WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / kvm / book3s_hv.c
blob6f612d240392f08d3fb6618c6abf9610cf23dfa0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 #include <asm/dtl.h>
79 #include "book3s.h"
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL (~(u64)0)
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115 .set = param_set_int,
116 .get = param_get_int,
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131 static inline bool nesting_enabled(struct kvm *kvm)
133 return kvm->arch.nested_enable && kvm_is_radix(kvm);
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
142 * RWMR values for POWER8. These control the rate at which PURR
143 * and SPURR count and should be set according to the number of
144 * online threads in the vcore being run.
146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156 RWMR_RPA_P8_1THREAD,
157 RWMR_RPA_P8_1THREAD,
158 RWMR_RPA_P8_2THREAD,
159 RWMR_RPA_P8_3THREAD,
160 RWMR_RPA_P8_4THREAD,
161 RWMR_RPA_P8_5THREAD,
162 RWMR_RPA_P8_6THREAD,
163 RWMR_RPA_P8_7THREAD,
164 RWMR_RPA_P8_8THREAD,
167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168 int *ip)
170 int i = *ip;
171 struct kvm_vcpu *vcpu;
173 while (++i < MAX_SMT_THREADS) {
174 vcpu = READ_ONCE(vc->runnable_threads[i]);
175 if (vcpu) {
176 *ip = i;
177 return vcpu;
180 return NULL;
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
187 static bool kvmppc_ipi_thread(int cpu)
189 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 if (kvmhv_on_pseries())
193 return false;
195 /* On POWER9 we can use msgsnd to IPI any cpu */
196 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197 msg |= get_hard_smp_processor_id(cpu);
198 smp_mb();
199 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200 return true;
203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205 preempt_disable();
206 if (cpu_first_thread_sibling(cpu) ==
207 cpu_first_thread_sibling(smp_processor_id())) {
208 msg |= cpu_thread_in_core(cpu);
209 smp_mb();
210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 preempt_enable();
212 return true;
214 preempt_enable();
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 if (cpu >= 0 && cpu < nr_cpu_ids) {
219 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 xics_wake_cpu(cpu);
221 return true;
223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 return true;
226 #endif
228 return false;
231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233 int cpu;
234 struct rcuwait *waitp;
236 waitp = kvm_arch_vcpu_get_wait(vcpu);
237 if (rcuwait_wake_up(waitp))
238 ++vcpu->stat.halt_wakeup;
240 cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 return;
244 /* CPU points to the first thread of the core */
245 cpu = vcpu->cpu;
246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 smp_send_reschedule(cpu);
251 * We use the vcpu_load/put functions to measure stolen time.
252 * Stolen time is counted as time when either the vcpu is able to
253 * run as part of a virtual core, but the task running the vcore
254 * is preempted or sleeping, or when the vcpu needs something done
255 * in the kernel by the task running the vcpu, but that task is
256 * preempted or sleeping. Those two things have to be counted
257 * separately, since one of the vcpu tasks will take on the job
258 * of running the core, and the other vcpu tasks in the vcore will
259 * sleep waiting for it to do that, but that sleep shouldn't count
260 * as stolen time.
262 * Hence we accumulate stolen time when the vcpu can run as part of
263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264 * needs its task to do other things in the kernel (for example,
265 * service a page fault) in busy_stolen. We don't accumulate
266 * stolen time for a vcore when it is inactive, or for a vcpu
267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
268 * a misnomer; it means that the vcpu task is not executing in
269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270 * the kernel. We don't have any way of dividing up that time
271 * between time that the vcpu is genuinely stopped, time that
272 * the task is actively working on behalf of the vcpu, and time
273 * that the task is preempted, so we don't count any of it as
274 * stolen.
276 * Updates to busy_stolen are protected by arch.tbacct_lock;
277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278 * lock. The stolen times are measured in units of timebase ticks.
279 * (Note that the != TB_NIL checks below are purely defensive;
280 * they should never fail.)
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
285 unsigned long flags;
287 spin_lock_irqsave(&vc->stoltb_lock, flags);
288 vc->preempt_tb = mftb();
289 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
294 unsigned long flags;
296 spin_lock_irqsave(&vc->stoltb_lock, flags);
297 if (vc->preempt_tb != TB_NIL) {
298 vc->stolen_tb += mftb() - vc->preempt_tb;
299 vc->preempt_tb = TB_NIL;
301 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
306 struct kvmppc_vcore *vc = vcpu->arch.vcore;
307 unsigned long flags;
310 * We can test vc->runner without taking the vcore lock,
311 * because only this task ever sets vc->runner to this
312 * vcpu, and once it is set to this vcpu, only this task
313 * ever sets it to NULL.
315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 kvmppc_core_end_stolen(vc);
318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320 vcpu->arch.busy_preempt != TB_NIL) {
321 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322 vcpu->arch.busy_preempt = TB_NIL;
324 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
329 struct kvmppc_vcore *vc = vcpu->arch.vcore;
330 unsigned long flags;
332 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333 kvmppc_core_start_stolen(vc);
335 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337 vcpu->arch.busy_preempt = mftb();
338 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
341 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
343 vcpu->arch.pvr = pvr;
346 /* Dummy value used in computing PCR value below */
347 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
349 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
351 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
352 struct kvmppc_vcore *vc = vcpu->arch.vcore;
354 /* We can (emulate) our own architecture version and anything older */
355 if (cpu_has_feature(CPU_FTR_ARCH_31))
356 host_pcr_bit = PCR_ARCH_31;
357 else if (cpu_has_feature(CPU_FTR_ARCH_300))
358 host_pcr_bit = PCR_ARCH_300;
359 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360 host_pcr_bit = PCR_ARCH_207;
361 else if (cpu_has_feature(CPU_FTR_ARCH_206))
362 host_pcr_bit = PCR_ARCH_206;
363 else
364 host_pcr_bit = PCR_ARCH_205;
366 /* Determine lowest PCR bit needed to run guest in given PVR level */
367 guest_pcr_bit = host_pcr_bit;
368 if (arch_compat) {
369 switch (arch_compat) {
370 case PVR_ARCH_205:
371 guest_pcr_bit = PCR_ARCH_205;
372 break;
373 case PVR_ARCH_206:
374 case PVR_ARCH_206p:
375 guest_pcr_bit = PCR_ARCH_206;
376 break;
377 case PVR_ARCH_207:
378 guest_pcr_bit = PCR_ARCH_207;
379 break;
380 case PVR_ARCH_300:
381 guest_pcr_bit = PCR_ARCH_300;
382 break;
383 case PVR_ARCH_31:
384 guest_pcr_bit = PCR_ARCH_31;
385 break;
386 default:
387 return -EINVAL;
391 /* Check requested PCR bits don't exceed our capabilities */
392 if (guest_pcr_bit > host_pcr_bit)
393 return -EINVAL;
395 spin_lock(&vc->lock);
396 vc->arch_compat = arch_compat;
398 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
399 * Also set all reserved PCR bits
401 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
402 spin_unlock(&vc->lock);
404 return 0;
407 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
409 int r;
411 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
412 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
413 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
414 for (r = 0; r < 16; ++r)
415 pr_err("r%2d = %.16lx r%d = %.16lx\n",
416 r, kvmppc_get_gpr(vcpu, r),
417 r+16, kvmppc_get_gpr(vcpu, r+16));
418 pr_err("ctr = %.16lx lr = %.16lx\n",
419 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
420 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
421 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
422 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
423 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
424 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
425 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
426 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
427 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
428 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
429 pr_err("fault dar = %.16lx dsisr = %.8x\n",
430 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
431 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
432 for (r = 0; r < vcpu->arch.slb_max; ++r)
433 pr_err(" ESID = %.16llx VSID = %.16llx\n",
434 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
435 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
436 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
437 vcpu->arch.last_inst);
440 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
442 return kvm_get_vcpu_by_id(kvm, id);
445 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
447 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
448 vpa->yield_count = cpu_to_be32(1);
451 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
452 unsigned long addr, unsigned long len)
454 /* check address is cacheline aligned */
455 if (addr & (L1_CACHE_BYTES - 1))
456 return -EINVAL;
457 spin_lock(&vcpu->arch.vpa_update_lock);
458 if (v->next_gpa != addr || v->len != len) {
459 v->next_gpa = addr;
460 v->len = addr ? len : 0;
461 v->update_pending = 1;
463 spin_unlock(&vcpu->arch.vpa_update_lock);
464 return 0;
467 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
468 struct reg_vpa {
469 u32 dummy;
470 union {
471 __be16 hword;
472 __be32 word;
473 } length;
476 static int vpa_is_registered(struct kvmppc_vpa *vpap)
478 if (vpap->update_pending)
479 return vpap->next_gpa != 0;
480 return vpap->pinned_addr != NULL;
483 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
484 unsigned long flags,
485 unsigned long vcpuid, unsigned long vpa)
487 struct kvm *kvm = vcpu->kvm;
488 unsigned long len, nb;
489 void *va;
490 struct kvm_vcpu *tvcpu;
491 int err;
492 int subfunc;
493 struct kvmppc_vpa *vpap;
495 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
496 if (!tvcpu)
497 return H_PARAMETER;
499 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
500 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
501 subfunc == H_VPA_REG_SLB) {
502 /* Registering new area - address must be cache-line aligned */
503 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
504 return H_PARAMETER;
506 /* convert logical addr to kernel addr and read length */
507 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
508 if (va == NULL)
509 return H_PARAMETER;
510 if (subfunc == H_VPA_REG_VPA)
511 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
512 else
513 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
514 kvmppc_unpin_guest_page(kvm, va, vpa, false);
516 /* Check length */
517 if (len > nb || len < sizeof(struct reg_vpa))
518 return H_PARAMETER;
519 } else {
520 vpa = 0;
521 len = 0;
524 err = H_PARAMETER;
525 vpap = NULL;
526 spin_lock(&tvcpu->arch.vpa_update_lock);
528 switch (subfunc) {
529 case H_VPA_REG_VPA: /* register VPA */
531 * The size of our lppaca is 1kB because of the way we align
532 * it for the guest to avoid crossing a 4kB boundary. We only
533 * use 640 bytes of the structure though, so we should accept
534 * clients that set a size of 640.
