WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
blob38ea396a23d6e7e9e261effa737688c42e024f19
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/highmem.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/srcu.h>
17 #include <linux/anon_inodes.h>
18 #include <linux/file.h>
19 #include <linux/debugfs.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/book3s/64/mmu-hash.h>
24 #include <asm/hvcall.h>
25 #include <asm/synch.h>
26 #include <asm/ppc-opcode.h>
27 #include <asm/cputable.h>
28 #include <asm/pte-walk.h>
30 #include "trace_hv.h"
32 //#define DEBUG_RESIZE_HPT 1
34 #ifdef DEBUG_RESIZE_HPT
35 #define resize_hpt_debug(resize, ...) \
36 do { \
37 printk(KERN_DEBUG "RESIZE HPT %p: ", resize); \
38 printk(__VA_ARGS__); \
39 } while (0)
40 #else
41 #define resize_hpt_debug(resize, ...) \
42 do { } while (0)
43 #endif
45 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46 long pte_index, unsigned long pteh,
47 unsigned long ptel, unsigned long *pte_idx_ret);
49 struct kvm_resize_hpt {
50 /* These fields read-only after init */
51 struct kvm *kvm;
52 struct work_struct work;
53 u32 order;
55 /* These fields protected by kvm->arch.mmu_setup_lock */
57 /* Possible values and their usage:
58 * <0 an error occurred during allocation,
59 * -EBUSY allocation is in the progress,
60 * 0 allocation made successfuly.
62 int error;
64 /* Private to the work thread, until error != -EBUSY,
65 * then protected by kvm->arch.mmu_setup_lock.
67 struct kvm_hpt_info hpt;
70 int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
72 unsigned long hpt = 0;
73 int cma = 0;
74 struct page *page = NULL;
75 struct revmap_entry *rev;
76 unsigned long npte;
78 if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
79 return -EINVAL;
81 page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
82 if (page) {
83 hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
84 memset((void *)hpt, 0, (1ul << order));
85 cma = 1;
88 if (!hpt)
89 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
90 |__GFP_NOWARN, order - PAGE_SHIFT);
92 if (!hpt)
93 return -ENOMEM;
95 /* HPTEs are 2**4 bytes long */
96 npte = 1ul << (order - 4);
98 /* Allocate reverse map array */
99 rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
100 if (!rev) {
101 if (cma)
102 kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
103 else
104 free_pages(hpt, order - PAGE_SHIFT);
105 return -ENOMEM;
108 info->order = order;
109 info->virt = hpt;
110 info->cma = cma;
111 info->rev = rev;
113 return 0;
116 void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
118 atomic64_set(&kvm->arch.mmio_update, 0);
119 kvm->arch.hpt = *info;
120 kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
122 pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123 info->virt, (long)info->order, kvm->arch.lpid);
126 long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
128 long err = -EBUSY;
129 struct kvm_hpt_info info;
131 mutex_lock(&kvm->arch.mmu_setup_lock);
132 if (kvm->arch.mmu_ready) {
133 kvm->arch.mmu_ready = 0;
134 /* order mmu_ready vs. vcpus_running */
135 smp_mb();
136 if (atomic_read(&kvm->arch.vcpus_running)) {
137 kvm->arch.mmu_ready = 1;
138 goto out;
141 if (kvm_is_radix(kvm)) {
142 err = kvmppc_switch_mmu_to_hpt(kvm);
143 if (err)
144 goto out;
147 if (kvm->arch.hpt.order == order) {
148 /* We already have a suitable HPT */
150 /* Set the entire HPT to 0, i.e. invalid HPTEs */
151 memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
153 * Reset all the reverse-mapping chains for all memslots
155 kvmppc_rmap_reset(kvm);
156 err = 0;
157 goto out;
160 if (kvm->arch.hpt.virt) {
161 kvmppc_free_hpt(&kvm->arch.hpt);
162 kvmppc_rmap_reset(kvm);
165 err = kvmppc_allocate_hpt(&info, order);
166 if (err < 0)
167 goto out;
168 kvmppc_set_hpt(kvm, &info);
170 out:
171 if (err == 0)
172 /* Ensure that each vcpu will flush its TLB on next entry. */
173 cpumask_setall(&kvm->arch.need_tlb_flush);
175 mutex_unlock(&kvm->arch.mmu_setup_lock);
176 return err;
179 void kvmppc_free_hpt(struct kvm_hpt_info *info)
181 vfree(info->rev);
182 info->rev = NULL;
183 if (info->cma)
184 kvm_free_hpt_cma(virt_to_page(info->virt),
185 1 << (info->order - PAGE_SHIFT));
186 else if (info->virt)
187 free_pages(info->virt, info->order - PAGE_SHIFT);
188 info->virt = 0;
189 info->order = 0;
192 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
195 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
198 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
201 return (pgsize == 0x10000) ? 0x1000 : 0;
204 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205 unsigned long porder)
207 unsigned long i;
208 unsigned long npages;
209 unsigned long hp_v, hp_r;
210 unsigned long addr, hash;
211 unsigned long psize;
212 unsigned long hp0, hp1;
213 unsigned long idx_ret;
214 long ret;
215 struct kvm *kvm = vcpu->kvm;
217 psize = 1ul << porder;
218 npages = memslot->npages >> (porder - PAGE_SHIFT);
220 /* VRMA can't be > 1TB */
221 if (npages > 1ul << (40 - porder))
222 npages = 1ul << (40 - porder);
223 /* Can't use more than 1 HPTE per HPTEG */
224 if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225 npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
227 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229 hp1 = hpte1_pgsize_encoding(psize) |
230 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
232 for (i = 0; i < npages; ++i) {
233 addr = i << porder;
234 /* can't use hpt_hash since va > 64 bits */
235 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236 & kvmppc_hpt_mask(&kvm->arch.hpt);
238 * We assume that the hash table is empty and no
239 * vcpus are using it at this stage. Since we create
240 * at most one HPTE per HPTEG, we just assume entry 7
241 * is available and use it.
