HWBKPT
;
615 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
616 11, SIGSEGV
) == NOTIFY_STOP
)
619 /* Deliver the signal to userspace */
620 force_sig_ptrace_errno_trap(breakpt
, /* breakpoint or watchpoint id */
621 (void __user
*)address
);
623 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
625 static void do_break_handler(struct pt_regs
*regs
)
627 struct arch_hw_breakpoint null_brk
= {0};
628 struct arch_hw_breakpoint
*info
;
629 struct ppc_inst instr
= ppc_inst(0);
636 * If underneath hw supports only one watchpoint, we know it
637 * caused exception. 8xx also falls into this category.
639 if (nr_wp_slots() == 1) {
640 __set_breakpoint(0, &null_brk
);
641 current
->thread
.hw_brk
[0] = null_brk
;
642 current
->thread
.hw_brk
[0].flags
|= HW_BRK_FLAG_DISABLED
;
646 /* Otherwise findout which DAWR caused exception and disable it. */
647 wp_get_instr_detail(regs
, &instr
, &type
, &size
, &ea
);
649 for (i
= 0; i
< nr_wp_slots(); i
++) {
650 info
= ¤t
->thread
.hw_brk
[i
];
654 if (wp_check_constraints(regs
, instr
, ea
, type
, size
, info
)) {
655 __set_breakpoint(i
, &null_brk
);
656 current
->thread
.hw_brk
[i
] = null_brk
;
657 current
->thread
.hw_brk
[i
].flags
|= HW_BRK_FLAG_DISABLED
;
662 void do_break (struct pt_regs
*regs
, unsigned long address
,
663 unsigned long error_code
)
665 current
->thread
.trap_nr
= TRAP_HWBKPT
;
666 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
667 11, SIGSEGV
) == NOTIFY_STOP
)
670 if (debugger_break_match(regs
))
674 * We reach here only when watchpoint exception is generated by ptrace
675 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
676 * watchpoint is already handled by hw_breakpoint_handler() so we don't
677 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
678 * we need to manually handle the watchpoint here.
680 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT
))
681 do_break_handler(regs
);
683 /* Deliver the signal to userspace */
684 force_sig_fault(SIGTRAP
, TRAP_HWBKPT
, (void __user
*)address
);
686 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
688 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
[HBP_NUM_MAX
]);
690 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
692 * Set the debug registers back to their default "safe" values.
694 static void set_debug_reg_defaults(struct thread_struct
*thread
)
696 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
697 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
698 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
700 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
701 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
702 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
704 thread
->debug
.dbcr0
= 0;
707 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
710 DBCR1_IAC3US
| DBCR1_IAC4US
;
712 * Force Data Address Compare User/Supervisor bits to be User-only
713 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
717 thread
->debug
.dbcr1
= 0;
721 static void prime_debug_regs(struct debug_reg
*debug
)
724 * We could have inherited MSR_DE from userspace, since
725 * it doesn't get cleared on exception entry. Make sure
726 * MSR_DE is clear before we enable any debug events.
728 mtmsr(mfmsr() & ~MSR_DE
);
730 mtspr(SPRN_IAC1
, debug
->iac1
);
731 mtspr(SPRN_IAC2
, debug
->iac2
);
732 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
733 mtspr(SPRN_IAC3
, debug
->iac3
);
734 mtspr(SPRN_IAC4
, debug
->iac4
);
736 mtspr(SPRN_DAC1
, debug
->dac1
);
737 mtspr(SPRN_DAC2
, debug
->dac2
);
738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
739 mtspr(SPRN_DVC1
, debug
->dvc1
);
740 mtspr(SPRN_DVC2
, debug
->dvc2
);
742 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
743 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
745 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
749 * Unless neither the old or new thread are making use of the
750 * debug registers, set the debug registers from the values
751 * stored in the new thread.
753 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
755 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
756 || (new_debug
->dbcr0
& DBCR0_IDM
))
757 prime_debug_regs(new_debug
);
759 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
760 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
761 #ifndef CONFIG_HAVE_HW_BREAKPOINT
762 static void set_breakpoint(int i
, struct arch_hw_breakpoint
*brk
)
765 __set_breakpoint(i
, brk
);
769 static void set_debug_reg_defaults(struct thread_struct
*thread
)
772 struct arch_hw_breakpoint null_brk
= {0};
774 for (i
= 0; i
< nr_wp_slots(); i
++) {
775 thread
->hw_brk
[i
] = null_brk
;
776 if (ppc_breakpoint_available())
777 set_breakpoint(i
, &thread
->hw_brk
[i
]);
781 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
782 struct arch_hw_breakpoint
*b
)
784 if (a
->address
!= b
->address
)
786 if (a
->type
!= b
->type
)
788 if (a
->len
!= b
->len
)
790 /* no need to check hw_len. it's calculated from address and len */
794 static void switch_hw_breakpoint(struct task_struct
*new)
798 for (i
= 0; i
< nr_wp_slots(); i
++) {
799 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk
[i
]),
800 &new->thread
.hw_brk
[i
])))
803 __set_breakpoint(i
, &new->thread
.hw_brk
[i
]);
806 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