536 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
537 if (len < sizeof(struct lppaca))
538 break;
539 vpap = &tvcpu->arch.vpa;
540 err = 0;
541 break;
543 case H_VPA_REG_DTL: /* register DTL */
544 if (len < sizeof(struct dtl_entry))
545 break;
546 len -= len % sizeof(struct dtl_entry);
548 /* Check that they have previously registered a VPA */
549 err = H_RESOURCE;
550 if (!vpa_is_registered(&tvcpu->arch.vpa))
551 break;
553 vpap = &tvcpu->arch.dtl;
554 err = 0;
555 break;
557 case H_VPA_REG_SLB: /* register SLB shadow buffer */
558 /* Check that they have previously registered a VPA */
559 err = H_RESOURCE;
560 if (!vpa_is_registered(&tvcpu->arch.vpa))
561 break;
563 vpap = &tvcpu->arch.slb_shadow;
564 err = 0;
565 break;
567 case H_VPA_DEREG_VPA: /* deregister VPA */
568 /* Check they don't still have a DTL or SLB buf registered */
569 err = H_RESOURCE;
570 if (vpa_is_registered(&tvcpu->arch.dtl) ||
571 vpa_is_registered(&tvcpu->arch.slb_shadow))
572 break;
574 vpap = &tvcpu->arch.vpa;
575 err = 0;
576 break;
578 case H_VPA_DEREG_DTL: /* deregister DTL */
579 vpap = &tvcpu->arch.dtl;
580 err = 0;
581 break;
583 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
584 vpap = &tvcpu->arch.slb_shadow;
585 err = 0;
586 break;
589 if (vpap) {
590 vpap->next_gpa = vpa;
591 vpap->len = len;
592 vpap->update_pending = 1;
595 spin_unlock(&tvcpu->arch.vpa_update_lock);
597 return err;
600 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
602 struct kvm *kvm = vcpu->kvm;
603 void *va;
604 unsigned long nb;
605 unsigned long gpa;
608 * We need to pin the page pointed to by vpap->next_gpa,
609 * but we can't call kvmppc_pin_guest_page under the lock
610 * as it does get_user_pages() and down_read(). So we
611 * have to drop the lock, pin the page, then get the lock
612 * again and check that a new area didn't get registered
613 * in the meantime.
615 for (;;) {
616 gpa = vpap->next_gpa;
617 spin_unlock(&vcpu->arch.vpa_update_lock);
618 va = NULL;
619 nb = 0;
620 if (gpa)
621 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
622 spin_lock(&vcpu->arch.vpa_update_lock);
623 if (gpa == vpap->next_gpa)
624 break;
625 /* sigh... unpin that one and try again */
626 if (va)
627 kvmppc_unpin_guest_page(kvm, va, gpa, false);
630 vpap->update_pending = 0;
631 if (va && nb < vpap->len) {
633 * If it's now too short, it must be that userspace
634 * has changed the mappings underlying guest memory,
635 * so unregister the region.
637 kvmppc_unpin_guest_page(kvm, va, gpa, false);
638 va = NULL;
640 if (vpap->pinned_addr)
641 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
642 vpap->dirty);
643 vpap->gpa = gpa;
644 vpap->pinned_addr = va;
645 vpap->dirty = false;
646 if (va)
647 vpap->pinned_end = va + vpap->len;
650 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
652 if (!(vcpu->arch.vpa.update_pending ||
653 vcpu->arch.slb_shadow.update_pending ||
654 vcpu->arch.dtl.update_pending))
655 return;
657 spin_lock(&vcpu->arch.vpa_update_lock);
658 if (vcpu->arch.vpa.update_pending) {
659 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
660 if (vcpu->arch.vpa.pinned_addr)
661 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
663 if (vcpu->arch.dtl.update_pending) {
664 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
665 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
666 vcpu->arch.dtl_index = 0;
668 if (vcpu->arch.slb_shadow.update_pending)
669 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
670 spin_unlock(&vcpu->arch.vpa_update_lock);
674 * Return the accumulated stolen time for the vcore up until `now'.
675 * The caller should hold the vcore lock.
677 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
679 u64 p;
680 unsigned long flags;
682 spin_lock_irqsave(&vc->stoltb_lock, flags);
683 p = vc->stolen_tb;
684 if (vc->vcore_state != VCORE_INACTIVE &&
685 vc->preempt_tb != TB_NIL)
686 p += now - vc->preempt_tb;
687 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
688 return p;
691 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
692 struct kvmppc_vcore *vc)
694 struct dtl_entry *dt;
695 struct lppaca *vpa;
696 unsigned long stolen;
697 unsigned long core_stolen;
698 u64 now;
699 unsigned long flags;
701 dt = vcpu->arch.dtl_ptr;
702 vpa = vcpu->arch.vpa.pinned_addr;
703 now = mftb();
704 core_stolen = vcore_stolen_time(vc, now);
705 stolen = core_stolen - vcpu->arch.stolen_logged;
706 vcpu->arch.stolen_logged = core_stolen;
707 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
708 stolen += vcpu->arch.busy_stolen;
709 vcpu->arch.busy_stolen = 0;
710 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
711 if (!dt || !vpa)
712 return;
713 memset(dt, 0, sizeof(struct dtl_entry));
714 dt->dispatch_reason = 7;
715 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
716 dt->timebase = cpu_to_be64(now + vc->tb_offset);
717 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
719 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
720 ++dt;
721 if (dt == vcpu->arch.dtl.pinned_end)
722 dt = vcpu->arch.dtl.pinned_addr;
723 vcpu->arch.dtl_ptr = dt;
724 /* order writing *dt vs. writing vpa->dtl_idx */
725 smp_wmb();
726 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
727 vcpu->arch.dtl.dirty = true;
730 /* See if there is a doorbell interrupt pending for a vcpu */
731 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
733 int thr;
734 struct kvmppc_vcore *vc;
736 if (vcpu->arch.doorbell_request)
737 return true;
739 * Ensure that the read of vcore->dpdes comes after the read
740 * of vcpu->doorbell_request. This barrier matches the
741 * smp_wmb() in kvmppc_guest_entry_inject().
743 smp_rmb();
744 vc = vcpu->arch.vcore;
745 thr = vcpu->vcpu_id - vc->first_vcpuid;
746 return !!(vc->dpdes & (1 << thr));
749 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
751 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
752 return true;
753 if ((!vcpu->arch.vcore->arch_compat) &&
754 cpu_has_feature(CPU_FTR_ARCH_207S))
755 return true;
756 return false;
759 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
760 unsigned long resource, unsigned long value1,
761 unsigned long value2)
763 switch (resource) {
764 case H_SET_MODE_RESOURCE_SET_CIABR:
765 if (!kvmppc_power8_compatible(vcpu))
766 return H_P2;
767 if (value2)
768 return H_P4;
769 if (mflags)
770 return H_UNSUPPORTED_FLAG_START;
771 /* Guests can't breakpoint the hypervisor */
772 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
773 return H_P3;
774 vcpu->arch.ciabr = value1;
775 return H_SUCCESS;
776 case H_SET_MODE_RESOURCE_SET_DAWR0:
777 if (!kvmppc_power8_compatible(vcpu))
778 return H_P2;
779 if (!ppc_breakpoint_available())
780 return H_P2;
781 if (mflags)
782 return H_UNSUPPORTED_FLAG_START;
783 if (value2 & DABRX_HYP)
784 return H_P4;
785 vcpu->arch.dawr = value1;
786 vcpu->arch.dawrx = value2;
787 return H_SUCCESS;
788 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
789 /* KVM does not support mflags=2 (AIL=2) */
790 if (mflags != 0 && mflags != 3)
791 return H_UNSUPPORTED_FLAG_START;
792 return H_TOO_HARD;
793 default:
794 return H_TOO_HARD;
798 /* Copy guest memory in place - must reside within a single memslot */
799 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
800 unsigned long len)
802 struct kvm_memory_slot *to_memslot = NULL;
803 struct kvm_memory_slot *from_memslot = NULL;
804 unsigned long to_addr, from_addr;
805 int r;
807 /* Get HPA for from address */
808 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
809 if (!from_memslot)
810 return -EFAULT;
811 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
812 << PAGE_SHIFT))
813 return -EINVAL;
814 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
815 if (kvm_is_error_hva(from_addr))
816 return -EFAULT;
817 from_addr |= (from & (PAGE_SIZE - 1));
819 /* Get HPA for to address */
820 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
821 if (!to_memslot)
822 return -EFAULT;
823 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
824 << PAGE_SHIFT))
825 return -EINVAL;
826 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
827 if (kvm_is_error_hva(to_addr))
828 return -EFAULT;
829 to_addr |= (to & (PAGE_SIZE - 1));
831 /* Perform copy */
832 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
833 len);
834 if (r)
835 return -EFAULT;
836 mark_page_dirty(kvm, to >> PAGE_SHIFT);
837 return 0;
840 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
841 unsigned long dest, unsigned long src)
843 u64 pg_sz = SZ_4K; /* 4K page size */
844 u64 pg_mask = SZ_4K - 1;
845 int ret;
847 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
848 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
849 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
850 return H_PARAMETER;
852 /* dest (and src if copy_page flag set) must be page aligned */
853 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
854 return H_PARAMETER;
856 /* zero and/or copy the page as determined by the flags */
857 if (flags & H_COPY_PAGE) {
858 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
859 if (ret < 0)
860 return H_PARAMETER;
861 } else if (flags & H_ZERO_PAGE) {
862 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
863 if (ret < 0)
864 return H_PARAMETER;
867 /* We can ignore the remaining flags */
869 return H_SUCCESS;
872 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
874 struct kvmppc_vcore *vcore = target->arch.vcore;
877 * We expect to have been called by the real mode handler
878 * (kvmppc_rm_h_confer()) which would have directly returned
879 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
880 * have useful work to do and should not confer) so we don't
881 * recheck that here.