243 hash = (hash << 3) + 7;
244 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245 hp_r = hp1 | addr;
246 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247 &idx_ret);
248 if (ret != H_SUCCESS) {
249 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250 addr, ret);
251 break;
256 int kvmppc_mmu_hv_init(void)
258 unsigned long host_lpid, rsvd_lpid;
260 if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
261 return -EINVAL;
263 host_lpid = 0;
264 if (cpu_has_feature(CPU_FTR_HVMODE))
265 host_lpid = mfspr(SPRN_LPID);
267 /* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
268 if (cpu_has_feature(CPU_FTR_ARCH_207S))
269 rsvd_lpid = LPID_RSVD;
270 else
271 rsvd_lpid = LPID_RSVD_POWER7;
273 kvmppc_init_lpid(rsvd_lpid + 1);
275 kvmppc_claim_lpid(host_lpid);
276 /* rsvd_lpid is reserved for use in partition switching */
277 kvmppc_claim_lpid(rsvd_lpid);
279 return 0;
282 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
283 long pte_index, unsigned long pteh,
284 unsigned long ptel, unsigned long *pte_idx_ret)
286 long ret;
288 preempt_disable();
289 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
290 kvm->mm->pgd, false, pte_idx_ret);
291 preempt_enable();
292 if (ret == H_TOO_HARD) {
293 /* this can't happen */
294 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
295 ret = H_RESOURCE; /* or something */
297 return ret;
301 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
302 gva_t eaddr)
304 u64 mask;
305 int i;
307 for (i = 0; i < vcpu->arch.slb_nr; i++) {
308 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
309 continue;
311 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
312 mask = ESID_MASK_1T;
313 else
314 mask = ESID_MASK;
316 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
317 return &vcpu->arch.slb[i];
319 return NULL;
322 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
323 unsigned long ea)
325 unsigned long ra_mask;
327 ra_mask = kvmppc_actual_pgsz(v, r) - 1;
328 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
331 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
332 struct kvmppc_pte *gpte, bool data, bool iswrite)
334 struct kvm *kvm = vcpu->kvm;
335 struct kvmppc_slb *slbe;
336 unsigned long slb_v;
337 unsigned long pp, key;
338 unsigned long v, orig_v, gr;
339 __be64 *hptep;
340 long int index;
341 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
343 if (kvm_is_radix(vcpu->kvm))
344 return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
346 /* Get SLB entry */
347 if (virtmode) {
348 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
349 if (!slbe)
350 return -EINVAL;
351 slb_v = slbe->origv;
352 } else {
353 /* real mode access */
354 slb_v = vcpu->kvm->arch.vrma_slb_v;
357 preempt_disable();
358 /* Find the HPTE in the hash table */
359 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
360 HPTE_V_VALID | HPTE_V_ABSENT);
361 if (index < 0) {
362 preempt_enable();
363 return -ENOENT;
365 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
366 v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
367 if (cpu_has_feature(CPU_FTR_ARCH_300))
368 v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
369 gr = kvm->arch.hpt.rev[index].guest_rpte;
371 unlock_hpte(hptep, orig_v);
372 preempt_enable();
374 gpte->eaddr = eaddr;
375 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
377 /* Get PP bits and key for permission check */
378 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
379 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
380 key &= slb_v;
382 /* Calculate permissions */
383 gpte->may_read = hpte_read_permission(pp, key);
384 gpte->may_write = hpte_write_permission(pp, key);
385 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
387 /* Storage key permission check for POWER7 */
388 if (data && virtmode) {
389 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
390 if (amrfield & 1)
391 gpte->may_read = 0;
392 if (amrfield & 2)
393 gpte->may_write = 0;
396 /* Get the guest physical address */
397 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
398 return 0;
402 * Quick test for whether an instruction is a load or a store.
403 * If the instruction is a load or a store, then this will indicate
404 * which it is, at least on server processors. (Embedded processors
405 * have some external PID instructions that don't follow the rule
406 * embodied here.) If the instruction isn't a load or store, then
407 * this doesn't return anything useful.
409 static int instruction_is_store(unsigned int instr)
411 unsigned int mask;
413 mask = 0x10000000;
414 if ((instr & 0xfc000000) == 0x7c000000)
415 mask = 0x100; /* major opcode 31 */
416 return (instr & mask) != 0;
419 int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
420 unsigned long gpa, gva_t ea, int is_store)
422 u32 last_inst;
425 * Fast path - check if the guest physical address corresponds to a
426 * device on the FAST_MMIO_BUS, if so we can avoid loading the
427 * instruction all together, then we can just handle it and return.
429 if (is_store) {
430 int idx, ret;
432 idx = srcu_read_lock(&vcpu->kvm->srcu);
433 ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
434 NULL);
435 srcu_read_unlock(&vcpu->kvm->srcu, idx);
436 if (!ret) {
437 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
438 return RESUME_GUEST;
443 * If we fail, we just return to the guest and try executing it again.
445 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
446 EMULATE_DONE)
447 return RESUME_GUEST;
450 * WARNING: We do not know for sure whether the instruction we just
451 * read from memory is the same that caused the fault in the first
452 * place. If the instruction we read is neither an load or a store,
453 * then it can't access memory, so we don't need to worry about
454 * enforcing access permissions. So, assuming it is a load or
455 * store, we just check that its direction (load or store) is
456 * consistent with the original fault, since that's what we
457 * checked the access permissions against. If there is a mismatch
458 * we just return and retry the instruction.
461 if (instruction_is_store(last_inst) != !!is_store)
462 return RESUME_GUEST;
465 * Emulated accesses are emulated by looking at the hash for
466 * translation once, then performing the access later. The
467 * translation could be invalidated in the meantime in which
468 * point performing the subsequent memory access on the old
469 * physical address could possibly be a security hole for the
470 * guest (but not the host).
472 * This is less of an issue for MMIO stores since they aren't
473 * globally visible. It could be an issue for MMIO loads to
474 * a certain extent but we'll ignore it for now.
477 vcpu->arch.paddr_accessed = gpa;
478 vcpu->arch.vaddr_accessed = ea;
479 return kvmppc_emulate_mmio(vcpu);
482 int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
483 unsigned long ea, unsigned long dsisr)
485 struct kvm *kvm = vcpu->kvm;
486 unsigned long hpte[3], r;
487 unsigned long hnow_v, hnow_r;
488 __be64 *hptep;
489 unsigned long mmu_seq, psize, pte_size;
490 unsigned long gpa_base, gfn_base;
491 unsigned long gpa, gfn, hva, pfn, hpa;
492 struct kvm_memory_slot *memslot;
493 unsigned long *rmap;
494 struct revmap_entry *rev;
495 struct page *page;
496 long index, ret;
497 bool is_ci;
498 bool writing, write_ok;
499 unsigned int shift;
500 unsigned long rcbits;
501 long mmio_update;
502 pte_t pte, *ptep;
504 if (kvm_is_radix(kvm))
505 return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
508 * Real-mode code has already searched the HPT and found the
509 * entry we're interested in. Lock the entry and check that
510 * it hasn't changed. If it has, just return and re-execute the
511 * instruction.
513 if (ea != vcpu->arch.pgfault_addr)
514 return RESUME_GUEST;
516 if (vcpu->arch.pgfault_cache) {
517 mmio_update = atomic64_read(&kvm->arch.mmio_update);
518 if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
519 r = vcpu->arch.pgfault_cache->rpte;
520 psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
522 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
523 gfn_base = gpa_base >> PAGE_SHIFT;
524 gpa = gpa_base | (ea & (psize - 1));
525 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
526 dsisr & DSISR_ISSTORE);
529 index = vcpu->arch.pgfault_index;
530 hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
531 rev = &kvm->arch.hpt.rev[index];
532 preempt_disable();
533 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
534 cpu_relax();
535 hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
536 hpte[1] = be64_to_cpu(hptep[1]);
537 hpte[2] = r = rev->guest_rpte;
538 unlock_hpte(hptep, hpte[0]);
539 preempt_enable();
541 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
542 hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
543 hpte[1] = hpte_new_to_old_r(hpte[1]);
545 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
546 hpte[1] != vcpu->arch.pgfault_hpte[1])
547 return RESUME_GUEST;
549 /* Translate the logical address and get the page */
550 psize = kvmppc_actual_pgsz(hpte[0], r);
551 gpa_base = r & HPTE_R_RPN & ~(psize - 1);
552 gfn_base = gpa_base >> PAGE_SHIFT;
553 gpa = gpa_base | (ea & (psize - 1));
554 gfn = gpa >> PAGE_SHIFT;
555 memslot = gfn_to_memslot(kvm, gfn);
557 trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
559 /* No memslot means it's an emulated MMIO region */
560 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
561 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
562 dsisr & DSISR_ISSTORE);
565 * This should never happen, because of the slot_is_aligned()
566 * check in kvmppc_do_h_enter().