807 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
809 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
811 unsigned long dabr
, dabrx
;
813 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
814 dabrx
= ((brk
->type
>> 3) & 0x7);
817 return ppc_md
.set_dabr(dabr
, dabrx
);
819 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS
)) {
820 mtspr(SPRN_DAC1
, dabr
);
821 if (IS_ENABLED(CONFIG_PPC_47x
))
824 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S
)) {
825 mtspr(SPRN_DABR
, dabr
);
826 if (cpu_has_feature(CPU_FTR_DABRX
))
827 mtspr(SPRN_DABRX
, dabrx
);
834 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint
*brk
)
836 unsigned long lctrl1
= LCTRL1_CTE_GT
| LCTRL1_CTF_LT
| LCTRL1_CRWE_RW
|
838 unsigned long lctrl2
= LCTRL2_LW0EN
| LCTRL2_LW0LADC
| LCTRL2_SLW0EN
;
839 unsigned long start_addr
= ALIGN_DOWN(brk
->address
, HW_BREAKPOINT_SIZE
);
840 unsigned long end_addr
= ALIGN(brk
->address
+ brk
->len
, HW_BREAKPOINT_SIZE
);
843 lctrl2
|= LCTRL2_LW0LA_F
;
844 else if (end_addr
== 0)
845 lctrl2
|= LCTRL2_LW0LA_E
;
847 lctrl2
|= LCTRL2_LW0LA_EandF
;
849 mtspr(SPRN_LCTRL2
, 0);
851 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == 0)
854 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_READ
)
855 lctrl1
|= LCTRL1_CRWE_RO
| LCTRL1_CRWF_RO
;
856 if ((brk
->type
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_WRITE
)
857 lctrl1
|= LCTRL1_CRWE_WO
| LCTRL1_CRWF_WO
;
859 mtspr(SPRN_CMPE
, start_addr
- 1);
860 mtspr(SPRN_CMPF
, end_addr
);
861 mtspr(SPRN_LCTRL1
, lctrl1
);
862 mtspr(SPRN_LCTRL2
, lctrl2
);
867 void __set_breakpoint(int nr
, struct arch_hw_breakpoint
*brk
)
869 memcpy(this_cpu_ptr(¤t_brk
[nr
]), brk
, sizeof(*brk
));
874 else if (IS_ENABLED(CONFIG_PPC_8xx
))
875 set_breakpoint_8xx(brk
);
876 else if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
880 // Shouldn't happen due to higher level checks
884 /* Check if we have DAWR or DABR hardware */
885 bool ppc_breakpoint_available(void)
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 if (cpu_has_feature(CPU_FTR_ARCH_207S
))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available
);
896 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898 static inline bool tm_enabled(struct task_struct
*tsk
)
900 return tsk
&& tsk
->thread
.regs
&& (tsk
->thread
.regs
->msr
& MSR_TM
);
903 static void tm_reclaim_thread(struct thread_struct
*thr
, uint8_t cause
)
906 * Use the current MSR TM suspended bit to track if we have
907 * checkpointed state outstanding.
908 * On signal delivery, we'd normally reclaim the checkpointed
909 * state to obtain stack pointer (see:get_tm_stackpointer()).
910 * This will then directly return to userspace without going
911 * through __switch_to(). However, if the stack frame is bad,
912 * we need to exit this thread which calls __switch_to() which
913 * will again attempt to reclaim the already saved tm state.
914 * Hence we need to check that we've not already reclaimed
916 * We do this using the current MSR, rather tracking it in
917 * some specific thread_struct bit, as it has the additional
918 * benefit of checking for a potential TM bad thing exception.
920 if (!MSR_TM_SUSPENDED(mfmsr()))
923 giveup_all(container_of(thr
, struct task_struct
, thread
));
925 tm_reclaim(thr
, cause
);
928 * If we are in a transaction and FP is off then we can't have
929 * used FP inside that transaction. Hence the checkpointed
930 * state is the same as the live state. We need to copy the
931 * live state to the checkpointed state so that when the
932 * transaction is restored, the checkpointed state is correct
933 * and the aborted transaction sees the correct state. We use
934 * ckpt_regs.msr here as that's what tm_reclaim will use to
935 * determine if it's going to write the checkpointed state or
936 * not. So either this will write the checkpointed registers,
937 * or reclaim will. Similarly for VMX.
939 if ((thr
->ckpt_regs
.msr
& MSR_FP
) == 0)
940 memcpy(&thr
->ckfp_state
, &thr
->fp_state
,
941 sizeof(struct thread_fp_state
));
942 if ((thr
->ckpt_regs
.msr
& MSR_VEC
) == 0)
943 memcpy(&thr
->ckvr_state
, &thr
->vr_state
,
944 sizeof(struct thread_vr_state
));
947 void tm_reclaim_current(uint8_t cause
)
950 tm_reclaim_thread(¤t
->thread
, cause
);
953 static inline void tm_reclaim_task(struct task_struct
*tsk
)
955 /* We have to work out if we're switching from/to a task that's in the
956 * middle of a transaction.
958 * In switching we need to maintain a 2nd register state as
959 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
960 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
963 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965 struct thread_struct
*thr
= &tsk
->thread
;
970 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
971 goto out_and_saveregs
;
973 WARN_ON(tm_suspend_disabled
);
975 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
976 "ccr=%lx, msr=%lx, trap=%lx)\n",
977 tsk
->pid
, thr
->regs
->nip
,
978 thr
->regs
->ccr
, thr
->regs
->msr
,
981 tm_reclaim_thread(thr
, TM_CAUSE_RESCHED
);
983 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
987 /* Always save the regs here, even if a transaction's not active.
988 * This context-switches a thread's TM info SPRs. We do it here to
989 * be consistent with the restore path (in recheckpoint) which
990 * cannot happen later in _switch().