884 spin_lock(&vcore->lock);
885 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
886 vcore->vcore_state != VCORE_INACTIVE &&
887 vcore->runner)
888 target = vcore->runner;
889 spin_unlock(&vcore->lock);
891 return kvm_vcpu_yield_to(target);
894 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
896 int yield_count = 0;
897 struct lppaca *lppaca;
899 spin_lock(&vcpu->arch.vpa_update_lock);
900 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
901 if (lppaca)
902 yield_count = be32_to_cpu(lppaca->yield_count);
903 spin_unlock(&vcpu->arch.vpa_update_lock);
904 return yield_count;
907 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
909 unsigned long req = kvmppc_get_gpr(vcpu, 3);
910 unsigned long target, ret = H_SUCCESS;
911 int yield_count;
912 struct kvm_vcpu *tvcpu;
913 int idx, rc;
915 if (req <= MAX_HCALL_OPCODE &&
916 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
917 return RESUME_HOST;
919 switch (req) {
920 case H_CEDE:
921 break;
922 case H_PROD:
923 target = kvmppc_get_gpr(vcpu, 4);
924 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
925 if (!tvcpu) {
926 ret = H_PARAMETER;
927 break;
929 tvcpu->arch.prodded = 1;
930 smp_mb();
931 if (tvcpu->arch.ceded)
932 kvmppc_fast_vcpu_kick_hv(tvcpu);
933 break;
934 case H_CONFER:
935 target = kvmppc_get_gpr(vcpu, 4);
936 if (target == -1)
937 break;
938 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
939 if (!tvcpu) {
940 ret = H_PARAMETER;
941 break;
943 yield_count = kvmppc_get_gpr(vcpu, 5);
944 if (kvmppc_get_yield_count(tvcpu) != yield_count)
945 break;
946 kvm_arch_vcpu_yield_to(tvcpu);
947 break;
948 case H_REGISTER_VPA:
949 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
950 kvmppc_get_gpr(vcpu, 5),
951 kvmppc_get_gpr(vcpu, 6));
952 break;
953 case H_RTAS:
954 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
955 return RESUME_HOST;
957 idx = srcu_read_lock(&vcpu->kvm->srcu);
958 rc = kvmppc_rtas_hcall(vcpu);
959 srcu_read_unlock(&vcpu->kvm->srcu, idx);
961 if (rc == -ENOENT)
962 return RESUME_HOST;
963 else if (rc == 0)
964 break;
966 /* Send the error out to userspace via KVM_RUN */
967 return rc;
968 case H_LOGICAL_CI_LOAD:
969 ret = kvmppc_h_logical_ci_load(vcpu);
970 if (ret == H_TOO_HARD)
971 return RESUME_HOST;
972 break;
973 case H_LOGICAL_CI_STORE:
974 ret = kvmppc_h_logical_ci_store(vcpu);
975 if (ret == H_TOO_HARD)
976 return RESUME_HOST;
977 break;
978 case H_SET_MODE:
979 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
980 kvmppc_get_gpr(vcpu, 5),
981 kvmppc_get_gpr(vcpu, 6),
982 kvmppc_get_gpr(vcpu, 7));
983 if (ret == H_TOO_HARD)
984 return RESUME_HOST;
985 break;
986 case H_XIRR:
987 case H_CPPR:
988 case H_EOI:
989 case H_IPI:
990 case H_IPOLL:
991 case H_XIRR_X:
992 if (kvmppc_xics_enabled(vcpu)) {
993 if (xics_on_xive()) {
994 ret = H_NOT_AVAILABLE;
995 return RESUME_GUEST;
997 ret = kvmppc_xics_hcall(vcpu, req);
998 break;
1000 return RESUME_HOST;
1001 case H_SET_DABR:
1002 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1003 break;
1004 case H_SET_XDABR:
1005 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1006 kvmppc_get_gpr(vcpu, 5));
1007 break;
1008 #ifdef CONFIG_SPAPR_TCE_IOMMU
1009 case H_GET_TCE:
1010 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1011 kvmppc_get_gpr(vcpu, 5));
1012 if (ret == H_TOO_HARD)
1013 return RESUME_HOST;
1014 break;
1015 case H_PUT_TCE:
1016 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1017 kvmppc_get_gpr(vcpu, 5),
1018 kvmppc_get_gpr(vcpu, 6));
1019 if (ret == H_TOO_HARD)
1020 return RESUME_HOST;
1021 break;
1022 case H_PUT_TCE_INDIRECT:
1023 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1024 kvmppc_get_gpr(vcpu, 5),
1025 kvmppc_get_gpr(vcpu, 6),
1026 kvmppc_get_gpr(vcpu, 7));
1027 if (ret == H_TOO_HARD)
1028 return RESUME_HOST;
1029 break;
1030 case H_STUFF_TCE:
1031 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1032 kvmppc_get_gpr(vcpu, 5),
1033 kvmppc_get_gpr(vcpu, 6),
1034 kvmppc_get_gpr(vcpu, 7));
1035 if (ret == H_TOO_HARD)
1036 return RESUME_HOST;
1037 break;
1038 #endif
1039 case H_RANDOM:
1040 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1041 ret = H_HARDWARE;
1042 break;
1044 case H_SET_PARTITION_TABLE:
1045 ret = H_FUNCTION;
1046 if (nesting_enabled(vcpu->kvm))
1047 ret = kvmhv_set_partition_table(vcpu);
1048 break;
1049 case H_ENTER_NESTED:
1050 ret = H_FUNCTION;
1051 if (!nesting_enabled(vcpu->kvm))
1052 break;
1053 ret = kvmhv_enter_nested_guest(vcpu);
1054 if (ret == H_INTERRUPT) {
1055 kvmppc_set_gpr(vcpu, 3, 0);
1056 vcpu->arch.hcall_needed = 0;
1057 return -EINTR;
1058 } else if (ret == H_TOO_HARD) {
1059 kvmppc_set_gpr(vcpu, 3, 0);
1060 vcpu->arch.hcall_needed = 0;
1061 return RESUME_HOST;
1063 break;
1064 case H_TLB_INVALIDATE:
1065 ret = H_FUNCTION;
1066 if (nesting_enabled(vcpu->kvm))
1067 ret = kvmhv_do_nested_tlbie(vcpu);
1068 break;
1069 case H_COPY_TOFROM_GUEST:
1070 ret = H_FUNCTION;
1071 if (nesting_enabled(vcpu->kvm))
1072 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1073 break;
1074 case H_PAGE_INIT:
1075 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1076 kvmppc_get_gpr(vcpu, 5),
1077 kvmppc_get_gpr(vcpu, 6));
1078 break;
1079 case H_SVM_PAGE_IN:
1080 ret = H_UNSUPPORTED;
1081 if (kvmppc_get_srr1(vcpu) & MSR_S)
1082 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1083 kvmppc_get_gpr(vcpu, 4),
1084 kvmppc_get_gpr(vcpu, 5),
1085 kvmppc_get_gpr(vcpu, 6));
1086 break;
1087 case H_SVM_PAGE_OUT:
1088 ret = H_UNSUPPORTED;
1089 if (kvmppc_get_srr1(vcpu) & MSR_S)
1090 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1091 kvmppc_get_gpr(vcpu, 4),
1092 kvmppc_get_gpr(vcpu, 5),
1093 kvmppc_get_gpr(vcpu, 6));
1094 break;
1095 case H_SVM_INIT_START:
1096 ret = H_UNSUPPORTED;
1097 if (kvmppc_get_srr1(vcpu) & MSR_S)
1098 ret = kvmppc_h_svm_init_start(vcpu->kvm);
1099 break;
1100 case H_SVM_INIT_DONE:
1101 ret = H_UNSUPPORTED;
1102 if (kvmppc_get_srr1(vcpu) & MSR_S)
1103 ret = kvmppc_h_svm_init_done(vcpu->kvm);
1104 break;
1105 case H_SVM_INIT_ABORT:
1107 * Even if that call is made by the Ultravisor, the SSR1 value
1108 * is the guest context one, with the secure bit clear as it has
1109 * not yet been secured. So we can't check it here.
1110 * Instead the kvm->arch.secure_guest flag is checked inside
1111 * kvmppc_h_svm_init_abort().
1113 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1114 break;
1116 default:
1117 return RESUME_HOST;
1119 kvmppc_set_gpr(vcpu, 3, ret);
1120 vcpu->arch.hcall_needed = 0;
1121 return RESUME_GUEST;
1125 * Handle H_CEDE in the nested virtualization case where we haven't
1126 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1127 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1128 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1130 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1132 vcpu->arch.shregs.msr |= MSR_EE;
1133 vcpu->arch.ceded = 1;
1134 smp_mb();
1135 if (vcpu->arch.prodded) {
1136 vcpu->arch.prodded = 0;
1137 smp_mb();
1138 vcpu->arch.ceded = 0;
1142 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1144 switch (cmd) {
1145 case H_CEDE:
1146 case H_PROD:
1147 case H_CONFER:
1148 case H_REGISTER_VPA:
1149 case H_SET_MODE:
1150 case H_LOGICAL_CI_LOAD:
1151 case H_LOGICAL_CI_STORE:
1152 #ifdef CONFIG_KVM_XICS
1153 case H_XIRR:
1154 case H_CPPR:
1155 case H_EOI:
1156 case H_IPI:
1157 case H_IPOLL:
1158 case H_XIRR_X:
1159 #endif
1160 case H_PAGE_INIT:
1161 return 1;
1164 /* See if it's in the real-mode table */
1165 return kvmppc_hcall_impl_hv_realmode(cmd);
1168 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1170 u32 last_inst;
1172 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1173 EMULATE_DONE) {
1175 * Fetch failed, so return to guest and
1176 * try executing it again.
1178 return RESUME_GUEST;
1181 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1182 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1183 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1184 return RESUME_HOST;
1185 } else {
1186 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1187 return RESUME_GUEST;
1191 static void do_nothing(void *x)
1195 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1197 int thr, cpu, pcpu, nthreads;
1198 struct kvm_vcpu *v;
1199 unsigned long dpdes;
1201 nthreads = vcpu->kvm->arch.emul_smt_mode;
1202 dpdes = 0;
1203 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1204 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1205 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1206 if (!v)
1207 continue;
1209 * If the vcpu is currently running on a physical cpu thread,
1210 * interrupt it in order to pull it out of the guest briefly,
1211 * which will update its vcore->dpdes value.
1213 pcpu = READ_ONCE(v->cpu);
1214 if (pcpu >= 0)
1215 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1216 if (kvmppc_doorbell_pending(v))
1217 dpdes |= 1 << thr;
1219 return dpdes;
1223 * On POWER9, emulate doorbell-related instructions in order to
1224 * give the guest the illusion of running on a multi-threaded core.
1225 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1226 * and mfspr DPDES.
1228 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1230 u32 inst, rb, thr;
1231 unsigned long arg;
1232 struct kvm *kvm = vcpu->kvm;
1233 struct kvm_vcpu *tvcpu;
1235 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1236 return RESUME_GUEST;
1237 if (get_op(inst) != 31)
1238 return EMULATE_FAIL;
1239 rb = get_rb(inst);
1240 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1241 switch (get_xop(inst)) {
1242 case OP_31_XOP_MSGSNDP:
1243 arg = kvmppc_get_gpr(vcpu, rb);
1244 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1245 break;
1246 arg &= 0x7f;
1247 if (arg >= kvm->arch.emul_smt_mode)
1248 break;
1249 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1250 if (!tvcpu)
1251 break;
1252 if (!tvcpu->arch.doorbell_request) {
1253 tvcpu->arch.doorbell_request = 1;
1254 kvmppc_fast_vcpu_kick_hv(tvcpu);
1256 break;
1257 case OP_31_XOP_MSGCLRP:
1258 arg = kvmppc_get_gpr(vcpu, rb);
1259 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1260 break;
1261 vcpu->arch.vcore->dpdes = 0;
1262 vcpu->arch.doorbell_request = 0;
1263 break;
1264 case OP_31_XOP_MFSPR:
1265 switch (get_sprn(inst)) {
1266 case SPRN_TIR:
1267 arg = thr;
1268 break;
1269 case SPRN_DPDES:
1270 arg = kvmppc_read_dpdes(vcpu);
1271 break;
1272 default:
1273 return EMULATE_FAIL;
1275 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1276 break;
1277 default:
1278 return EMULATE_FAIL;
1280 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1281 return RESUME_GUEST;
1284 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1285 struct task_struct *tsk)
1287 struct kvm_run *run = vcpu->run;
1288 int r = RESUME_HOST;
1290 vcpu->stat.sum_exits++;
1293 * This can happen if an interrupt occurs in the last stages
1294 * of guest entry or the first stages of guest exit (i.e. after
1295 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1296 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1297 * That can happen due to a bug, or due to a machine check
1298 * occurring at just the wrong time.