568 if (gfn_base < memslot->base_gfn)
569 return -EFAULT;
571 /* used to check for invalidations in progress */
572 mmu_seq = kvm->mmu_notifier_seq;
573 smp_rmb();
575 ret = -EFAULT;
576 page = NULL;
577 writing = (dsisr & DSISR_ISSTORE) != 0;
578 /* If writing != 0, then the HPTE must allow writing, if we get here */
579 write_ok = writing;
580 hva = gfn_to_hva_memslot(memslot, gfn);
583 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
584 * do it with !atomic && !async, which is how we call it.
585 * We always ask for write permission since the common case
586 * is that the page is writable.
588 if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
589 write_ok = true;
590 } else {
591 /* Call KVM generic code to do the slow-path check */
592 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
593 writing, &write_ok);
594 if (is_error_noslot_pfn(pfn))
595 return -EFAULT;
596 page = NULL;
597 if (pfn_valid(pfn)) {
598 page = pfn_to_page(pfn);
599 if (PageReserved(page))
600 page = NULL;
605 * Read the PTE from the process' radix tree and use that
606 * so we get the shift and attribute bits.
608 spin_lock(&kvm->mmu_lock);
609 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
610 pte = __pte(0);
611 if (ptep)
612 pte = READ_ONCE(*ptep);
613 spin_unlock(&kvm->mmu_lock);
615 * If the PTE disappeared temporarily due to a THP
616 * collapse, just return and let the guest try again.
618 if (!pte_present(pte)) {
619 if (page)
620 put_page(page);
621 return RESUME_GUEST;
623 hpa = pte_pfn(pte) << PAGE_SHIFT;
624 pte_size = PAGE_SIZE;
625 if (shift)
626 pte_size = 1ul << shift;
627 is_ci = pte_ci(pte);
629 if (psize > pte_size)
630 goto out_put;
631 if (pte_size > psize)
632 hpa |= hva & (pte_size - psize);
634 /* Check WIMG vs. the actual page we're accessing */
635 if (!hpte_cache_flags_ok(r, is_ci)) {
636 if (is_ci)
637 goto out_put;
639 * Allow guest to map emulated device memory as
640 * uncacheable, but actually make it cacheable.
642 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
646 * Set the HPTE to point to hpa.
647 * Since the hpa is at PAGE_SIZE granularity, make sure we
648 * don't mask out lower-order bits if psize < PAGE_SIZE.
650 if (psize < PAGE_SIZE)
651 psize = PAGE_SIZE;
652 r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
653 if (hpte_is_writable(r) && !write_ok)
654 r = hpte_make_readonly(r);
655 ret = RESUME_GUEST;
656 preempt_disable();
657 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
658 cpu_relax();
659 hnow_v = be64_to_cpu(hptep[0]);
660 hnow_r = be64_to_cpu(hptep[1]);
661 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
662 hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
663 hnow_r = hpte_new_to_old_r(hnow_r);
667 * If the HPT is being resized, don't update the HPTE,
668 * instead let the guest retry after the resize operation is complete.
669 * The synchronization for mmu_ready test vs. set is provided
670 * by the HPTE lock.
672 if (!kvm->arch.mmu_ready)
673 goto out_unlock;
675 if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
676 rev->guest_rpte != hpte[2])
677 /* HPTE has been changed under us; let the guest retry */
678 goto out_unlock;
679 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
681 /* Always put the HPTE in the rmap chain for the page base address */
682 rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
683 lock_rmap(rmap);
685 /* Check if we might have been invalidated; let the guest retry if so */
686 ret = RESUME_GUEST;
687 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
688 unlock_rmap(rmap);
689 goto out_unlock;
692 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
693 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
694 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
696 if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
697 /* HPTE was previously valid, so we need to invalidate it */
698 unlock_rmap(rmap);
699 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
700 kvmppc_invalidate_hpte(kvm, hptep, index);
701 /* don't lose previous R and C bits */
702 r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
703 } else {
704 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
707 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
708 r = hpte_old_to_new_r(hpte[0], r);
709 hpte[0] = hpte_old_to_new_v(hpte[0]);
711 hptep[1] = cpu_to_be64(r);
712 eieio();
713 __unlock_hpte(hptep, hpte[0]);
714 asm volatile("ptesync" : : : "memory");
715 preempt_enable();
716 if (page && hpte_is_writable(r))
717 set_page_dirty_lock(page);
719 out_put:
720 trace_kvm_page_fault_exit(vcpu, hpte, ret);
722 if (page)
723 put_page(page);
724 return ret;
726 out_unlock:
727 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
728 preempt_enable();
729 goto out_put;
732 void kvmppc_rmap_reset(struct kvm *kvm)
734 struct kvm_memslots *slots;
735 struct kvm_memory_slot *memslot;
736 int srcu_idx;
738 srcu_idx = srcu_read_lock(&kvm->srcu);
739 slots = kvm_memslots(kvm);
740 kvm_for_each_memslot(memslot, slots) {
741 /* Mutual exclusion with kvm_unmap_hva_range etc. */
742 spin_lock(&kvm->mmu_lock);
744 * This assumes it is acceptable to lose reference and
745 * change bits across a reset.
747 memset(memslot->arch.rmap, 0,
748 memslot->npages * sizeof(*memslot->arch.rmap));
749 spin_unlock(&kvm->mmu_lock);
751 srcu_read_unlock(&kvm->srcu, srcu_idx);
754 typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
755 unsigned long gfn);
757 static int kvm_handle_hva_range(struct kvm *kvm,
758 unsigned long start,
759 unsigned long end,
760 hva_handler_fn handler)
762 int ret;
763 int retval = 0;
764 struct kvm_memslots *slots;
765 struct kvm_memory_slot *memslot;
767 slots = kvm_memslots(kvm);
768 kvm_for_each_memslot(memslot, slots) {
769 unsigned long hva_start, hva_end;
770 gfn_t gfn, gfn_end;
772 hva_start = max(start, memslot->userspace_addr);
773 hva_end = min(end, memslot->userspace_addr +
774 (memslot->npages << PAGE_SHIFT));
775 if (hva_start >= hva_end)
776 continue;
778 * {gfn(page) | page intersects with [hva_start, hva_end)} =
779 * {gfn, gfn+1, ..., gfn_end-1}.