995 extern void __tm_recheckpoint(struct thread_struct
*thread
);
997 void tm_recheckpoint(struct thread_struct
*thread
)
1001 if (!(thread
->regs
->msr
& MSR_TM
))
1004 /* We really can't be interrupted here as the TEXASR registers can't
1005 * change and later in the trecheckpoint code, we have a userspace R1.
1006 * So let's hard disable over this region.
1008 local_irq_save(flags
);
1011 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1012 * before the trecheckpoint and no explosion occurs.
1014 tm_restore_sprs(thread
);
1016 __tm_recheckpoint(thread
);
1018 local_irq_restore(flags
);
1021 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
1023 if (!cpu_has_feature(CPU_FTR_TM
))
1026 /* Recheckpoint the registers of the thread we're about to switch to.
1028 * If the task was using FP, we non-lazily reload both the original and
1029 * the speculative FP register states. This is because the kernel
1030 * doesn't see if/when a TM rollback occurs, so if we take an FP
1031 * unavailable later, we are unable to determine which set of FP regs
1032 * need to be restored.
1034 if (!tm_enabled(new))
1037 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
1038 tm_restore_sprs(&new->thread
);
1041 /* Recheckpoint to restore original checkpointed register state. */
1042 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1043 new->pid
, new->thread
.regs
->msr
);
1045 tm_recheckpoint(&new->thread
);
1048 * The checkpointed state has been restored but the live state has
1049 * not, ensure all the math functionality is turned off to trigger
1050 * restore_math() to reload.
1052 new->thread
.regs
->msr
&= ~(MSR_FP
| MSR_VEC
| MSR_VSX
);
1054 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1055 "(kernel msr 0x%lx)\n",
1059 static inline void __switch_to_tm(struct task_struct
*prev
,
1060 struct task_struct
*new)
1062 if (cpu_has_feature(CPU_FTR_TM
)) {
1063 if (tm_enabled(prev
) || tm_enabled(new))
1066 if (tm_enabled(prev
)) {
1067 prev
->thread
.load_tm
++;
1068 tm_reclaim_task(prev
);
1069 if (!MSR_TM_ACTIVE(prev
->thread
.regs
->msr
) && prev
->thread
.load_tm
== 0)
1070 prev
->thread
.regs
->msr
&= ~MSR_TM
;
1073 tm_recheckpoint_new_task(new);
1078 * This is called if we are on the way out to userspace and the
1079 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1080 * FP and/or vector state and does so if necessary.
1081 * If userspace is inside a transaction (whether active or
1082 * suspended) and FP/VMX/VSX instructions have ever been enabled
1083 * inside that transaction, then we have to keep them enabled
1084 * and keep the FP/VMX/VSX state loaded while ever the transaction
1085 * continues. The reason is that if we didn't, and subsequently
1086 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1087 * we don't know whether it's the same transaction, and thus we
1088 * don't know which of the checkpointed state and the transactional
1091 void restore_tm_state(struct pt_regs
*regs
)
1093 unsigned long msr_diff
;
1096 * This is the only moment we should clear TIF_RESTORE_TM as
1097 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1098 * again, anything else could lead to an incorrect ckpt_msr being
1099 * saved and therefore incorrect signal contexts.
1101 clear_thread_flag(TIF_RESTORE_TM
);
1102 if (!MSR_TM_ACTIVE(regs
->msr
))
1105 msr_diff
= current
->thread
.ckpt_regs
.msr
& ~regs
->msr
;
1106 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
1108 /* Ensure that restore_math() will restore */
1109 if (msr_diff
& MSR_FP
)
1110 current
->thread
.load_fp
= 1;
1111 #ifdef CONFIG_ALTIVEC
1112 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && msr_diff
& MSR_VEC
)
1113 current
->thread
.load_vec
= 1;
1117 regs
->msr
|= msr_diff
;
1121 #define tm_recheckpoint_new_task(new)
1122 #define __switch_to_tm(prev, new)
1123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1125 static inline void save_sprs(struct thread_struct
*t
)
1127 #ifdef CONFIG_ALTIVEC
1128 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1129 t
->vrsave
= mfspr(SPRN_VRSAVE
);
1131 #ifdef CONFIG_PPC_BOOK3S_64
1132 if (cpu_has_feature(CPU_FTR_DSCR
))
1133 t
->dscr
= mfspr(SPRN_DSCR
);
1135 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1136 t
->bescr
= mfspr(SPRN_BESCR
);
1137 t
->ebbhr
= mfspr(SPRN_EBBHR
);
1138 t
->ebbrr
= mfspr(SPRN_EBBRR
);
1140 t
->fscr
= mfspr(SPRN_FSCR
);
1143 * Note that the TAR is not available for use in the kernel.
1144 * (To provide this, the TAR should be backed up/restored on
1145 * exception entry/exit instead, and be in pt_regs. FIXME,
1146 * this should be in pt_regs anyway (for debug).)