1300 if (vcpu->arch.shregs.msr & MSR_HV) {
1301 printk(KERN_EMERG "KVM trap in HV mode!\n");
1302 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1303 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1304 vcpu->arch.shregs.msr);
1305 kvmppc_dump_regs(vcpu);
1306 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1307 run->hw.hardware_exit_reason = vcpu->arch.trap;
1308 return RESUME_HOST;
1310 run->exit_reason = KVM_EXIT_UNKNOWN;
1311 run->ready_for_interrupt_injection = 1;
1312 switch (vcpu->arch.trap) {
1313 /* We're good on these - the host merely wanted to get our attention */
1314 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1315 vcpu->stat.dec_exits++;
1316 r = RESUME_GUEST;
1317 break;
1318 case BOOK3S_INTERRUPT_EXTERNAL:
1319 case BOOK3S_INTERRUPT_H_DOORBELL:
1320 case BOOK3S_INTERRUPT_H_VIRT:
1321 vcpu->stat.ext_intr_exits++;
1322 r = RESUME_GUEST;
1323 break;
1324 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1325 case BOOK3S_INTERRUPT_HMI:
1326 case BOOK3S_INTERRUPT_PERFMON:
1327 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1328 r = RESUME_GUEST;
1329 break;
1330 case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1331 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1332 DEFAULT_RATELIMIT_BURST);
1334 * Print the MCE event to host console. Ratelimit so the guest
1335 * can't flood the host log.
1337 if (__ratelimit(&rs))
1338 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1341 * If the guest can do FWNMI, exit to userspace so it can
1342 * deliver a FWNMI to the guest.
1343 * Otherwise we synthesize a machine check for the guest
1344 * so that it knows that the machine check occurred.
1346 if (!vcpu->kvm->arch.fwnmi_enabled) {
1347 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1348 kvmppc_core_queue_machine_check(vcpu, flags);
1349 r = RESUME_GUEST;
1350 break;
1353 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1354 run->exit_reason = KVM_EXIT_NMI;
1355 run->hw.hardware_exit_reason = vcpu->arch.trap;
1356 /* Clear out the old NMI status from run->flags */
1357 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1358 /* Now set the NMI status */
1359 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1360 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1361 else
1362 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1364 r = RESUME_HOST;
1365 break;
1367 case BOOK3S_INTERRUPT_PROGRAM:
1369 ulong flags;
1371 * Normally program interrupts are delivered directly
1372 * to the guest by the hardware, but we can get here
1373 * as a result of a hypervisor emulation interrupt
1374 * (e40) getting turned into a 700 by BML RTAS.
1376 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1377 kvmppc_core_queue_program(vcpu, flags);
1378 r = RESUME_GUEST;
1379 break;
1381 case BOOK3S_INTERRUPT_SYSCALL:
1383 /* hcall - punt to userspace */
1384 int i;
1386 /* hypercall with MSR_PR has already been handled in rmode,
1387 * and never reaches here.
1390 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1391 for (i = 0; i < 9; ++i)
1392 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1393 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1394 vcpu->arch.hcall_needed = 1;
1395 r = RESUME_HOST;
1396 break;
1399 * We get these next two if the guest accesses a page which it thinks
1400 * it has mapped but which is not actually present, either because
1401 * it is for an emulated I/O device or because the corresonding
1402 * host page has been paged out. Any other HDSI/HISI interrupts
1403 * have been handled already.
1405 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1406 r = RESUME_PAGE_FAULT;
1407 break;
1408 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1409 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1410 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1411 DSISR_SRR1_MATCH_64S;
1412 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1413 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1414 r = RESUME_PAGE_FAULT;
1415 break;
1417 * This occurs if the guest executes an illegal instruction.
1418 * If the guest debug is disabled, generate a program interrupt
1419 * to the guest. If guest debug is enabled, we need to check
1420 * whether the instruction is a software breakpoint instruction.
1421 * Accordingly return to Guest or Host.
1423 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1424 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1425 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1426 swab32(vcpu->arch.emul_inst) :
1427 vcpu->arch.emul_inst;
1428 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1429 r = kvmppc_emulate_debug_inst(vcpu);
1430 } else {
1431 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1432 r = RESUME_GUEST;
1434 break;
1436 * This occurs if the guest (kernel or userspace), does something that
1437 * is prohibited by HFSCR.
1438 * On POWER9, this could be a doorbell instruction that we need
1439 * to emulate.
1440 * Otherwise, we just generate a program interrupt to the guest.
1442 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1443 r = EMULATE_FAIL;
1444 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1445 cpu_has_feature(CPU_FTR_ARCH_300))
1446 r = kvmppc_emulate_doorbell_instr(vcpu);
1447 if (r == EMULATE_FAIL) {
1448 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1449 r = RESUME_GUEST;
1451 break;
1453 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1454 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1456 * This occurs for various TM-related instructions that
1457 * we need to emulate on POWER9 DD2.2. We have already
1458 * handled the cases where the guest was in real-suspend
1459 * mode and was transitioning to transactional state.
1461 r = kvmhv_p9_tm_emulation(vcpu);
1462 break;
1463 #endif
1465 case BOOK3S_INTERRUPT_HV_RM_HARD:
1466 r = RESUME_PASSTHROUGH;
1467 break;
1468 default:
1469 kvmppc_dump_regs(vcpu);
1470 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1471 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1472 vcpu->arch.shregs.msr);
1473 run->hw.hardware_exit_reason = vcpu->arch.trap;
1474 r = RESUME_HOST;
1475 break;
1478 return r;
1481 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1483 int r;
1484 int srcu_idx;
1486 vcpu->stat.sum_exits++;
1489 * This can happen if an interrupt occurs in the last stages
1490 * of guest entry or the first stages of guest exit (i.e. after
1491 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1492 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1493 * That can happen due to a bug, or due to a machine check
1494 * occurring at just the wrong time.
1496 if (vcpu->arch.shregs.msr & MSR_HV) {
1497 pr_emerg("KVM trap in HV mode while nested!\n");
1498 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1499 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1500 vcpu->arch.shregs.msr);
1501 kvmppc_dump_regs(vcpu);
1502 return RESUME_HOST;
1504 switch (vcpu->arch.trap) {
1505 /* We're good on these - the host merely wanted to get our attention */
1506 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1507 vcpu->stat.dec_exits++;
1508 r = RESUME_GUEST;
1509 break;
1510 case BOOK3S_INTERRUPT_EXTERNAL:
1511 vcpu->stat.ext_intr_exits++;
1512 r = RESUME_HOST;
1513 break;
1514 case BOOK3S_INTERRUPT_H_DOORBELL:
1515 case BOOK3S_INTERRUPT_H_VIRT:
1516 vcpu->stat.ext_intr_exits++;
1517 r = RESUME_GUEST;
1518 break;
1519 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1520 case BOOK3S_INTERRUPT_HMI:
1521 case BOOK3S_INTERRUPT_PERFMON:
1522 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1523 r = RESUME_GUEST;
1524 break;
1525 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1527 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1528 DEFAULT_RATELIMIT_BURST);
1529 /* Pass the machine check to the L1 guest */
1530 r = RESUME_HOST;
1531 /* Print the MCE event to host console. */
1532 if (__ratelimit(&rs))
1533 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1534 break;
1537 * We get these next two if the guest accesses a page which it thinks
1538 * it has mapped but which is not actually present, either because
1539 * it is for an emulated I/O device or because the corresonding
1540 * host page has been paged out.
1542 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1543 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1544 r = kvmhv_nested_page_fault(vcpu);
1545 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1546 break;
1547 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1548 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1549 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1550 DSISR_SRR1_MATCH_64S;
1551 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1552 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1553 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1554 r = kvmhv_nested_page_fault(vcpu);
1555 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1556 break;
1558 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1559 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1561 * This occurs for various TM-related instructions that
1562 * we need to emulate on POWER9 DD2.2. We have already
1563 * handled the cases where the guest was in real-suspend
1564 * mode and was transitioning to transactional state.
1566 r = kvmhv_p9_tm_emulation(vcpu);
1567 break;
1568 #endif
1570 case BOOK3S_INTERRUPT_HV_RM_HARD:
1571 vcpu->arch.trap = 0;
1572 r = RESUME_GUEST;
1573 if (!xics_on_xive())
1574 kvmppc_xics_rm_complete(vcpu, 0);
1575 break;
1576 default:
1577 r = RESUME_HOST;
1578 break;
1581 return r;
1584 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1585 struct kvm_sregs *sregs)
1587 int i;
1589 memset(sregs, 0, sizeof(struct kvm_sregs));
1590 sregs->pvr = vcpu->arch.pvr;
1591 for (i = 0; i < vcpu->arch.slb_max; i++) {
1592 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1593 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1596 return 0;
1599 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1600 struct kvm_sregs *sregs)
1602 int i, j;
1604 /* Only accept the same PVR as the host's, since we can't spoof it */
1605 if (sregs->pvr != vcpu->arch.pvr)
1606 return -EINVAL;
1608 j = 0;
1609 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1610 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1611 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1612 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1613 ++j;
1616 vcpu->arch.slb_max = j;
1618 return 0;
1621 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1622 bool preserve_top32)
1624 struct kvm *kvm = vcpu->kvm;
1625 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1626 u64 mask;
1628 spin_lock(&vc->lock);
1630 * If ILE (interrupt little-endian) has changed, update the
1631 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1633 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1634 struct kvm_vcpu *vcpu;
1635 int i;
1637 kvm_for_each_vcpu(i, vcpu, kvm) {
1638 if (vcpu->arch.vcore != vc)
1639 continue;
1640 if (new_lpcr & LPCR_ILE)
1641 vcpu->arch.intr_msr |= MSR_LE;
1642 else
1643 vcpu->arch.intr_msr &= ~MSR_LE;
1648 * Userspace can only modify DPFD (default prefetch depth),
1649 * ILE (interrupt little-endian) and TC (translation control).
1650 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1652 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1653 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1654 mask |= LPCR_AIL;
1656 * On POWER9, allow userspace to enable large decrementer for the
1657 * guest, whether or not the host has it enabled.