781 gfn = hva_to_gfn_memslot(hva_start, memslot);
782 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
784 for (; gfn < gfn_end; ++gfn) {
785 ret = handler(kvm, memslot, gfn);
786 retval |= ret;
790 return retval;
793 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
794 hva_handler_fn handler)
796 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
799 /* Must be called with both HPTE and rmap locked */
800 static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
801 struct kvm_memory_slot *memslot,
802 unsigned long *rmapp, unsigned long gfn)
804 __be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
805 struct revmap_entry *rev = kvm->arch.hpt.rev;
806 unsigned long j, h;
807 unsigned long ptel, psize, rcbits;
809 j = rev[i].forw;
810 if (j == i) {
811 /* chain is now empty */
812 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
813 } else {
814 /* remove i from chain */
815 h = rev[i].back;
816 rev[h].forw = j;
817 rev[j].back = h;
818 rev[i].forw = rev[i].back = i;
819 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
822 /* Now check and modify the HPTE */
823 ptel = rev[i].guest_rpte;
824 psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
825 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
826 hpte_rpn(ptel, psize) == gfn) {
827 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
828 kvmppc_invalidate_hpte(kvm, hptep, i);
829 hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
830 /* Harvest R and C */
831 rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
832 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
833 if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
834 kvmppc_update_dirty_map(memslot, gfn, psize);
835 if (rcbits & ~rev[i].guest_rpte) {
836 rev[i].guest_rpte = ptel | rcbits;
837 note_hpte_modification(kvm, &rev[i]);
842 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
843 unsigned long gfn)
845 unsigned long i;
846 __be64 *hptep;
847 unsigned long *rmapp;
849 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
850 for (;;) {
851 lock_rmap(rmapp);
852 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
853 unlock_rmap(rmapp);
854 break;
858 * To avoid an ABBA deadlock with the HPTE lock bit,
859 * we can't spin on the HPTE lock while holding the
860 * rmap chain lock.
862 i = *rmapp & KVMPPC_RMAP_INDEX;
863 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
864 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
865 /* unlock rmap before spinning on the HPTE lock */
866 unlock_rmap(rmapp);
867 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
868 cpu_relax();
869 continue;
872 kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
873 unlock_rmap(rmapp);
874 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
876 return 0;
879 int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
881 hva_handler_fn handler;
883 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
884 kvm_handle_hva_range(kvm, start, end, handler);
885 return 0;
888 void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
889 struct kvm_memory_slot *memslot)
891 unsigned long gfn;
892 unsigned long n;
893 unsigned long *rmapp;
895 gfn = memslot->base_gfn;
896 rmapp = memslot->arch.rmap;
897 if (kvm_is_radix(kvm)) {
898 kvmppc_radix_flush_memslot(kvm, memslot);
899 return;
902 for (n = memslot->npages; n; --n, ++gfn) {
904 * Testing the present bit without locking is OK because
905 * the memslot has been marked invalid already, and hence
906 * no new HPTEs referencing this page can be created,
907 * thus the present bit can't go from 0 to 1.
909 if (*rmapp & KVMPPC_RMAP_PRESENT)
910 kvm_unmap_rmapp(kvm, memslot, gfn);
911 ++rmapp;
915 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
916 unsigned long gfn)
918 struct revmap_entry *rev = kvm->arch.hpt.rev;
919 unsigned long head, i, j;
920 __be64 *hptep;
921 int ret = 0;
922 unsigned long *rmapp;
924 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
925 retry:
926 lock_rmap(rmapp);
927 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
928 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
929 ret = 1;
931 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
932 unlock_rmap(rmapp);
933 return ret;
936 i = head = *rmapp & KVMPPC_RMAP_INDEX;
937 do {
938 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
939 j = rev[i].forw;
941 /* If this HPTE isn't referenced, ignore it */
942 if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
943 continue;
945 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
946 /* unlock rmap before spinning on the HPTE lock */
947 unlock_rmap(rmapp);
948 while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
949 cpu_relax();
950 goto retry;
953 /* Now check and modify the HPTE */
954 if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
955 (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
956 kvmppc_clear_ref_hpte(kvm, hptep, i);
957 if (!(rev[i].guest_rpte & HPTE_R_R)) {
958 rev[i].guest_rpte |= HPTE_R_R;
959 note_hpte_modification(kvm, &rev[i]);
961 ret = 1;
963 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
964 } while ((i = j) != head);
966 unlock_rmap(rmapp);
967 return ret;
970 int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
972 hva_handler_fn handler;
974 handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
975 return kvm_handle_hva_range(kvm, start, end, handler);
978 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
979 unsigned long gfn)
981 struct revmap_entry *rev = kvm->arch.hpt.rev;
982 unsigned long head, i, j;
983 unsigned long *hp;
984 int ret = 1;
985 unsigned long *rmapp;
987 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
988 if (*rmapp & KVMPPC_RMAP_REFERENCED)
989 return 1;
991 lock_rmap(rmapp);
992 if (*rmapp & KVMPPC_RMAP_REFERENCED)
993 goto out;
995 if (*rmapp & KVMPPC_RMAP_PRESENT) {
996 i = head = *rmapp & KVMPPC_RMAP_INDEX;
997 do {
998 hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
999 j = rev[i].forw;
1000 if (be64_to_cpu(hp[1]) & HPTE_R_R)
1001 goto out;
1002 } while ((i = j) != head);
1004 ret = 0;
1006 out:
1007 unlock_rmap(rmapp);
1008 return ret;
1011 int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1013 hva_handler_fn handler;
1015 handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1016 return kvm_handle_hva(kvm, hva, handler);
1019 void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1021 hva_handler_fn handler;
1023 handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1024 kvm_handle_hva(kvm, hva, handler);
1027 static int vcpus_running(struct kvm *kvm)
1029 return atomic_read(&kvm->arch.vcpus_running) != 0;
1033 * Returns the number of system pages that are dirty.
1034 * This can be more than 1 if we find a huge-page HPTE.
1036 static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1038 struct revmap_entry *rev = kvm->arch.hpt.rev;
1039 unsigned long head, i, j;
1040 unsigned long n;
1041 unsigned long v, r;
1042 __be64 *hptep;
1043 int npages_dirty = 0;
1045 retry:
1046 lock_rmap(rmapp);
1047 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1048 unlock_rmap(rmapp);
1049 return npages_dirty;
1052 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1053 do {
1054 unsigned long hptep1;
1055 hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1056 j = rev[i].forw;
1059 * Checking the C (changed) bit here is racy since there
1060 * is no guarantee about when the hardware writes it back.
1061 * If the HPTE is not writable then it is stable since the
1062 * page can't be written to, and we would have done a tlbie
1063 * (which forces the hardware to complete any writeback)
1064 * when making the HPTE read-only.
1065 * If vcpus are running then this call is racy anyway
1066 * since the page could get dirtied subsequently, so we
1067 * expect there to be a further call which would pick up
1068 * any delayed C bit writeback.
1069 * Otherwise we need to do the tlbie even if C==0 in
1070 * order to pick up any delayed writeback of C.