1148 t
->tar
= mfspr(SPRN_TAR
);
1153 static inline void restore_sprs(struct thread_struct
*old_thread
,
1154 struct thread_struct
*new_thread
)
1156 #ifdef CONFIG_ALTIVEC
1157 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
1158 old_thread
->vrsave
!= new_thread
->vrsave
)
1159 mtspr(SPRN_VRSAVE
, new_thread
->vrsave
);
1161 #ifdef CONFIG_PPC_BOOK3S_64
1162 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1163 u64 dscr
= get_paca()->dscr_default
;
1164 if (new_thread
->dscr_inherit
)
1165 dscr
= new_thread
->dscr
;
1167 if (old_thread
->dscr
!= dscr
)
1168 mtspr(SPRN_DSCR
, dscr
);
1171 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1172 if (old_thread
->bescr
!= new_thread
->bescr
)
1173 mtspr(SPRN_BESCR
, new_thread
->bescr
);
1174 if (old_thread
->ebbhr
!= new_thread
->ebbhr
)
1175 mtspr(SPRN_EBBHR
, new_thread
->ebbhr
);
1176 if (old_thread
->ebbrr
!= new_thread
->ebbrr
)
1177 mtspr(SPRN_EBBRR
, new_thread
->ebbrr
);
1179 if (old_thread
->fscr
!= new_thread
->fscr
)
1180 mtspr(SPRN_FSCR
, new_thread
->fscr
);
1182 if (old_thread
->tar
!= new_thread
->tar
)
1183 mtspr(SPRN_TAR
, new_thread
->tar
);
1186 if (cpu_has_feature(CPU_FTR_P9_TIDR
) &&
1187 old_thread
->tidr
!= new_thread
->tidr
)
1188 mtspr(SPRN_TIDR
, new_thread
->tidr
);
1193 struct task_struct
*__switch_to(struct task_struct
*prev
,
1194 struct task_struct
*new)
1196 struct thread_struct
*new_thread
, *old_thread
;
1197 struct task_struct
*last
;
1198 #ifdef CONFIG_PPC_BOOK3S_64
1199 struct ppc64_tlb_batch
*batch
;
1202 new_thread
= &new->thread
;
1203 old_thread
= ¤t
->thread
;
1205 WARN_ON(!irqs_disabled());
1207 #ifdef CONFIG_PPC_BOOK3S_64
1208 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1209 if (batch
->active
) {
1210 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
1212 __flush_tlb_pending(batch
);
1215 #endif /* CONFIG_PPC_BOOK3S_64 */
1217 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1218 switch_booke_debug_regs(&new->thread
.debug
);
1221 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1224 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1225 switch_hw_breakpoint(new);
1226 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1230 * We need to save SPRs before treclaim/trecheckpoint as these will
1231 * change a number of them.
1233 save_sprs(&prev
->thread
);
1235 /* Save FPU, Altivec, VSX and SPE state */
1238 __switch_to_tm(prev
, new);
1240 if (!radix_enabled()) {
1242 * We can't take a PMU exception inside _switch() since there
1243 * is a window where the kernel stack SLB and the kernel stack
1244 * are out of sync. Hard disable here.
1250 * Call restore_sprs() before calling _switch(). If we move it after
1251 * _switch() then we miss out on calling it for new tasks. The reason
1252 * for this is we manually create a stack frame for new tasks that
1253 * directly returns through ret_from_fork() or
1254 * ret_from_kernel_thread(). See copy_thread() for details.
1256 restore_sprs(old_thread
, new_thread
);
1258 last
= _switch(old_thread
, new_thread
);
1260 #ifdef CONFIG_PPC_BOOK3S_64
1261 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
1262 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
1263 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1267 if (current
->thread
.regs
) {
1268 restore_math(current
->thread
.regs
);
1271 * On POWER9 the copy-paste buffer can only paste into
1272 * foreign real addresses, so unprivileged processes can not
1273 * see the data or use it in any way unless they have
1274 * foreign real mappings. If the new process has the foreign
1275 * real address mappings, we must issue a cp_abort to clear
1276 * any state and prevent snooping, corruption or a covert
1277 * channel. ISA v3.1 supports paste into local memory.
1280 (cpu_has_feature(CPU_FTR_ARCH_31
) ||
1281 atomic_read(¤t
->mm
->context
.vas_windows
)))
1282 asm volatile(PPC_CP_ABORT
);
1284 #endif /* CONFIG_PPC_BOOK3S_64 */
1289 #define NR_INSN_TO_PRINT 16
1291 static void show_instructions(struct pt_regs
*regs
)
1294 unsigned long nip
= regs
->nip
;
1295 unsigned long pc
= regs
->nip
- (NR_INSN_TO_PRINT
* 3 / 4 * sizeof(int));
1297 printk("Instruction dump:");
1300 * If we were executing with the MMU off for instructions, adjust pc
1301 * rather than printing XXXXXXXX.
1303 if (!IS_ENABLED(CONFIG_BOOKE
) && !(regs
->msr
& MSR_IR
)) {
1304 pc
= (unsigned long)phys_to_virt(pc
);
1305 nip
= (unsigned long)phys_to_virt(regs
->nip
);
1308 for (i
= 0; i
< NR_INSN_TO_PRINT
; i
++) {
1314 if (!__kernel_text_address(pc
) ||
1315 get_kernel_nofault(instr
, (const void *)pc
)) {
1316 pr_cont("XXXXXXXX ");
1319 pr_cont("<%08x> ", instr
);
1321 pr_cont("%08x ", instr
);
1330 void show_user_instructions(struct pt_regs
*regs
)
1333 int n
= NR_INSN_TO_PRINT
;
1335 char buf
[96]; /* enough for 8 times 9 + 2 chars */
1337 pc
= regs
->nip
- (NR_INSN_TO_PRINT
* 3 / 4 * sizeof(int));
1339 seq_buf_init(&s
, buf
, sizeof(buf
));
1346 for (i
= 0; i
< 8 && n
; i
++, n
--, pc
+= sizeof(int)) {
1349 if (copy_from_user_nofault(&instr
, (void __user
*)pc
,
1351 seq_buf_printf(&s
, "XXXXXXXX ");
1354 seq_buf_printf(&s
, regs
->nip
== pc
? "<%08x> " : "%08x ", instr
);
1357 if (!seq_buf_has_overflowed(&s
))
1358 pr_info("%s[%d]: code: %s\n", current
->comm
,
1359 current
->pid
, s
.buffer
);
1368 static struct regbit msr_bits
[] = {
1369 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1391 #ifndef CONFIG_BOOKE
1398 static void print_bits(unsigned long val
, struct regbit
*bits
, const char *sep
)
1402 for (; bits
->bit
; ++bits
)
1403 if (val
& bits
->bit
) {
1404 pr_cont("%s%s", s
, bits
->name
);
1409 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1410 static struct regbit msr_tm_bits
[] = {
1417 static void print_tm_bits(unsigned long val
)
1420 * This only prints something if at least one of the TM bit is set.