1659 if (cpu_has_feature(CPU_FTR_ARCH_300))
1660 mask |= LPCR_LD;
1662 /* Broken 32-bit version of LPCR must not clear top bits */
1663 if (preserve_top32)
1664 mask &= 0xFFFFFFFF;
1665 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1666 spin_unlock(&vc->lock);
1669 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1670 union kvmppc_one_reg *val)
1672 int r = 0;
1673 long int i;
1675 switch (id) {
1676 case KVM_REG_PPC_DEBUG_INST:
1677 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1678 break;
1679 case KVM_REG_PPC_HIOR:
1680 *val = get_reg_val(id, 0);
1681 break;
1682 case KVM_REG_PPC_DABR:
1683 *val = get_reg_val(id, vcpu->arch.dabr);
1684 break;
1685 case KVM_REG_PPC_DABRX:
1686 *val = get_reg_val(id, vcpu->arch.dabrx);
1687 break;
1688 case KVM_REG_PPC_DSCR:
1689 *val = get_reg_val(id, vcpu->arch.dscr);
1690 break;
1691 case KVM_REG_PPC_PURR:
1692 *val = get_reg_val(id, vcpu->arch.purr);
1693 break;
1694 case KVM_REG_PPC_SPURR:
1695 *val = get_reg_val(id, vcpu->arch.spurr);
1696 break;
1697 case KVM_REG_PPC_AMR:
1698 *val = get_reg_val(id, vcpu->arch.amr);
1699 break;
1700 case KVM_REG_PPC_UAMOR:
1701 *val = get_reg_val(id, vcpu->arch.uamor);
1702 break;
1703 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1704 i = id - KVM_REG_PPC_MMCR0;
1705 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1706 break;
1707 case KVM_REG_PPC_MMCR2:
1708 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
1709 break;
1710 case KVM_REG_PPC_MMCRA:
1711 *val = get_reg_val(id, vcpu->arch.mmcra);
1712 break;
1713 case KVM_REG_PPC_MMCRS:
1714 *val = get_reg_val(id, vcpu->arch.mmcrs);
1715 break;
1716 case KVM_REG_PPC_MMCR3:
1717 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1718 break;
1719 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1720 i = id - KVM_REG_PPC_PMC1;
1721 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1722 break;
1723 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1724 i = id - KVM_REG_PPC_SPMC1;
1725 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1726 break;
1727 case KVM_REG_PPC_SIAR:
1728 *val = get_reg_val(id, vcpu->arch.siar);
1729 break;
1730 case KVM_REG_PPC_SDAR:
1731 *val = get_reg_val(id, vcpu->arch.sdar);
1732 break;
1733 case KVM_REG_PPC_SIER:
1734 *val = get_reg_val(id, vcpu->arch.sier[0]);
1735 break;
1736 case KVM_REG_PPC_SIER2:
1737 *val = get_reg_val(id, vcpu->arch.sier[1]);
1738 break;
1739 case KVM_REG_PPC_SIER3:
1740 *val = get_reg_val(id, vcpu->arch.sier[2]);
1741 break;
1742 case KVM_REG_PPC_IAMR:
1743 *val = get_reg_val(id, vcpu->arch.iamr);
1744 break;
1745 case KVM_REG_PPC_PSPB:
1746 *val = get_reg_val(id, vcpu->arch.pspb);
1747 break;
1748 case KVM_REG_PPC_DPDES:
1750 * On POWER9, where we are emulating msgsndp etc.,
1751 * we return 1 bit for each vcpu, which can come from
1752 * either vcore->dpdes or doorbell_request.
1753 * On POWER8, doorbell_request is 0.
1755 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1756 vcpu->arch.doorbell_request);
1757 break;
1758 case KVM_REG_PPC_VTB:
1759 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1760 break;
1761 case KVM_REG_PPC_DAWR:
1762 *val = get_reg_val(id, vcpu->arch.dawr);
1763 break;
1764 case KVM_REG_PPC_DAWRX:
1765 *val = get_reg_val(id, vcpu->arch.dawrx);
1766 break;
1767 case KVM_REG_PPC_CIABR:
1768 *val = get_reg_val(id, vcpu->arch.ciabr);
1769 break;
1770 case KVM_REG_PPC_CSIGR:
1771 *val = get_reg_val(id, vcpu->arch.csigr);
1772 break;
1773 case KVM_REG_PPC_TACR:
1774 *val = get_reg_val(id, vcpu->arch.tacr);
1775 break;
1776 case KVM_REG_PPC_TCSCR:
1777 *val = get_reg_val(id, vcpu->arch.tcscr);
1778 break;
1779 case KVM_REG_PPC_PID:
1780 *val = get_reg_val(id, vcpu->arch.pid);
1781 break;
1782 case KVM_REG_PPC_ACOP:
1783 *val = get_reg_val(id, vcpu->arch.acop);
1784 break;
1785 case KVM_REG_PPC_WORT:
1786 *val = get_reg_val(id, vcpu->arch.wort);
1787 break;
1788 case KVM_REG_PPC_TIDR:
1789 *val = get_reg_val(id, vcpu->arch.tid);
1790 break;
1791 case KVM_REG_PPC_PSSCR:
1792 *val = get_reg_val(id, vcpu->arch.psscr);
1793 break;
1794 case KVM_REG_PPC_VPA_ADDR:
1795 spin_lock(&vcpu->arch.vpa_update_lock);
1796 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1797 spin_unlock(&vcpu->arch.vpa_update_lock);
1798 break;
1799 case KVM_REG_PPC_VPA_SLB:
1800 spin_lock(&vcpu->arch.vpa_update_lock);
1801 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1802 val->vpaval.length = vcpu->arch.slb_shadow.len;
1803 spin_unlock(&vcpu->arch.vpa_update_lock);
1804 break;
1805 case KVM_REG_PPC_VPA_DTL:
1806 spin_lock(&vcpu->arch.vpa_update_lock);
1807 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1808 val->vpaval.length = vcpu->arch.dtl.len;
1809 spin_unlock(&vcpu->arch.vpa_update_lock);
1810 break;
1811 case KVM_REG_PPC_TB_OFFSET:
1812 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1813 break;
1814 case KVM_REG_PPC_LPCR:
1815 case KVM_REG_PPC_LPCR_64:
1816 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1817 break;
1818 case KVM_REG_PPC_PPR:
1819 *val = get_reg_val(id, vcpu->arch.ppr);
1820 break;
1821 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1822 case KVM_REG_PPC_TFHAR:
1823 *val = get_reg_val(id, vcpu->arch.tfhar);
1824 break;
1825 case KVM_REG_PPC_TFIAR:
1826 *val = get_reg_val(id, vcpu->arch.tfiar);
1827 break;
1828 case KVM_REG_PPC_TEXASR:
1829 *val = get_reg_val(id, vcpu->arch.texasr);
1830 break;
1831 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1832 i = id - KVM_REG_PPC_TM_GPR0;
1833 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1834 break;
1835 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1837 int j;
1838 i = id - KVM_REG_PPC_TM_VSR0;
1839 if (i < 32)
1840 for (j = 0; j < TS_FPRWIDTH; j++)
1841 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1842 else {
1843 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1844 val->vval = vcpu->arch.vr_tm.vr[i-32];
1845 else
1846 r = -ENXIO;
1848 break;
1850 case KVM_REG_PPC_TM_CR:
1851 *val = get_reg_val(id, vcpu->arch.cr_tm);
1852 break;
1853 case KVM_REG_PPC_TM_XER:
1854 *val = get_reg_val(id, vcpu->arch.xer_tm);
1855 break;
1856 case KVM_REG_PPC_TM_LR:
1857 *val = get_reg_val(id, vcpu->arch.lr_tm);
1858 break;
1859 case KVM_REG_PPC_TM_CTR:
1860 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1861 break;
1862 case KVM_REG_PPC_TM_FPSCR:
1863 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1864 break;
1865 case KVM_REG_PPC_TM_AMR:
1866 *val = get_reg_val(id, vcpu->arch.amr_tm);
1867 break;
1868 case KVM_REG_PPC_TM_PPR:
1869 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1870 break;
1871 case KVM_REG_PPC_TM_VRSAVE:
1872 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1873 break;
1874 case KVM_REG_PPC_TM_VSCR:
1875 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1876 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1877 else
1878 r = -ENXIO;
1879 break;
1880 case KVM_REG_PPC_TM_DSCR:
1881 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1882 break;
1883 case KVM_REG_PPC_TM_TAR:
1884 *val = get_reg_val(id, vcpu->arch.tar_tm);
1885 break;
1886 #endif
1887 case KVM_REG_PPC_ARCH_COMPAT:
1888 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1889 break;
1890 case KVM_REG_PPC_DEC_EXPIRY:
1891 *val = get_reg_val(id, vcpu->arch.dec_expires +
1892 vcpu->arch.vcore->tb_offset);
1893 break;
1894 case KVM_REG_PPC_ONLINE:
1895 *val = get_reg_val(id, vcpu->arch.online);
1896 break;
1897 case KVM_REG_PPC_PTCR:
1898 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1899 break;
1900 default:
1901 r = -EINVAL;
1902 break;
1905 return r;
1908 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1909 union kvmppc_one_reg *val)
1911 int r = 0;
1912 long int i;
1913 unsigned long addr, len;
1915 switch (id) {
1916 case KVM_REG_PPC_HIOR:
1917 /* Only allow this to be set to zero */
1918 if (set_reg_val(id, *val))
1919 r = -EINVAL;
1920 break;
1921 case KVM_REG_PPC_DABR:
1922 vcpu->arch.dabr = set_reg_val(id, *val);
1923 break;
1924 case KVM_REG_PPC_DABRX:
1925 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1926 break;
1927 case KVM_REG_PPC_DSCR:
1928 vcpu->arch.dscr = set_reg_val(id, *val);
1929 break;
1930 case KVM_REG_PPC_PURR:
1931 vcpu->arch.purr = set_reg_val(id, *val);
1932 break;
1933 case KVM_REG_PPC_SPURR:
1934 vcpu->arch.spurr = set_reg_val(id, *val);
1935 break;
1936 case KVM_REG_PPC_AMR:
1937 vcpu->arch.amr = set_reg_val(id, *val);
1938 break;
1939 case KVM_REG_PPC_UAMOR:
1940 vcpu->arch.uamor = set_reg_val(id, *val);
1941 break;
1942 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1943 i = id - KVM_REG_PPC_MMCR0;
1944 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1945 break;
1946 case KVM_REG_PPC_MMCR2:
1947 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1948 break;
1949 case KVM_REG_PPC_MMCRA:
1950 vcpu->arch.mmcra = set_reg_val(id, *val);
1951 break;
1952 case KVM_REG_PPC_MMCRS:
1953 vcpu->arch.mmcrs = set_reg_val(id, *val);
1954 break;
1955 case KVM_REG_PPC_MMCR3:
1956 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1957 break;
1958 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1959 i = id - KVM_REG_PPC_PMC1;
1960 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1961 break;
1962 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1963 i = id - KVM_REG_PPC_SPMC1;
1964 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1965 break;
1966 case KVM_REG_PPC_SIAR:
1967 vcpu->arch.siar = set_reg_val(id, *val);
1968 break;
1969 case KVM_REG_PPC_SDAR:
1970 vcpu->arch.sdar = set_reg_val(id, *val);
1971 break;
1972 case KVM_REG_PPC_SIER:
1973 vcpu->arch.sier[0] = set_reg_val(id, *val);
1974 break;
1975 case KVM_REG_PPC_SIER2:
1976 vcpu->arch.sier[1] = set_reg_val(id, *val);
1977 break;
1978 case KVM_REG_PPC_SIER3:
1979 vcpu->arch.sier[2] = set_reg_val(id, *val);
1980 break;
1981 case KVM_REG_PPC_IAMR:
1982 vcpu->arch.iamr = set_reg_val(id, *val);
1983 break;
1984 case KVM_REG_PPC_PSPB:
1985 vcpu->arch.pspb = set_reg_val(id, *val);
1986 break;
1987 case KVM_REG_PPC_DPDES:
1988 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1989 break;
1990 case KVM_REG_PPC_VTB:
1991 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1992 break;
1993 case KVM_REG_PPC_DAWR:
1994 vcpu->arch.dawr = set_reg_val(id, *val);
1995 break;
1996 case KVM_REG_PPC_DAWRX:
1997 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1998 break;
1999 case KVM_REG_PPC_CIABR:
2000 vcpu->arch.ciabr = set_reg_val(id, *val);