1072 hptep1 = be64_to_cpu(hptep[1]);
1073 if (!(hptep1 & HPTE_R_C) &&
1074 (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1075 continue;
1077 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1078 /* unlock rmap before spinning on the HPTE lock */
1079 unlock_rmap(rmapp);
1080 while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1081 cpu_relax();
1082 goto retry;
1085 /* Now check and modify the HPTE */
1086 if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1087 __unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1088 continue;
1091 /* need to make it temporarily absent so C is stable */
1092 hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1093 kvmppc_invalidate_hpte(kvm, hptep, i);
1094 v = be64_to_cpu(hptep[0]);
1095 r = be64_to_cpu(hptep[1]);
1096 if (r & HPTE_R_C) {
1097 hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1098 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1099 rev[i].guest_rpte |= HPTE_R_C;
1100 note_hpte_modification(kvm, &rev[i]);
1102 n = kvmppc_actual_pgsz(v, r);
1103 n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104 if (n > npages_dirty)
1105 npages_dirty = n;
1106 eieio();
1108 v &= ~HPTE_V_ABSENT;
1109 v |= HPTE_V_VALID;
1110 __unlock_hpte(hptep, v);
1111 } while ((i = j) != head);
1113 unlock_rmap(rmapp);
1114 return npages_dirty;
1117 void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1118 struct kvm_memory_slot *memslot,
1119 unsigned long *map)
1121 unsigned long gfn;
1123 if (!vpa->dirty || !vpa->pinned_addr)
1124 return;
1125 gfn = vpa->gpa >> PAGE_SHIFT;
1126 if (gfn < memslot->base_gfn ||
1127 gfn >= memslot->base_gfn + memslot->npages)
1128 return;
1130 vpa->dirty = false;
1131 if (map)
1132 __set_bit_le(gfn - memslot->base_gfn, map);
1135 long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1136 struct kvm_memory_slot *memslot, unsigned long *map)
1138 unsigned long i;
1139 unsigned long *rmapp;
1141 preempt_disable();
1142 rmapp = memslot->arch.rmap;
1143 for (i = 0; i < memslot->npages; ++i) {
1144 int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1146 * Note that if npages > 0 then i must be a multiple of npages,
1147 * since we always put huge-page HPTEs in the rmap chain
1148 * corresponding to their page base address.
1150 if (npages)
1151 set_dirty_bits(map, i, npages);
1152 ++rmapp;
1154 preempt_enable();
1155 return 0;
1158 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1159 unsigned long *nb_ret)
1161 struct kvm_memory_slot *memslot;
1162 unsigned long gfn = gpa >> PAGE_SHIFT;
1163 struct page *page, *pages[1];
1164 int npages;
1165 unsigned long hva, offset;
1166 int srcu_idx;
1168 srcu_idx = srcu_read_lock(&kvm->srcu);
1169 memslot = gfn_to_memslot(kvm, gfn);
1170 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1171 goto err;
1172 hva = gfn_to_hva_memslot(memslot, gfn);
1173 npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1174 if (npages < 1)
1175 goto err;
1176 page = pages[0];
1177 srcu_read_unlock(&kvm->srcu, srcu_idx);
1179 offset = gpa & (PAGE_SIZE - 1);
1180 if (nb_ret)
1181 *nb_ret = PAGE_SIZE - offset;
1182 return page_address(page) + offset;
1184 err:
1185 srcu_read_unlock(&kvm->srcu, srcu_idx);
1186 return NULL;
1189 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1190 bool dirty)
1192 struct page *page = virt_to_page(va);
1193 struct kvm_memory_slot *memslot;
1194 unsigned long gfn;
1195 int srcu_idx;
1197 put_page(page);
1199 if (!dirty)
1200 return;
1202 /* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1203 gfn = gpa >> PAGE_SHIFT;
1204 srcu_idx = srcu_read_lock(&kvm->srcu);
1205 memslot = gfn_to_memslot(kvm, gfn);
1206 if (memslot && memslot->dirty_bitmap)
1207 set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1208 srcu_read_unlock(&kvm->srcu, srcu_idx);
1212 * HPT resizing
1214 static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1216 int rc;
1218 rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1219 if (rc < 0)
1220 return rc;
1222 resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1223 resize->hpt.virt);
1225 return 0;
1228 static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1229 unsigned long idx)
1231 struct kvm *kvm = resize->kvm;
1232 struct kvm_hpt_info *old = &kvm->arch.hpt;
1233 struct kvm_hpt_info *new = &resize->hpt;
1234 unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1235 unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1236 __be64 *hptep, *new_hptep;
1237 unsigned long vpte, rpte, guest_rpte;
1238 int ret;
1239 struct revmap_entry *rev;
1240 unsigned long apsize, avpn, pteg, hash;
1241 unsigned long new_idx, new_pteg, replace_vpte;
1242 int pshift;
1244 hptep = (__be64 *)(old->virt + (idx << 4));
1246 /* Guest is stopped, so new HPTEs can't be added or faulted
1247 * in, only unmapped or altered by host actions. So, it's
1248 * safe to check this before we take the HPTE lock */
1249 vpte = be64_to_cpu(hptep[0]);
1250 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1251 return 0; /* nothing to do */
1253 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1254 cpu_relax();
1256 vpte = be64_to_cpu(hptep[0]);
1258 ret = 0;
1259 if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1260 /* Nothing to do */
1261 goto out;
1263 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1264 rpte = be64_to_cpu(hptep[1]);
1265 vpte = hpte_new_to_old_v(vpte, rpte);
1268 /* Unmap */
1269 rev = &old->rev[idx];
1270 guest_rpte = rev->guest_rpte;
1272 ret = -EIO;
1273 apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1274 if (!apsize)
1275 goto out;
1277 if (vpte & HPTE_V_VALID) {
1278 unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1279 int srcu_idx = srcu_read_lock(&kvm->srcu);
1280 struct kvm_memory_slot *memslot =
1281 __gfn_to_memslot(kvm_memslots(kvm), gfn);
1283 if (memslot) {
1284 unsigned long *rmapp;
1285 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1287 lock_rmap(rmapp);
1288 kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1289 unlock_rmap(rmapp);
1292 srcu_read_unlock(&kvm->srcu, srcu_idx);
1295 /* Reload PTE after unmap */
1296 vpte = be64_to_cpu(hptep[0]);
1297 BUG_ON(vpte & HPTE_V_VALID);
1298 BUG_ON(!(vpte & HPTE_V_ABSENT));
1300 ret = 0;
1301 if (!(vpte & HPTE_V_BOLTED))
1302 goto out;
1304 rpte = be64_to_cpu(hptep[1]);
1306 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1307 vpte = hpte_new_to_old_v(vpte, rpte);
1308 rpte = hpte_new_to_old_r(rpte);
1311 pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1312 avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1313 pteg = idx / HPTES_PER_GROUP;
1314 if (vpte & HPTE_V_SECONDARY)
1315 pteg = ~pteg;
1317 if (!(vpte & HPTE_V_1TB_SEG)) {
1318 unsigned long offset, vsid;
1320 /* We only have 28 - 23 bits of offset in avpn */
1321 offset = (avpn & 0x1f) << 23;
1322 vsid = avpn >> 5;
1323 /* We can find more bits from the pteg value */
1324 if (pshift < 23)
1325 offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1327 hash = vsid ^ (offset >> pshift);