1421 * Inside the TM[], the output means:
1422 * E: Enabled (bit 32)
1423 * S: Suspended (bit 33)
1424 * T: Transactional (bit 34)
1426 if (val
& (MSR_TM
| MSR_TS_S
| MSR_TS_T
)) {
1428 print_bits(val
, msr_tm_bits
, "");
1433 static void print_tm_bits(unsigned long val
) {}
1436 static void print_msr_bits(unsigned long val
)
1439 print_bits(val
, msr_bits
, ",");
1445 #define REG "%016lx"
1446 #define REGS_PER_LINE 4
1447 #define LAST_VOLATILE 13
1450 #define REGS_PER_LINE 8
1451 #define LAST_VOLATILE 12
1454 static void __show_regs(struct pt_regs
*regs
)
1458 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1459 regs
->nip
, regs
->link
, regs
->ctr
);
1460 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1461 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1462 printk("MSR: "REG
" ", regs
->msr
);
1463 print_msr_bits(regs
->msr
);
1464 pr_cont(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1466 if (!trap_is_syscall(regs
) && cpu_has_feature(CPU_FTR_CFAR
))
1467 pr_cont("CFAR: "REG
" ", regs
->orig_gpr3
);
1468 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600) {
1469 if (IS_ENABLED(CONFIG_4xx
) || IS_ENABLED(CONFIG_BOOKE
))
1470 pr_cont("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1472 pr_cont("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1476 pr_cont("IRQMASK: %lx ", regs
->softe
);
1478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1479 if (MSR_TM_ACTIVE(regs
->msr
))
1480 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1483 for (i
= 0; i
< 32; i
++) {
1484 if ((i
% REGS_PER_LINE
) == 0)
1485 pr_cont("\nGPR%02d: ", i
);
1486 pr_cont(REG
" ", regs
->gpr
[i
]);
1487 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1492 * Lookup NIP late so we have the best change of getting the
1493 * above info out without failing
1495 if (IS_ENABLED(CONFIG_KALLSYMS
)) {
1496 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1497 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1501 void show_regs(struct pt_regs
*regs
)
1503 show_regs_print_info(KERN_DEFAULT
);
1505 show_stack(current
, (unsigned long *) regs
->gpr
[1], KERN_DEFAULT
);
1506 if (!user_mode(regs
))
1507 show_instructions(regs
);
1510 void flush_thread(void)
1512 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1513 flush_ptrace_hw_breakpoint(current
);
1514 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1515 set_debug_reg_defaults(¤t
->thread
);
1516 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1519 void arch_setup_new_exec(void)
1522 #ifdef CONFIG_PPC_BOOK3S_64
1523 if (!radix_enabled())
1524 hash__setup_new_exec();
1527 * If we exec out of a kernel thread then thread.regs will not be
1530 if (!current
->thread
.regs
) {
1531 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1532 current
->thread
.regs
= regs
- 1;
1535 #ifdef CONFIG_PPC_MEM_KEYS
1536 current
->thread
.regs
->amr
= default_amr
;
1537 current
->thread
.regs
->iamr
= default_iamr
;
1543 * Assign a TIDR (thread ID) for task @t and set it in the thread
1544 * structure. For now, we only support setting TIDR for 'current' task.
1546 * Since the TID value is a truncated form of it PID, it is possible
1547 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1548 * that 2 threads share the same TID and are waiting, one of the following
1549 * cases will happen:
1551 * 1. The correct thread is running, the wrong thread is not
1552 * In this situation, the correct thread is woken and proceeds to pass it's
1555 * 2. Neither threads are running
1556 * In this situation, neither thread will be woken. When scheduled, the waiting
1557 * threads will execute either a wait, which will return immediately, followed
1558 * by a condition check, which will pass for the correct thread and fail
1559 * for the wrong thread, or they will execute the condition check immediately.
1561 * 3. The wrong thread is running, the correct thread is not
1562 * The wrong thread will be woken, but will fail it's condition check and
1563 * re-execute wait. The correct thread, when scheduled, will execute either
1564 * it's condition check (which will pass), or wait, which returns immediately
1565 * when called the first time after the thread is scheduled, followed by it's
1566 * condition check (which will pass).
1568 * 4. Both threads are running
1569 * Both threads will be woken. The wrong thread will fail it's condition check
1570 * and execute another wait, while the correct thread will pass it's condition
1573 * @t: the task to set the thread ID for
1575 int set_thread_tidr(struct task_struct
*t
)
1577 if (!cpu_has_feature(CPU_FTR_P9_TIDR
))
1586 t
->thread
.tidr
= (u16
)task_pid_nr(t
);
1587 mtspr(SPRN_TIDR
, t
->thread
.tidr
);
1591 EXPORT_SYMBOL_GPL(set_thread_tidr
);
1593 #endif /* CONFIG_PPC64 */
1596 release_thread(struct task_struct
*t
)
1601 * this gets called so that we can store coprocessor state into memory and
1602 * copy the current task into the new thread.