2001 /* Don't allow setting breakpoints in hypervisor code */
2002 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2003 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
2004 break;
2005 case KVM_REG_PPC_CSIGR:
2006 vcpu->arch.csigr = set_reg_val(id, *val);
2007 break;
2008 case KVM_REG_PPC_TACR:
2009 vcpu->arch.tacr = set_reg_val(id, *val);
2010 break;
2011 case KVM_REG_PPC_TCSCR:
2012 vcpu->arch.tcscr = set_reg_val(id, *val);
2013 break;
2014 case KVM_REG_PPC_PID:
2015 vcpu->arch.pid = set_reg_val(id, *val);
2016 break;
2017 case KVM_REG_PPC_ACOP:
2018 vcpu->arch.acop = set_reg_val(id, *val);
2019 break;
2020 case KVM_REG_PPC_WORT:
2021 vcpu->arch.wort = set_reg_val(id, *val);
2022 break;
2023 case KVM_REG_PPC_TIDR:
2024 vcpu->arch.tid = set_reg_val(id, *val);
2025 break;
2026 case KVM_REG_PPC_PSSCR:
2027 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2028 break;
2029 case KVM_REG_PPC_VPA_ADDR:
2030 addr = set_reg_val(id, *val);
2031 r = -EINVAL;
2032 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2033 vcpu->arch.dtl.next_gpa))
2034 break;
2035 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2036 break;
2037 case KVM_REG_PPC_VPA_SLB:
2038 addr = val->vpaval.addr;
2039 len = val->vpaval.length;
2040 r = -EINVAL;
2041 if (addr && !vcpu->arch.vpa.next_gpa)
2042 break;
2043 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2044 break;
2045 case KVM_REG_PPC_VPA_DTL:
2046 addr = val->vpaval.addr;
2047 len = val->vpaval.length;
2048 r = -EINVAL;
2049 if (addr && (len < sizeof(struct dtl_entry) ||
2050 !vcpu->arch.vpa.next_gpa))
2051 break;
2052 len -= len % sizeof(struct dtl_entry);
2053 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2054 break;
2055 case KVM_REG_PPC_TB_OFFSET:
2056 /* round up to multiple of 2^24 */
2057 vcpu->arch.vcore->tb_offset =
2058 ALIGN(set_reg_val(id, *val), 1UL << 24);
2059 break;
2060 case KVM_REG_PPC_LPCR:
2061 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2062 break;
2063 case KVM_REG_PPC_LPCR_64:
2064 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2065 break;
2066 case KVM_REG_PPC_PPR:
2067 vcpu->arch.ppr = set_reg_val(id, *val);
2068 break;
2069 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2070 case KVM_REG_PPC_TFHAR:
2071 vcpu->arch.tfhar = set_reg_val(id, *val);
2072 break;
2073 case KVM_REG_PPC_TFIAR:
2074 vcpu->arch.tfiar = set_reg_val(id, *val);
2075 break;
2076 case KVM_REG_PPC_TEXASR:
2077 vcpu->arch.texasr = set_reg_val(id, *val);
2078 break;
2079 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2080 i = id - KVM_REG_PPC_TM_GPR0;
2081 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2082 break;
2083 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2085 int j;
2086 i = id - KVM_REG_PPC_TM_VSR0;
2087 if (i < 32)
2088 for (j = 0; j < TS_FPRWIDTH; j++)
2089 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2090 else
2091 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2092 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2093 else
2094 r = -ENXIO;
2095 break;
2097 case KVM_REG_PPC_TM_CR:
2098 vcpu->arch.cr_tm = set_reg_val(id, *val);
2099 break;
2100 case KVM_REG_PPC_TM_XER:
2101 vcpu->arch.xer_tm = set_reg_val(id, *val);
2102 break;
2103 case KVM_REG_PPC_TM_LR:
2104 vcpu->arch.lr_tm = set_reg_val(id, *val);
2105 break;
2106 case KVM_REG_PPC_TM_CTR:
2107 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2108 break;
2109 case KVM_REG_PPC_TM_FPSCR:
2110 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2111 break;
2112 case KVM_REG_PPC_TM_AMR:
2113 vcpu->arch.amr_tm = set_reg_val(id, *val);
2114 break;
2115 case KVM_REG_PPC_TM_PPR:
2116 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2117 break;
2118 case KVM_REG_PPC_TM_VRSAVE:
2119 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2120 break;
2121 case KVM_REG_PPC_TM_VSCR:
2122 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2123 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2124 else
2125 r = - ENXIO;
2126 break;
2127 case KVM_REG_PPC_TM_DSCR:
2128 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2129 break;
2130 case KVM_REG_PPC_TM_TAR:
2131 vcpu->arch.tar_tm = set_reg_val(id, *val);
2132 break;
2133 #endif
2134 case KVM_REG_PPC_ARCH_COMPAT:
2135 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2136 break;
2137 case KVM_REG_PPC_DEC_EXPIRY:
2138 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2139 vcpu->arch.vcore->tb_offset;
2140 break;
2141 case KVM_REG_PPC_ONLINE:
2142 i = set_reg_val(id, *val);
2143 if (i && !vcpu->arch.online)
2144 atomic_inc(&vcpu->arch.vcore->online_count);
2145 else if (!i && vcpu->arch.online)
2146 atomic_dec(&vcpu->arch.vcore->online_count);
2147 vcpu->arch.online = i;
2148 break;
2149 case KVM_REG_PPC_PTCR:
2150 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2151 break;
2152 default:
2153 r = -EINVAL;
2154 break;
2157 return r;
2161 * On POWER9, threads are independent and can be in different partitions.
2162 * Therefore we consider each thread to be a subcore.
2163 * There is a restriction that all threads have to be in the same
2164 * MMU mode (radix or HPT), unfortunately, but since we only support
2165 * HPT guests on a HPT host so far, that isn't an impediment yet.
2167 static int threads_per_vcore(struct kvm *kvm)
2169 if (kvm->arch.threads_indep)
2170 return 1;
2171 return threads_per_subcore;
2174 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2176 struct kvmppc_vcore *vcore;
2178 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2180 if (vcore == NULL)
2181 return NULL;
2183 spin_lock_init(&vcore->lock);
2184 spin_lock_init(&vcore->stoltb_lock);
2185 rcuwait_init(&vcore->wait);
2186 vcore->preempt_tb = TB_NIL;
2187 vcore->lpcr = kvm->arch.lpcr;
2188 vcore->first_vcpuid = id;
2189 vcore->kvm = kvm;
2190 INIT_LIST_HEAD(&vcore->preempt_list);
2192 return vcore;
2195 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2196 static struct debugfs_timings_element {
2197 const char *name;
2198 size_t offset;
2199 } timings[] = {
2200 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2201 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2202 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2203 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2204 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2207 #define N_TIMINGS (ARRAY_SIZE(timings))
2209 struct debugfs_timings_state {
2210 struct kvm_vcpu *vcpu;
2211 unsigned int buflen;
2212 char buf[N_TIMINGS * 100];
2215 static int debugfs_timings_open(struct inode *inode, struct file *file)
2217 struct kvm_vcpu *vcpu = inode->i_private;
2218 struct debugfs_timings_state *p;
2220 p = kzalloc(sizeof(*p), GFP_KERNEL);
2221 if (!p)
2222 return -ENOMEM;
2224 kvm_get_kvm(vcpu->kvm);
2225 p->vcpu = vcpu;
2226 file->private_data = p;
2228 return nonseekable_open(inode, file);
2231 static int debugfs_timings_release(struct inode *inode, struct file *file)
2233 struct debugfs_timings_state *p = file->private_data;
2235 kvm_put_kvm(p->vcpu->kvm);
2236 kfree(p);
2237 return 0;
2240 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2241 size_t len, loff_t *ppos)
2243 struct debugfs_timings_state *p = file->private_data;
2244 struct kvm_vcpu *vcpu = p->vcpu;
2245 char *s, *buf_end;
2246 struct kvmhv_tb_accumulator tb;
2247 u64 count;
2248 loff_t pos;
2249 ssize_t n;
2250 int i, loops;
2251 bool ok;
2253 if (!p->buflen) {
2254 s = p->buf;
2255 buf_end = s + sizeof(p->buf);
2256 for (i = 0; i < N_TIMINGS; ++i) {
2257 struct kvmhv_tb_accumulator *acc;
2259 acc = (struct kvmhv_tb_accumulator *)
2260 ((unsigned long)vcpu + timings[i].offset);
2261 ok = false;
2262 for (loops = 0; loops < 1000; ++loops) {
2263 count = acc->seqcount;
2264 if (!(count & 1)) {
2265 smp_rmb();
2266 tb = *acc;
2267 smp_rmb();
2268 if (count == acc->seqcount) {
2269 ok = true;
2270 break;
2273 udelay(1);
2275 if (!ok)
2276 snprintf(s, buf_end - s, "%s: stuck\n",
2277 timings[i].name);
2278 else
2279 snprintf(s, buf_end - s,
2280 "%s: %llu %llu %llu %llu\n",
2281 timings[i].name, count / 2,
2282 tb_to_ns(tb.tb_total),
2283 tb_to_ns(tb.tb_min),
2284 tb_to_ns(tb.tb_max));
2285 s += strlen(s);
2287 p->buflen = s - p->buf;
2290 pos = *ppos;
2291 if (pos >= p->buflen)
2292 return 0;
2293 if (len > p->buflen - pos)
2294 len = p->buflen - pos;
2295 n = copy_to_user(buf, p->buf + pos, len);
2296 if (n) {
2297 if (n == len)
2298 return -EFAULT;
2299 len -= n;
2301 *ppos = pos + len;
2302 return len;
2305 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2306 size_t len, loff_t *ppos)
2308 return -EACCES;
2311 static const struct file_operations debugfs_timings_ops = {
2312 .owner = THIS_MODULE,
2313 .open = debugfs_timings_open,
2314 .release = debugfs_timings_release,
2315 .read = debugfs_timings_read,
2316 .write = debugfs_timings_write,
2317 .llseek = generic_file_llseek,
2320 /* Create a debugfs directory for the vcpu */
2321 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2323 char buf[16];
2324 struct kvm *kvm = vcpu->kvm;
2326 snprintf(buf, sizeof(buf), "vcpu%u", id);
2327 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2328 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2329 &debugfs_timings_ops);
2332 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2333 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2336 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2338 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2340 int err;
2341 int core;
2342 struct kvmppc_vcore *vcore;
2343 struct kvm *kvm;
2344 unsigned int id;
2346 kvm = vcpu->kvm;
2347 id = vcpu->vcpu_id;
2349 vcpu->arch.shared = &vcpu->arch.shregs;
2350 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2352 * The shared struct is never shared on HV,
2353 * so we can always use host endianness
2355 #ifdef __BIG_ENDIAN__
2356 vcpu->arch.shared_big_endian = true;
2357 #else
2358 vcpu->arch.shared_big_endian = false;
2359 #endif
2360 #endif
2361 vcpu->arch.mmcr[0] = MMCR0_FC;
2362 vcpu->arch.ctrl = CTRL_RUNLATCH;
2363 /* default to host PVR, since we can't spoof it */
2364 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2365 spin_lock_init(&vcpu->arch.vpa_update_lock);
2366 spin_lock_init(&vcpu->arch.tbacct_lock);
2367 vcpu->arch.busy_preempt = TB_NIL;
2368 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2371 * Set the default HFSCR for the guest from the host value.
2372 * This value is only used on POWER9.