1328 } else {
1329 unsigned long offset, vsid;
1331 /* We only have 40 - 23 bits of seg_off in avpn */
1332 offset = (avpn & 0x1ffff) << 23;
1333 vsid = avpn >> 17;
1334 if (pshift < 23)
1335 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1337 hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1340 new_pteg = hash & new_hash_mask;
1341 if (vpte & HPTE_V_SECONDARY)
1342 new_pteg = ~hash & new_hash_mask;
1344 new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1345 new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1347 replace_vpte = be64_to_cpu(new_hptep[0]);
1348 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1349 unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1350 replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1353 if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1354 BUG_ON(new->order >= old->order);
1356 if (replace_vpte & HPTE_V_BOLTED) {
1357 if (vpte & HPTE_V_BOLTED)
1358 /* Bolted collision, nothing we can do */
1359 ret = -ENOSPC;
1360 /* Discard the new HPTE */
1361 goto out;
1364 /* Discard the previous HPTE */
1367 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1368 rpte = hpte_old_to_new_r(vpte, rpte);
1369 vpte = hpte_old_to_new_v(vpte);
1372 new_hptep[1] = cpu_to_be64(rpte);
1373 new->rev[new_idx].guest_rpte = guest_rpte;
1374 /* No need for a barrier, since new HPT isn't active */
1375 new_hptep[0] = cpu_to_be64(vpte);
1376 unlock_hpte(new_hptep, vpte);
1378 out:
1379 unlock_hpte(hptep, vpte);
1380 return ret;
1383 static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1385 struct kvm *kvm = resize->kvm;
1386 unsigned long i;
1387 int rc;
1389 for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1390 rc = resize_hpt_rehash_hpte(resize, i);
1391 if (rc != 0)
1392 return rc;
1395 return 0;
1398 static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1400 struct kvm *kvm = resize->kvm;
1401 struct kvm_hpt_info hpt_tmp;
1403 /* Exchange the pending tables in the resize structure with
1404 * the active tables */
1406 resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1408 spin_lock(&kvm->mmu_lock);
1409 asm volatile("ptesync" : : : "memory");
1411 hpt_tmp = kvm->arch.hpt;
1412 kvmppc_set_hpt(kvm, &resize->hpt);
1413 resize->hpt = hpt_tmp;
1415 spin_unlock(&kvm->mmu_lock);
1417 synchronize_srcu_expedited(&kvm->srcu);
1419 if (cpu_has_feature(CPU_FTR_ARCH_300))
1420 kvmppc_setup_partition_table(kvm);
1422 resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1425 static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1427 if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1428 return;
1430 if (!resize)
1431 return;
1433 if (resize->error != -EBUSY) {
1434 if (resize->hpt.virt)
1435 kvmppc_free_hpt(&resize->hpt);
1436 kfree(resize);
1439 if (kvm->arch.resize_hpt == resize)
1440 kvm->arch.resize_hpt = NULL;
1443 static void resize_hpt_prepare_work(struct work_struct *work)
1445 struct kvm_resize_hpt *resize = container_of(work,
1446 struct kvm_resize_hpt,
1447 work);
1448 struct kvm *kvm = resize->kvm;
1449 int err = 0;
1451 if (WARN_ON(resize->error != -EBUSY))
1452 return;
1454 mutex_lock(&kvm->arch.mmu_setup_lock);
1456 /* Request is still current? */
1457 if (kvm->arch.resize_hpt == resize) {
1458 /* We may request large allocations here:
1459 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1461 mutex_unlock(&kvm->arch.mmu_setup_lock);
1463 resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1464 resize->order);
1466 err = resize_hpt_allocate(resize);
1468 /* We have strict assumption about -EBUSY
1469 * when preparing for HPT resize.
1471 if (WARN_ON(err == -EBUSY))
1472 err = -EINPROGRESS;
1474 mutex_lock(&kvm->arch.mmu_setup_lock);
1475 /* It is possible that kvm->arch.resize_hpt != resize
1476 * after we grab kvm->arch.mmu_setup_lock again.
1480 resize->error = err;
1482 if (kvm->arch.resize_hpt != resize)
1483 resize_hpt_release(kvm, resize);
1485 mutex_unlock(&kvm->arch.mmu_setup_lock);
1488 long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1489 struct kvm_ppc_resize_hpt *rhpt)
1491 unsigned long flags = rhpt->flags;
1492 unsigned long shift = rhpt->shift;
1493 struct kvm_resize_hpt *resize;
1494 int ret;
1496 if (flags != 0 || kvm_is_radix(kvm))
1497 return -EINVAL;
1499 if (shift && ((shift < 18) || (shift > 46)))
1500 return -EINVAL;
1502 mutex_lock(&kvm->arch.mmu_setup_lock);
1504 resize = kvm->arch.resize_hpt;
1506 if (resize) {
1507 if (resize->order == shift) {
1508 /* Suitable resize in progress? */
1509 ret = resize->error;
1510 if (ret == -EBUSY)
1511 ret = 100; /* estimated time in ms */
1512 else if (ret)
1513 resize_hpt_release(kvm, resize);
1515 goto out;
1518 /* not suitable, cancel it */
1519 resize_hpt_release(kvm, resize);
1522 ret = 0;
1523 if (!shift)
1524 goto out; /* nothing to do */
1526 /* start new resize */
1528 resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1529 if (!resize) {
1530 ret = -ENOMEM;
1531 goto out;
1534 resize->error = -EBUSY;
1535 resize->order = shift;
1536 resize->kvm = kvm;
1537 INIT_WORK(&resize->work, resize_hpt_prepare_work);
1538 kvm->arch.resize_hpt = resize;
1540 schedule_work(&resize->work);
1542 ret = 100; /* estimated time in ms */
1544 out:
1545 mutex_unlock(&kvm->arch.mmu_setup_lock);
1546 return ret;
1549 static void resize_hpt_boot_vcpu(void *opaque)
1551 /* Nothing to do, just force a KVM exit */
1554 long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1555 struct kvm_ppc_resize_hpt *rhpt)
1557 unsigned long flags = rhpt->flags;
1558 unsigned long shift = rhpt->shift;
1559 struct kvm_resize_hpt *resize;
1560 long ret;
1562 if (flags != 0 || kvm_is_radix(kvm))
1563 return -EINVAL;
1565 if (shift && ((shift < 18) || (shift > 46)))
1566 return -EINVAL;
1568 mutex_lock(&kvm->arch.mmu_setup_lock);
1570 resize = kvm->arch.resize_hpt;
1572 /* This shouldn't be possible */
1573 ret = -EIO;
1574 if (WARN_ON(!kvm->arch.mmu_ready))
1575 goto out_no_hpt;
1577 /* Stop VCPUs from running while we mess with the HPT */
1578 kvm->arch.mmu_ready = 0;
1579 smp_mb();
1581 /* Boot all CPUs out of the guest so they re-read
1582 * mmu_ready */
1583 on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1585 ret = -ENXIO;
1586 if (!resize || (resize->order != shift))
1587 goto out;
1589 ret = resize->error;
1590 if (ret)
1591 goto out;
1593 ret = resize_hpt_rehash(resize);
1594 if (ret)
1595 goto out;
1597 resize_hpt_pivot(resize);
1599 out:
1600 /* Let VCPUs run again */
1601 kvm->arch.mmu_ready = 1;
1602 smp_mb();
1603 out_no_hpt:
1604 resize_hpt_release(kvm, resize);
1605 mutex_unlock(&kvm->arch.mmu_setup_lock);
1606 return ret;
1610 * Functions for reading and writing the hash table via reads and
1611 * writes on a file descriptor.
1613 * Reads return the guest view of the hash table, which has to be
1614 * pieced together from the real hash table and the guest_rpte
1615 * values in the revmap array.