1604 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1606 flush_all_to_thread(src
);
1608 * Flush TM state out so we can copy it. __switch_to_tm() does this
1609 * flush but it removes the checkpointed state from the current CPU and
1610 * transitions the CPU out of TM mode. Hence we need to call
1611 * tm_recheckpoint_new_task() (on the same task) to restore the
1612 * checkpointed state back and the TM mode.
1614 * Can't pass dst because it isn't ready. Doesn't matter, passing
1615 * dst is only important for __switch_to()
1617 __switch_to_tm(src
, src
);
1621 clear_task_ebb(dst
);
1626 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1628 #ifdef CONFIG_PPC_BOOK3S_64
1629 unsigned long sp_vsid
;
1630 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1632 if (radix_enabled())
1635 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1636 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1637 << SLB_VSID_SHIFT_1T
;
1639 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1641 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1642 p
->thread
.ksp_vsid
= sp_vsid
;
1651 * Copy architecture-specific thread state
1653 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
1654 unsigned long kthread_arg
, struct task_struct
*p
,
1657 struct pt_regs
*childregs
, *kregs
;
1658 extern void ret_from_fork(void);
1659 extern void ret_from_fork_scv(void);
1660 extern void ret_from_kernel_thread(void);
1662 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1663 struct thread_info
*ti
= task_thread_info(p
);
1664 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1668 klp_init_thread_info(p
);
1670 /* Copy registers */
1671 sp
-= sizeof(struct pt_regs
);
1672 childregs
= (struct pt_regs
*) sp
;
1673 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1675 memset(childregs
, 0, sizeof(struct pt_regs
));
1676 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1679 childregs
->gpr
[14] = ppc_function_entry((void *)usp
);
1681 clear_tsk_thread_flag(p
, TIF_32BIT
);
1682 childregs
->softe
= IRQS_ENABLED
;
1684 childregs
->gpr
[15] = kthread_arg
;
1685 p
->thread
.regs
= NULL
; /* no user register state */
1686 ti
->flags
|= _TIF_RESTOREALL
;
1687 f
= ret_from_kernel_thread
;
1690 struct pt_regs
*regs
= current_pt_regs();
1691 CHECK_FULL_REGS(regs
);
1694 childregs
->gpr
[1] = usp
;
1695 p
->thread
.regs
= childregs
;
1696 /* 64s sets this in ret_from_fork */
1697 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64
))
1698 childregs
->gpr
[3] = 0; /* Result from fork() */
1699 if (clone_flags
& CLONE_SETTLS
) {
1700 if (!is_32bit_task())
1701 childregs
->gpr
[13] = tls
;
1703 childregs
->gpr
[2] = tls
;
1706 if (trap_is_scv(regs
))
1707 f
= ret_from_fork_scv
;
1711 childregs
->msr
&= ~(MSR_FP
|MSR_VEC
|MSR_VSX
);
1712 sp
-= STACK_FRAME_OVERHEAD
;
1715 * The way this works is that at some point in the future
1716 * some task will call _switch to switch to the new task.
1717 * That will pop off the stack frame created below and start
1718 * the new task running at ret_from_fork. The new task will
1719 * do some house keeping and then return from the fork or clone
1720 * system call, using the stack frame created above.
1722 ((unsigned long *)sp
)[0] = 0;
1723 sp
-= sizeof(struct pt_regs
);
1724 kregs
= (struct pt_regs
*) sp
;
1725 sp
-= STACK_FRAME_OVERHEAD
;
1728 p
->thread
.ksp_limit
= (unsigned long)end_of_stack(p
);
1730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1731 for (i
= 0; i
< nr_wp_slots(); i
++)
1732 p
->thread
.ptrace_bps
[i
] = NULL
;
1735 #ifdef CONFIG_PPC_FPU_REGS
1736 p
->thread
.fp_save_area
= NULL
;
1738 #ifdef CONFIG_ALTIVEC
1739 p
->thread
.vr_save_area
= NULL
;
1742 setup_ksp_vsid(p
, sp
);
1745 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1746 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1747 p
->thread
.dscr
= mfspr(SPRN_DSCR
);
1749 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1750 childregs
->ppr
= DEFAULT_PPR
;
1755 * Run with the current AMR value of the kernel
1757 #ifdef CONFIG_PPC_PKEY
1758 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP
))
1759 kregs
->amr
= AMR_KUAP_BLOCKED
;
1761 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP
))
1762 kregs
->iamr
= AMR_KUEP_BLOCKED
;
1764 kregs
->nip
= ppc_function_entry(f
);
1768 void preload_new_slb_context(unsigned long start
, unsigned long sp
);
1771 * Set up a thread for executing a new program
1773 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1776 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1778 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64
) && !radix_enabled())
1779 preload_new_slb_context(start
, sp
);
1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1784 * Clear any transactional state, we're exec()ing. The cause is
1785 * not important as there will never be a recheckpoint so it's not
1788 if (MSR_TM_SUSPENDED(mfmsr()))
1789 tm_reclaim_current(0);
1792 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1800 * We have just cleared all the nonvolatile GPRs, so make
1801 * FULL_REGS(regs) return true. This is necessary to allow
1802 * ptrace to examine the thread immediately after exec.
1804 SET_FULL_REGS(regs
);
1809 regs
->msr
= MSR_USER
;
1811 if (!is_32bit_task()) {
1812 unsigned long entry
;
1814 if (is_elf2_task()) {
1815 /* Look ma, no function descriptors! */
1820 * The latest iteration of the ABI requires that when
1821 * calling a function (at its global entry point),
1822 * the caller must ensure r12 holds the entry point
1823 * address (so that the function can quickly
1824 * establish addressability).