2373 * On POWER9, we want to virtualize the doorbell facility, so we
2374 * don't set the HFSCR_MSGP bit, and that causes those instructions
2375 * to trap and then we emulate them.
2377 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2378 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2379 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2380 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2381 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2382 vcpu->arch.hfscr |= HFSCR_TM;
2384 if (cpu_has_feature(CPU_FTR_TM_COMP))
2385 vcpu->arch.hfscr |= HFSCR_TM;
2387 kvmppc_mmu_book3s_hv_init(vcpu);
2389 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2391 init_waitqueue_head(&vcpu->arch.cpu_run);
2393 mutex_lock(&kvm->lock);
2394 vcore = NULL;
2395 err = -EINVAL;
2396 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2397 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2398 pr_devel("KVM: VCPU ID too high\n");
2399 core = KVM_MAX_VCORES;
2400 } else {
2401 BUG_ON(kvm->arch.smt_mode != 1);
2402 core = kvmppc_pack_vcpu_id(kvm, id);
2404 } else {
2405 core = id / kvm->arch.smt_mode;
2407 if (core < KVM_MAX_VCORES) {
2408 vcore = kvm->arch.vcores[core];
2409 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2410 pr_devel("KVM: collision on id %u", id);
2411 vcore = NULL;
2412 } else if (!vcore) {
2414 * Take mmu_setup_lock for mutual exclusion
2415 * with kvmppc_update_lpcr().
2417 err = -ENOMEM;
2418 vcore = kvmppc_vcore_create(kvm,
2419 id & ~(kvm->arch.smt_mode - 1));
2420 mutex_lock(&kvm->arch.mmu_setup_lock);
2421 kvm->arch.vcores[core] = vcore;
2422 kvm->arch.online_vcores++;
2423 mutex_unlock(&kvm->arch.mmu_setup_lock);
2426 mutex_unlock(&kvm->lock);
2428 if (!vcore)
2429 return err;
2431 spin_lock(&vcore->lock);
2432 ++vcore->num_threads;
2433 spin_unlock(&vcore->lock);
2434 vcpu->arch.vcore = vcore;
2435 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2436 vcpu->arch.thread_cpu = -1;
2437 vcpu->arch.prev_cpu = -1;
2439 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2440 kvmppc_sanity_check(vcpu);
2442 debugfs_vcpu_init(vcpu, id);
2444 return 0;
2447 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2448 unsigned long flags)
2450 int err;
2451 int esmt = 0;
2453 if (flags)
2454 return -EINVAL;
2455 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2456 return -EINVAL;
2457 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2459 * On POWER8 (or POWER7), the threading mode is "strict",
2460 * so we pack smt_mode vcpus per vcore.
2462 if (smt_mode > threads_per_subcore)
2463 return -EINVAL;
2464 } else {
2466 * On POWER9, the threading mode is "loose",
2467 * so each vcpu gets its own vcore.
2469 esmt = smt_mode;
2470 smt_mode = 1;
2472 mutex_lock(&kvm->lock);
2473 err = -EBUSY;
2474 if (!kvm->arch.online_vcores) {
2475 kvm->arch.smt_mode = smt_mode;
2476 kvm->arch.emul_smt_mode = esmt;
2477 err = 0;
2479 mutex_unlock(&kvm->lock);
2481 return err;
2484 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2486 if (vpa->pinned_addr)
2487 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2488 vpa->dirty);
2491 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2493 spin_lock(&vcpu->arch.vpa_update_lock);
2494 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2495 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2496 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2497 spin_unlock(&vcpu->arch.vpa_update_lock);
2500 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2502 /* Indicate we want to get back into the guest */
2503 return 1;
2506 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2508 unsigned long dec_nsec, now;
2510 now = get_tb();
2511 if (now > vcpu->arch.dec_expires) {
2512 /* decrementer has already gone negative */
2513 kvmppc_core_queue_dec(vcpu);
2514 kvmppc_core_prepare_to_enter(vcpu);
2515 return;
2517 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2518 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2519 vcpu->arch.timer_running = 1;
2522 extern int __kvmppc_vcore_entry(void);
2524 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2525 struct kvm_vcpu *vcpu)
2527 u64 now;
2529 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2530 return;
2531 spin_lock_irq(&vcpu->arch.tbacct_lock);
2532 now = mftb();
2533 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2534 vcpu->arch.stolen_logged;
2535 vcpu->arch.busy_preempt = now;
2536 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2537 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2538 --vc->n_runnable;
2539 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2542 static int kvmppc_grab_hwthread(int cpu)
2544 struct paca_struct *tpaca;
2545 long timeout = 10000;
2547 tpaca = paca_ptrs[cpu];
2549 /* Ensure the thread won't go into the kernel if it wakes */
2550 tpaca->kvm_hstate.kvm_vcpu = NULL;
2551 tpaca->kvm_hstate.kvm_vcore = NULL;
2552 tpaca->kvm_hstate.napping = 0;
2553 smp_wmb();
2554 tpaca->kvm_hstate.hwthread_req = 1;
2557 * If the thread is already executing in the kernel (e.g. handling
2558 * a stray interrupt), wait for it to get back to nap mode.
2559 * The smp_mb() is to ensure that our setting of hwthread_req
2560 * is visible before we look at hwthread_state, so if this
2561 * races with the code at system_reset_pSeries and the thread
2562 * misses our setting of hwthread_req, we are sure to see its
2563 * setting of hwthread_state, and vice versa.
2565 smp_mb();
2566 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2567 if (--timeout <= 0) {
2568 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2569 return -EBUSY;
2571 udelay(1);
2573 return 0;
2576 static void kvmppc_release_hwthread(int cpu)
2578 struct paca_struct *tpaca;
2580 tpaca = paca_ptrs[cpu];
2581 tpaca->kvm_hstate.hwthread_req = 0;
2582 tpaca->kvm_hstate.kvm_vcpu = NULL;
2583 tpaca->kvm_hstate.kvm_vcore = NULL;
2584 tpaca->kvm_hstate.kvm_split_mode = NULL;
2587 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2589 struct kvm_nested_guest *nested = vcpu->arch.nested;
2590 cpumask_t *cpu_in_guest;
2591 int i;
2593 cpu = cpu_first_thread_sibling(cpu);
2594 if (nested) {
2595 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2596 cpu_in_guest = &nested->cpu_in_guest;
2597 } else {
2598 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2599 cpu_in_guest = &kvm->arch.cpu_in_guest;
2602 * Make sure setting of bit in need_tlb_flush precedes
2603 * testing of cpu_in_guest bits. The matching barrier on
2604 * the other side is the first smp_mb() in kvmppc_run_core().
2606 smp_mb();
2607 for (i = 0; i < threads_per_core; ++i)
2608 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2609 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2612 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2614 struct kvm_nested_guest *nested = vcpu->arch.nested;
2615 struct kvm *kvm = vcpu->kvm;
2616 int prev_cpu;
2618 if (!cpu_has_feature(CPU_FTR_HVMODE))
2619 return;
2621 if (nested)
2622 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2623 else
2624 prev_cpu = vcpu->arch.prev_cpu;
2627 * With radix, the guest can do TLB invalidations itself,
2628 * and it could choose to use the local form (tlbiel) if
2629 * it is invalidating a translation that has only ever been
2630 * used on one vcpu. However, that doesn't mean it has
2631 * only ever been used on one physical cpu, since vcpus
2632 * can move around between pcpus. To cope with this, when
2633 * a vcpu moves from one pcpu to another, we need to tell
2634 * any vcpus running on the same core as this vcpu previously
2635 * ran to flush the TLB. The TLB is shared between threads,
2636 * so we use a single bit in .need_tlb_flush for all 4 threads.
2638 if (prev_cpu != pcpu) {
2639 if (prev_cpu >= 0 &&
2640 cpu_first_thread_sibling(prev_cpu) !=
2641 cpu_first_thread_sibling(pcpu))
2642 radix_flush_cpu(kvm, prev_cpu, vcpu);
2643 if (nested)
2644 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2645 else
2646 vcpu->arch.prev_cpu = pcpu;
2650 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2652 int cpu;
2653 struct paca_struct *tpaca;
2654 struct kvm *kvm = vc->kvm;
2656 cpu = vc->pcpu;
2657 if (vcpu) {
2658 if (vcpu->arch.timer_running) {
2659 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2660 vcpu->arch.timer_running = 0;
2662 cpu += vcpu->arch.ptid;
2663 vcpu->cpu = vc->pcpu;
2664 vcpu->arch.thread_cpu = cpu;
2665 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2667 tpaca = paca_ptrs[cpu];
2668 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2669 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2670 tpaca->kvm_hstate.fake_suspend = 0;
2671 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2672 smp_wmb();
2673 tpaca->kvm_hstate.kvm_vcore = vc;
2674 if (cpu != smp_processor_id())
2675 kvmppc_ipi_thread(cpu);
2678 static void kvmppc_wait_for_nap(int n_threads)
2680 int cpu = smp_processor_id();
2681 int i, loops;
2683 if (n_threads <= 1)
2684 return;
2685 for (loops = 0; loops < 1000000; ++loops) {
2687 * Check if all threads are finished.
2688 * We set the vcore pointer when starting a thread
2689 * and the thread clears it when finished, so we look
2690 * for any threads that still have a non-NULL vcore ptr.
2692 for (i = 1; i < n_threads; ++i)
2693 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2694 break;
2695 if (i == n_threads) {
2696 HMT_medium();
2697 return;
2699 HMT_low();
2701 HMT_medium();
2702 for (i = 1; i < n_threads; ++i)
2703 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2704 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2708 * Check that we are on thread 0 and that any other threads in
2709 * this core are off-line. Then grab the threads so they can't
2710 * enter the kernel.
2712 static int on_primary_thread(void)
2714 int cpu = smp_processor_id();
2715 int thr;
2717 /* Are we on a primary subcore? */
2718 if (cpu_thread_in_subcore(cpu))
2719 return 0;
2721 thr = 0;
2722 while (++thr < threads_per_subcore)
2723 if (cpu_online(cpu + thr))
2724 return 0;
2726 /* Grab all hw threads so they can't go into the kernel */
2727 for (thr = 1; thr < threads_per_subcore; ++thr) {
2728 if (kvmppc_grab_hwthread(cpu + thr)) {
2729 /* Couldn't grab one; let the others go */
2730 do {
2731 kvmppc_release_hwthread(cpu + thr);
2732 } while (--thr > 0);
2733 return 0;
2736 return 1;
2740 * A list of virtual cores for each physical CPU.
2741 * These are vcores that could run but their runner VCPU tasks are
2742 * (or may be) preempted.