1617 * On writes, each HPTE written is considered in turn, and if it
1618 * is valid, it is written to the HPT as if an H_ENTER with the
1619 * exact flag set was done. When the invalid count is non-zero
1620 * in the header written to the stream, the kernel will make
1621 * sure that that many HPTEs are invalid, and invalidate them
1622 * if not.
1625 struct kvm_htab_ctx {
1626 unsigned long index;
1627 unsigned long flags;
1628 struct kvm *kvm;
1629 int first_pass;
1632 #define HPTE_SIZE (2 * sizeof(unsigned long))
1635 * Returns 1 if this HPT entry has been modified or has pending
1636 * R/C bit changes.
1638 static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1640 unsigned long rcbits_unset;
1642 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1643 return 1;
1645 /* Also need to consider changes in reference and changed bits */
1646 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1647 if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1648 (be64_to_cpu(hptp[1]) & rcbits_unset))
1649 return 1;
1651 return 0;
1654 static long record_hpte(unsigned long flags, __be64 *hptp,
1655 unsigned long *hpte, struct revmap_entry *revp,
1656 int want_valid, int first_pass)
1658 unsigned long v, r, hr;
1659 unsigned long rcbits_unset;
1660 int ok = 1;
1661 int valid, dirty;
1663 /* Unmodified entries are uninteresting except on the first pass */
1664 dirty = hpte_dirty(revp, hptp);
1665 if (!first_pass && !dirty)
1666 return 0;
1668 valid = 0;
1669 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1670 valid = 1;
1671 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1672 !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1673 valid = 0;
1675 if (valid != want_valid)
1676 return 0;
1678 v = r = 0;
1679 if (valid || dirty) {
1680 /* lock the HPTE so it's stable and read it */
1681 preempt_disable();
1682 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1683 cpu_relax();
1684 v = be64_to_cpu(hptp[0]);
1685 hr = be64_to_cpu(hptp[1]);
1686 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1687 v = hpte_new_to_old_v(v, hr);
1688 hr = hpte_new_to_old_r(hr);
1691 /* re-evaluate valid and dirty from synchronized HPTE value */
1692 valid = !!(v & HPTE_V_VALID);
1693 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1695 /* Harvest R and C into guest view if necessary */
1696 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1697 if (valid && (rcbits_unset & hr)) {
1698 revp->guest_rpte |= (hr &
1699 (HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1700 dirty = 1;
1703 if (v & HPTE_V_ABSENT) {
1704 v &= ~HPTE_V_ABSENT;
1705 v |= HPTE_V_VALID;
1706 valid = 1;
1708 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1709 valid = 0;
1711 r = revp->guest_rpte;
1712 /* only clear modified if this is the right sort of entry */
1713 if (valid == want_valid && dirty) {
1714 r &= ~HPTE_GR_MODIFIED;
1715 revp->guest_rpte = r;
1717 unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1718 preempt_enable();
1719 if (!(valid == want_valid && (first_pass || dirty)))
1720 ok = 0;
1722 hpte[0] = cpu_to_be64(v);
1723 hpte[1] = cpu_to_be64(r);
1724 return ok;
1727 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1728 size_t count, loff_t *ppos)
1730 struct kvm_htab_ctx *ctx = file->private_data;
1731 struct kvm *kvm = ctx->kvm;
1732 struct kvm_get_htab_header hdr;
1733 __be64 *hptp;
1734 struct revmap_entry *revp;
1735 unsigned long i, nb, nw;
1736 unsigned long __user *lbuf;
1737 struct kvm_get_htab_header __user *hptr;
1738 unsigned long flags;
1739 int first_pass;
1740 unsigned long hpte[2];
1742 if (!access_ok(buf, count))
1743 return -EFAULT;
1744 if (kvm_is_radix(kvm))
1745 return 0;
1747 first_pass = ctx->first_pass;
1748 flags = ctx->flags;
1750 i = ctx->index;
1751 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1752 revp = kvm->arch.hpt.rev + i;
1753 lbuf = (unsigned long __user *)buf;
1755 nb = 0;
1756 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1757 /* Initialize header */
1758 hptr = (struct kvm_get_htab_header __user *)buf;
1759 hdr.n_valid = 0;
1760 hdr.n_invalid = 0;
1761 nw = nb;
1762 nb += sizeof(hdr);
1763 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1765 /* Skip uninteresting entries, i.e. clean on not-first pass */
1766 if (!first_pass) {
1767 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1768 !hpte_dirty(revp, hptp)) {
1769 ++i;
1770 hptp += 2;
1771 ++revp;
1774 hdr.index = i;
1776 /* Grab a series of valid entries */
1777 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1778 hdr.n_valid < 0xffff &&
1779 nb + HPTE_SIZE < count &&
1780 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1781 /* valid entry, write it out */
1782 ++hdr.n_valid;
1783 if (__put_user(hpte[0], lbuf) ||
1784 __put_user(hpte[1], lbuf + 1))
1785 return -EFAULT;
1786 nb += HPTE_SIZE;
1787 lbuf += 2;
1788 ++i;
1789 hptp += 2;
1790 ++revp;
1792 /* Now skip invalid entries while we can */
1793 while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1794 hdr.n_invalid < 0xffff &&
1795 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1796 /* found an invalid entry */
1797 ++hdr.n_invalid;
1798 ++i;
1799 hptp += 2;
1800 ++revp;
1803 if (hdr.n_valid || hdr.n_invalid) {
1804 /* write back the header */
1805 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1806 return -EFAULT;
1807 nw = nb;
1808 buf = (char __user *)lbuf;
1809 } else {
1810 nb = nw;
1813 /* Check if we've wrapped around the hash table */
1814 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1815 i = 0;
1816 ctx->first_pass = 0;
1817 break;
1821 ctx->index = i;
1823 return nb;
1826 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1827 size_t count, loff_t *ppos)
1829 struct kvm_htab_ctx *ctx = file->private_data;
1830 struct kvm *kvm = ctx->kvm;
1831 struct kvm_get_htab_header hdr;
1832 unsigned long i, j;
1833 unsigned long v, r;
1834 unsigned long __user *lbuf;
1835 __be64 *hptp;
1836 unsigned long tmp[2];
1837 ssize_t nb;
1838 long int err, ret;
1839 int mmu_ready;
1840 int pshift;
1842 if (!access_ok(buf, count))
1843 return -EFAULT;
1844 if (kvm_is_radix(kvm))
1845 return -EINVAL;
1847 /* lock out vcpus from running while we're doing this */
1848 mutex_lock(&kvm->arch.mmu_setup_lock);
1849 mmu_ready = kvm->arch.mmu_ready;
1850 if (mmu_ready) {
1851 kvm->arch.mmu_ready = 0; /* temporarily */
1852 /* order mmu_ready vs. vcpus_running */
1853 smp_mb();
1854 if (atomic_read(&kvm->arch.vcpus_running)) {
1855 kvm->arch.mmu_ready = 1;
1856 mutex_unlock(&kvm->arch.mmu_setup_lock);
1857 return -EBUSY;
1861 err = 0;
1862 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1863 err = -EFAULT;
1864 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1865 break;
1867 err = 0;
1868 if (nb + hdr.n_valid * HPTE_SIZE > count)
1869 break;