1826 regs
->gpr
[12] = start
;
1827 /* Make sure that's restored on entry to userspace. */
1828 set_thread_flag(TIF_RESTOREALL
);
1832 /* start is a relocated pointer to the function
1833 * descriptor for the elf _start routine. The first
1834 * entry in the function descriptor is the entry
1835 * address of _start and the second entry is the TOC
1836 * value we need to use.
1838 __get_user(entry
, (unsigned long __user
*)start
);
1839 __get_user(toc
, (unsigned long __user
*)start
+1);
1841 /* Check whether the e_entry function descriptor entries
1842 * need to be relocated before we can use them.
1844 if (load_addr
!= 0) {
1851 regs
->msr
= MSR_USER64
;
1855 regs
->msr
= MSR_USER32
;
1859 current
->thread
.used_vsr
= 0;
1861 current
->thread
.load_slb
= 0;
1862 current
->thread
.load_fp
= 0;
1863 #ifdef CONFIG_PPC_FPU_REGS
1864 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1865 current
->thread
.fp_save_area
= NULL
;
1867 #ifdef CONFIG_ALTIVEC
1868 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1869 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1870 current
->thread
.vr_save_area
= NULL
;
1871 current
->thread
.vrsave
= 0;
1872 current
->thread
.used_vr
= 0;
1873 current
->thread
.load_vec
= 0;
1874 #endif /* CONFIG_ALTIVEC */
1876 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1877 current
->thread
.acc
= 0;
1878 current
->thread
.spefscr
= 0;
1879 current
->thread
.used_spe
= 0;
1880 #endif /* CONFIG_SPE */
1881 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1882 current
->thread
.tm_tfhar
= 0;
1883 current
->thread
.tm_texasr
= 0;
1884 current
->thread
.tm_tfiar
= 0;
1885 current
->thread
.load_tm
= 0;
1886 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1889 EXPORT_SYMBOL(start_thread
);
1891 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1892 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1894 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1896 struct pt_regs
*regs
= tsk
->thread
.regs
;
1898 /* This is a bit hairy. If we are an SPE enabled processor
1899 * (have embedded fp) we store the IEEE exception enable flags in
1900 * fpexc_mode. fpexc_mode is also used for setting FP exception
1901 * mode (asyn, precise, disabled) for 'Classic' FP. */
1902 if (val
& PR_FP_EXC_SW_ENABLE
) {
1903 if (cpu_has_feature(CPU_FTR_SPE
)) {
1905 * When the sticky exception bits are set
1906 * directly by userspace, it must call prctl
1907 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1908 * in the existing prctl settings) or
1909 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1910 * the bits being set). <fenv.h> functions
1911 * saving and restoring the whole
1912 * floating-point environment need to do so
1913 * anyway to restore the prctl settings from
1914 * the saved environment.
1917 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1918 tsk
->thread
.fpexc_mode
= val
&
1919 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1927 /* on a CONFIG_SPE this does not hurt us. The bits that
1928 * __pack_fe01 use do not overlap with bits used for
1929 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1930 * on CONFIG_SPE implementations are reserved so writing to
1931 * them does not change anything */
1932 if (val
> PR_FP_EXC_PRECISE
)
1934 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1935 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1936 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1937 | tsk
->thread
.fpexc_mode
;
1941 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1943 unsigned int val
= 0;
1945 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
) {
1946 if (cpu_has_feature(CPU_FTR_SPE
)) {
1948 * When the sticky exception bits are set
1949 * directly by userspace, it must call prctl
1950 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1951 * in the existing prctl settings) or
1952 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1953 * the bits being set). <fenv.h> functions
1954 * saving and restoring the whole
1955 * floating-point environment need to do so
1956 * anyway to restore the prctl settings from
1957 * the saved environment.
1960 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1961 val
= tsk
->thread
.fpexc_mode
;
1966 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1968 return put_user(val
, (unsigned int __user
*) adr
);
1971 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1973 struct pt_regs
*regs
= tsk
->thread
.regs
;
1975 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1976 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1982 if (val
== PR_ENDIAN_BIG
)
1983 regs
->msr
&= ~MSR_LE
;
1984 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1985 regs
->msr
|= MSR_LE
;
1992 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1994 struct pt_regs
*regs
= tsk
->thread
.regs
;
1997 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1998 !cpu_has_feature(CPU_FTR_REAL_LE
))
2004 if (regs
->msr
& MSR_LE
) {
2005 if (cpu_has_feature(CPU_FTR_REAL_LE
))
2006 val
= PR_ENDIAN_LITTLE
;
2008 val
= PR_ENDIAN_PPC_LITTLE
;
2010 val
= PR_ENDIAN_BIG
;
2012 return put_user(val
, (unsigned int __user
*)adr
);
2015 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
2017 tsk
->thread
.align_ctl
= val
;
2021 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
2023 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
2026 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
2027 unsigned long nbytes
)
2029 unsigned long stack_page
;
2030 unsigned long cpu
= task_cpu(p
);
2032 stack_page
= (unsigned long)hardirq_ctx
[cpu
];
2033 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2036 stack_page
= (unsigned long)softirq_ctx
[cpu
];
2037 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2043 static inline int valid_emergency_stack(unsigned long sp
, struct task_struct
*p
,
2044 unsigned long nbytes
)
2047 unsigned long stack_page
;
2048 unsigned long cpu
= task_cpu(p
);
2050 stack_page
= (unsigned long)paca_ptrs
[cpu
]->emergency_sp
- THREAD_SIZE
;
2051 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2054 # ifdef CONFIG_PPC_BOOK3S_64
2055 stack_page
= (unsigned long)paca_ptrs
[cpu
]->nmi_emergency_sp
- THREAD_SIZE
;
2056 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2059 stack_page
= (unsigned long)paca_ptrs
[cpu
]->mc_emergency_sp
- THREAD_SIZE
;
2060 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2069 int validate_sp(unsigned long sp
, struct task_struct
*p
,
2070 unsigned long nbytes
)
2072 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
2074 if (sp
< THREAD_SIZE
)
2077 if (sp
>= stack_page
&& sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2080 if (valid_irq_stack(sp
, p
, nbytes
))
2083 return valid_emergency_stack(sp
, p
, nbytes
);
2086 EXPORT_SYMBOL(validate_sp
);
2088 static unsigned long __get_wchan(struct task_struct
*p
)
2090 unsigned long ip
, sp
;
2093 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
2097 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
2101 sp
= *(unsigned long *)sp
;
2102 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
) ||
2103 p
->state
== TASK_RUNNING
)
2106 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
2107 if (!in_sched_functions(ip
))
2110 } while (count
++ < 16);
2114 unsigned long get_wchan(struct task_struct
*p
)
2118 if (!try_get_task_stack(p
))
2121 ret
= __get_wchan(p
);
2128 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
2130 void show_stack(struct task_struct
*tsk
, unsigned long *stack
,
2133 unsigned long sp
, ip
, lr
, newsp
;
2136 unsigned long ret_addr
;
2142 if (!try_get_task_stack(tsk
))
2145 sp
= (unsigned long) stack
;
2148 sp
= current_stack_frame();
2150 sp
= tsk
->thread
.ksp
;
2154 printk("%sCall Trace:\n", loglvl
);
2156 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
2159 stack
= (unsigned long *) sp
;
2161 ip
= stack
[STACK_FRAME_LR_SAVE
];
2162 if (!firstframe
|| ip
!= lr
) {
2163 printk("%s["REG
"] ["REG
"] %pS",
2164 loglvl
, sp
, ip
, (void *)ip
);
2165 ret_addr
= ftrace_graph_ret_addr(current
,
2166 &ftrace_idx
, ip
, stack
);
2168 pr_cont(" (%pS)", (void *)ret_addr
);
2170 pr_cont(" (unreliable)");
2176 * See if this is an exception frame.
2177 * We look for the "regshere" marker in the current frame.
2179 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
2180 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
2181 struct pt_regs
*regs
= (struct pt_regs
*)
2182 (sp
+ STACK_FRAME_OVERHEAD
);
2185 printk("%s--- interrupt: %lx at %pS\n",
2186 loglvl
, regs
->trap
, (void *)regs
->nip
);
2188 printk("%s--- interrupt: %lx\n",
2189 loglvl
, regs
->trap
);
2195 } while (count
++ < kstack_depth_to_print
);
2197 put_task_stack(tsk
);
2201 /* Called with hard IRQs off */
2202 void notrace
__ppc64_runlatch_on(void)
2204 struct thread_info
*ti
= current_thread_info();
2206 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2208 * Least significant bit (RUN) is the only writable bit of
2209 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2210 * earliest ISA where this is the case, but it's convenient.
2212 mtspr(SPRN_CTRLT
, CTRL_RUNLATCH
);
2217 * Some architectures (e.g., Cell) have writable fields other
2218 * than RUN, so do the read-modify-write.
2220 ctrl
= mfspr(SPRN_CTRLF
);
2221 ctrl
|= CTRL_RUNLATCH
;
2222 mtspr(SPRN_CTRLT
, ctrl
);
2225 ti
->local_flags
|= _TLF_RUNLATCH
;
2228 /* Called with hard IRQs off */
2229 void notrace
__ppc64_runlatch_off(void)
2231 struct thread_info
*ti
= current_thread_info();
2233 ti
->local_flags
&= ~_TLF_RUNLATCH
;
2235 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2236 mtspr(SPRN_CTRLT
, 0);
2240 ctrl
= mfspr(SPRN_CTRLF
);
2241 ctrl
&= ~CTRL_RUNLATCH
;
2242 mtspr(SPRN_CTRLT
, ctrl
);
2245 #endif /* CONFIG_PPC64 */
2247 unsigned long arch_align_stack(unsigned long sp
)
2249 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
2250 sp
-= get_random_int() & ~PAGE_MASK
;
2254 static inline unsigned long brk_rnd(void)
2256 unsigned long rnd
= 0;
2258 /* 8MB for 32bit, 1GB for 64bit */
2259 if (is_32bit_task())
2260 rnd
= (get_random_long() % (1UL<<(23-PAGE_SHIFT
)));
2262 rnd
= (get_random_long() % (1UL<<(30-PAGE_SHIFT
)));
2264 return rnd
<< PAGE_SHIFT
;
2267 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
2269 unsigned long base
= mm
->brk
;
2272 #ifdef CONFIG_PPC_BOOK3S_64
2274 * If we are using 1TB segments and we are allowed to randomise
2275 * the heap, we can put it above 1TB so it is backed by a 1TB
2276 * segment. Otherwise the heap will be in the bottom 1TB
2277 * which always uses 256MB segments and this may result in a
2278 * performance penalty. We don't need to worry about radix. For
2279 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2281 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
2282 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
2285 ret
= PAGE_ALIGN(base
+ brk_rnd());