1871 nb += sizeof(hdr);
1872 buf += sizeof(hdr);
1874 err = -EINVAL;
1875 i = hdr.index;
1876 if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1877 i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1878 break;
1880 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1881 lbuf = (unsigned long __user *)buf;
1882 for (j = 0; j < hdr.n_valid; ++j) {
1883 __be64 hpte_v;
1884 __be64 hpte_r;
1886 err = -EFAULT;
1887 if (__get_user(hpte_v, lbuf) ||
1888 __get_user(hpte_r, lbuf + 1))
1889 goto out;
1890 v = be64_to_cpu(hpte_v);
1891 r = be64_to_cpu(hpte_r);
1892 err = -EINVAL;
1893 if (!(v & HPTE_V_VALID))
1894 goto out;
1895 pshift = kvmppc_hpte_base_page_shift(v, r);
1896 if (pshift <= 0)
1897 goto out;
1898 lbuf += 2;
1899 nb += HPTE_SIZE;
1901 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1902 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1903 err = -EIO;
1904 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1905 tmp);
1906 if (ret != H_SUCCESS) {
1907 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1908 "r=%lx\n", ret, i, v, r);
1909 goto out;
1911 if (!mmu_ready && is_vrma_hpte(v)) {
1912 unsigned long senc, lpcr;
1914 senc = slb_pgsize_encoding(1ul << pshift);
1915 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1916 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1917 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1918 lpcr = senc << (LPCR_VRMASD_SH - 4);
1919 kvmppc_update_lpcr(kvm, lpcr,
1920 LPCR_VRMASD);
1921 } else {
1922 kvmppc_setup_partition_table(kvm);
1924 mmu_ready = 1;
1926 ++i;
1927 hptp += 2;
1930 for (j = 0; j < hdr.n_invalid; ++j) {
1931 if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1932 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1933 ++i;
1934 hptp += 2;
1936 err = 0;
1939 out:
1940 /* Order HPTE updates vs. mmu_ready */
1941 smp_wmb();
1942 kvm->arch.mmu_ready = mmu_ready;
1943 mutex_unlock(&kvm->arch.mmu_setup_lock);
1945 if (err)
1946 return err;
1947 return nb;
1950 static int kvm_htab_release(struct inode *inode, struct file *filp)
1952 struct kvm_htab_ctx *ctx = filp->private_data;
1954 filp->private_data = NULL;
1955 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1956 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1957 kvm_put_kvm(ctx->kvm);
1958 kfree(ctx);
1959 return 0;
1962 static const struct file_operations kvm_htab_fops = {
1963 .read = kvm_htab_read,
1964 .write = kvm_htab_write,
1965 .llseek = default_llseek,
1966 .release = kvm_htab_release,
1969 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1971 int ret;
1972 struct kvm_htab_ctx *ctx;
1973 int rwflag;
1975 /* reject flags we don't recognize */
1976 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1977 return -EINVAL;
1978 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1979 if (!ctx)
1980 return -ENOMEM;
1981 kvm_get_kvm(kvm);
1982 ctx->kvm = kvm;
1983 ctx->index = ghf->start_index;
1984 ctx->flags = ghf->flags;
1985 ctx->first_pass = 1;
1987 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1988 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1989 if (ret < 0) {
1990 kfree(ctx);
1991 kvm_put_kvm_no_destroy(kvm);
1992 return ret;
1995 if (rwflag == O_RDONLY) {
1996 mutex_lock(&kvm->slots_lock);
1997 atomic_inc(&kvm->arch.hpte_mod_interest);
1998 /* make sure kvmppc_do_h_enter etc. see the increment */
1999 synchronize_srcu_expedited(&kvm->srcu);
2000 mutex_unlock(&kvm->slots_lock);
2003 return ret;
2006 struct debugfs_htab_state {
2007 struct kvm *kvm;
2008 struct mutex mutex;
2009 unsigned long hpt_index;
2010 int chars_left;
2011 int buf_index;
2012 char buf[64];
2015 static int debugfs_htab_open(struct inode *inode, struct file *file)
2017 struct kvm *kvm = inode->i_private;
2018 struct debugfs_htab_state *p;
2020 p = kzalloc(sizeof(*p), GFP_KERNEL);
2021 if (!p)
2022 return -ENOMEM;
2024 kvm_get_kvm(kvm);
2025 p->kvm = kvm;
2026 mutex_init(&p->mutex);
2027 file->private_data = p;
2029 return nonseekable_open(inode, file);
2032 static int debugfs_htab_release(struct inode *inode, struct file *file)
2034 struct debugfs_htab_state *p = file->private_data;
2036 kvm_put_kvm(p->kvm);
2037 kfree(p);
2038 return 0;
2041 static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2042 size_t len, loff_t *ppos)
2044 struct debugfs_htab_state *p = file->private_data;
2045 ssize_t ret, r;
2046 unsigned long i, n;
2047 unsigned long v, hr, gr;
2048 struct kvm *kvm;
2049 __be64 *hptp;
2051 kvm = p->kvm;
2052 if (kvm_is_radix(kvm))
2053 return 0;
2055 ret = mutex_lock_interruptible(&p->mutex);
2056 if (ret)
2057 return ret;
2059 if (p->chars_left) {
2060 n = p->chars_left;
2061 if (n > len)
2062 n = len;
2063 r = copy_to_user(buf, p->buf + p->buf_index, n);
2064 n -= r;
2065 p->chars_left -= n;
2066 p->buf_index += n;
2067 buf += n;
2068 len -= n;
2069 ret = n;
2070 if (r) {
2071 if (!n)
2072 ret = -EFAULT;
2073 goto out;
2077 i = p->hpt_index;
2078 hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2079 for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2080 ++i, hptp += 2) {
2081 if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2082 continue;
2084 /* lock the HPTE so it's stable and read it */
2085 preempt_disable();
2086 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2087 cpu_relax();
2088 v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2089 hr = be64_to_cpu(hptp[1]);
2090 gr = kvm->arch.hpt.rev[i].guest_rpte;
2091 unlock_hpte(hptp, v);
2092 preempt_enable();
2094 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2095 continue;
2097 n = scnprintf(p->buf, sizeof(p->buf),
2098 "%6lx %.16lx %.16lx %.16lx\n",
2099 i, v, hr, gr);
2100 p->chars_left = n;
2101 if (n > len)
2102 n = len;
2103 r = copy_to_user(buf, p->buf, n);
2104 n -= r;
2105 p->chars_left -= n;
2106 p->buf_index = n;
2107 buf += n;
2108 len -= n;
2109 ret += n;
2110 if (r) {
2111 if (!ret)
2112 ret = -EFAULT;
2113 goto out;
2116 p->hpt_index = i;
2118 out:
2119 mutex_unlock(&p->mutex);
2120 return ret;
2123 static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2124 size_t len, loff_t *ppos)
2126 return -EACCES;
2129 static const struct file_operations debugfs_htab_fops = {
2130 .owner = THIS_MODULE,
2131 .open = debugfs_htab_open,
2132 .release = debugfs_htab_release,
2133 .read = debugfs_htab_read,
2134 .write = debugfs_htab_write,
2135 .llseek = generic_file_llseek,
2138 void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2140 debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2141 &debugfs_htab_fops);
2144 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2146 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2148 vcpu->arch.slb_nr = 32; /* POWER7/POWER8 */
2150 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2152 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;