2744 struct preempted_vcore_list {
2745 struct list_head list;
2746 spinlock_t lock;
2749 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2751 static void init_vcore_lists(void)
2753 int cpu;
2755 for_each_possible_cpu(cpu) {
2756 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2757 spin_lock_init(&lp->lock);
2758 INIT_LIST_HEAD(&lp->list);
2762 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2764 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2766 vc->vcore_state = VCORE_PREEMPT;
2767 vc->pcpu = smp_processor_id();
2768 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2769 spin_lock(&lp->lock);
2770 list_add_tail(&vc->preempt_list, &lp->list);
2771 spin_unlock(&lp->lock);
2774 /* Start accumulating stolen time */
2775 kvmppc_core_start_stolen(vc);
2778 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2780 struct preempted_vcore_list *lp;
2782 kvmppc_core_end_stolen(vc);
2783 if (!list_empty(&vc->preempt_list)) {
2784 lp = &per_cpu(preempted_vcores, vc->pcpu);
2785 spin_lock(&lp->lock);
2786 list_del_init(&vc->preempt_list);
2787 spin_unlock(&lp->lock);
2789 vc->vcore_state = VCORE_INACTIVE;
2793 * This stores information about the virtual cores currently
2794 * assigned to a physical core.
2796 struct core_info {
2797 int n_subcores;
2798 int max_subcore_threads;
2799 int total_threads;
2800 int subcore_threads[MAX_SUBCORES];
2801 struct kvmppc_vcore *vc[MAX_SUBCORES];
2805 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2806 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2808 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2810 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2812 memset(cip, 0, sizeof(*cip));
2813 cip->n_subcores = 1;
2814 cip->max_subcore_threads = vc->num_threads;
2815 cip->total_threads = vc->num_threads;
2816 cip->subcore_threads[0] = vc->num_threads;
2817 cip->vc[0] = vc;
2820 static bool subcore_config_ok(int n_subcores, int n_threads)
2823 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2824 * split-core mode, with one thread per subcore.
2826 if (cpu_has_feature(CPU_FTR_ARCH_300))
2827 return n_subcores <= 4 && n_threads == 1;
2829 /* On POWER8, can only dynamically split if unsplit to begin with */
2830 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2831 return false;
2832 if (n_subcores > MAX_SUBCORES)
2833 return false;
2834 if (n_subcores > 1) {
2835 if (!(dynamic_mt_modes & 2))
2836 n_subcores = 4;
2837 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2838 return false;
2841 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2844 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2846 vc->entry_exit_map = 0;
2847 vc->in_guest = 0;
2848 vc->napping_threads = 0;
2849 vc->conferring_threads = 0;
2850 vc->tb_offset_applied = 0;
2853 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2855 int n_threads = vc->num_threads;
2856 int sub;
2858 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2859 return false;
2861 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2862 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2863 return false;
2865 /* Some POWER9 chips require all threads to be in the same MMU mode */
2866 if (no_mixing_hpt_and_radix &&
2867 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2868 return false;
2870 if (n_threads < cip->max_subcore_threads)
2871 n_threads = cip->max_subcore_threads;
2872 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2873 return false;
2874 cip->max_subcore_threads = n_threads;
2876 sub = cip->n_subcores;
2877 ++cip->n_subcores;
2878 cip->total_threads += vc->num_threads;
2879 cip->subcore_threads[sub] = vc->num_threads;
2880 cip->vc[sub] = vc;
2881 init_vcore_to_run(vc);
2882 list_del_init(&vc->preempt_list);
2884 return true;
2888 * Work out whether it is possible to piggyback the execution of
2889 * vcore *pvc onto the execution of the other vcores described in *cip.
2891 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2892 int target_threads)
2894 if (cip->total_threads + pvc->num_threads > target_threads)
2895 return false;
2897 return can_dynamic_split(pvc, cip);
2900 static void prepare_threads(struct kvmppc_vcore *vc)
2902 int i;
2903 struct kvm_vcpu *vcpu;
2905 for_each_runnable_thread(i, vcpu, vc) {
2906 if (signal_pending(vcpu->arch.run_task))
2907 vcpu->arch.ret = -EINTR;
2908 else if (vcpu->arch.vpa.update_pending ||
2909 vcpu->arch.slb_shadow.update_pending ||
2910 vcpu->arch.dtl.update_pending)
2911 vcpu->arch.ret = RESUME_GUEST;
2912 else
2913 continue;
2914 kvmppc_remove_runnable(vc, vcpu);
2915 wake_up(&vcpu->arch.cpu_run);
2919 static void collect_piggybacks(struct core_info *cip, int target_threads)
2921 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2922 struct kvmppc_vcore *pvc, *vcnext;
2924 spin_lock(&lp->lock);
2925 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2926 if (!spin_trylock(&pvc->lock))
2927 continue;
2928 prepare_threads(pvc);
2929 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2930 list_del_init(&pvc->preempt_list);
2931 if (pvc->runner == NULL) {
2932 pvc->vcore_state = VCORE_INACTIVE;
2933 kvmppc_core_end_stolen(pvc);
2935 spin_unlock(&pvc->lock);
2936 continue;
2938 if (!can_piggyback(pvc, cip, target_threads)) {
2939 spin_unlock(&pvc->lock);
2940 continue;
2942 kvmppc_core_end_stolen(pvc);
2943 pvc->vcore_state = VCORE_PIGGYBACK;
2944 if (cip->total_threads >= target_threads)
2945 break;
2947 spin_unlock(&lp->lock);
2950 static bool recheck_signals_and_mmu(struct core_info *cip)
2952 int sub, i;
2953 struct kvm_vcpu *vcpu;
2954 struct kvmppc_vcore *vc;
2956 for (sub = 0; sub < cip->n_subcores; ++sub) {
2957 vc = cip->vc[sub];
2958 if (!vc->kvm->arch.mmu_ready)
2959 return true;
2960 for_each_runnable_thread(i, vcpu, vc)
2961 if (signal_pending(vcpu->arch.run_task))
2962 return true;
2964 return false;
2967 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2969 int still_running = 0, i;
2970 u64 now;
2971 long ret;
2972 struct kvm_vcpu *vcpu;
2974 spin_lock(&vc->lock);
2975 now = get_tb();
2976 for_each_runnable_thread(i, vcpu, vc) {
2978 * It's safe to unlock the vcore in the loop here, because
2979 * for_each_runnable_thread() is safe against removal of
2980 * the vcpu, and the vcore state is VCORE_EXITING here,
2981 * so any vcpus becoming runnable will have their arch.trap
2982 * set to zero and can't actually run in the guest.
2984 spin_unlock(&vc->lock);
2985 /* cancel pending dec exception if dec is positive */
2986 if (now < vcpu->arch.dec_expires &&
2987 kvmppc_core_pending_dec(vcpu))
2988 kvmppc_core_dequeue_dec(vcpu);
2990 trace_kvm_guest_exit(vcpu);
2992 ret = RESUME_GUEST;
2993 if (vcpu->arch.trap)
2994 ret = kvmppc_handle_exit_hv(vcpu,
2995 vcpu->arch.run_task);
2997 vcpu->arch.ret = ret;
2998 vcpu->arch.trap = 0;
3000 spin_lock(&vc->lock);
3001 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3002 if (vcpu->arch.pending_exceptions)
3003 kvmppc_core_prepare_to_enter(vcpu);
3004 if (vcpu->arch.ceded)
3005 kvmppc_set_timer(vcpu);
3006 else
3007 ++still_running;
3008 } else {
3009 kvmppc_remove_runnable(vc, vcpu);
3010 wake_up(&vcpu->arch.cpu_run);
3013 if (!is_master) {
3014 if (still_running > 0) {
3015 kvmppc_vcore_preempt(vc);
3016 } else if (vc->runner) {
3017 vc->vcore_state = VCORE_PREEMPT;
3018 kvmppc_core_start_stolen(vc);
3019 } else {
3020 vc->vcore_state = VCORE_INACTIVE;
3022 if (vc->n_runnable > 0 && vc->runner == NULL) {
3023 /* make sure there's a candidate runner awake */
3024 i = -1;
3025 vcpu = next_runnable_thread(vc, &i);
3026 wake_up(&vcpu->arch.cpu_run);
3029 spin_unlock(&vc->lock);
3033 * Clear core from the list of active host cores as we are about to
3034 * enter the guest. Only do this if it is the primary thread of the
3035 * core (not if a subcore) that is entering the guest.
3037 static inline int kvmppc_clear_host_core(unsigned int cpu)
3039 int core;
3041 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3042 return 0;
3044 * Memory barrier can be omitted here as we will do a smp_wmb()
3045 * later in kvmppc_start_thread and we need ensure that state is
3046 * visible to other CPUs only after we enter guest.
3048 core = cpu >> threads_shift;
3049 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3050 return 0;
3054 * Advertise this core as an active host core since we exited the guest
3055 * Only need to do this if it is the primary thread of the core that is
3056 * exiting.
3058 static inline int kvmppc_set_host_core(unsigned int cpu)
3060 int core;
3062 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3063 return 0;
3066 * Memory barrier can be omitted here because we do a spin_unlock
3067 * immediately after this which provides the memory barrier.
3069 core = cpu >> threads_shift;
3070 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3071 return 0;
3074 static void set_irq_happened(int trap)
3076 switch (trap) {
3077 case BOOK3S_INTERRUPT_EXTERNAL:
3078 local_paca->irq_happened |= PACA_IRQ_EE;
3079 break;
3080 case BOOK3S_INTERRUPT_H_DOORBELL:
3081 local_paca->irq_happened |= PACA_IRQ_DBELL;
3082 break;
3083 case BOOK3S_INTERRUPT_HMI:
3084 local_paca->irq_happened |= PACA_IRQ_HMI;
3085 break;
3086 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3087 replay_system_reset();
3088 break;
3093 * Run a set of guest threads on a physical core.
3094 * Called with vc->lock held.
3096 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3098 struct kvm_vcpu *vcpu;
3099 int i;
3100 int srcu_idx;
3101 struct core_info core_info;
3102 struct kvmppc_vcore *pvc;
3103 struct kvm_split_mode split_info, *sip;
3104 int split, subcore_size, active;
3105 int sub;
3106 bool thr0_done;
3107 unsigned long cmd_bit, stat_bit;
3108 int pcpu, thr;
3109 int target_threads;
3110 int controlled_threads;
3111 int trap;
3112 bool is_power8;
3113 bool hpt_on_radix;
3116 * Remove from the list any threads that have a signal pending
3117 * or need a VPA update done
3119 prepare_threads(vc);
3121 /* if the runner is no longer runnable, let the caller pick a new one */
3122 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3123 return;
3126 * Initialize *vc.
3128 init_vcore_to_run(vc);
3129 vc->preempt_tb = TB_NIL;
3132 * Number of threads that we will be controlling: the same as
3133 * the number of threads per subcore, except on POWER9,
3134 * where it's 1 because the threads are (mostly) independent.
3136 controlled_threads = threads_per_vcore(vc->kvm);
3139 * Make sure we are running on primary threads, and that secondary
3140 * threads are offline. Also check if the number of threads in this
3141 * guest are greater than the current system threads per guest.
3142 * On POWER9, we need to be not in independent-threads mode if
3143 * this is a HPT guest on a radix host machine where the
3144 * CPU threads may not be in different MMU modes.
3146 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3147 !kvm_is_radix(vc->kvm);
3148 if (((controlled_threads > 1) &&
3149 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3150 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3151 for_each_runnable_thread(i, vcpu, vc) {
3152 vcpu->arch.ret = -EBUSY;
3153 kvmppc_remove_runnable(vc, vcpu);
3154 wake_up(&vcpu->arch.cpu_run);
3156 goto out;
3160 * See if we could run any other vcores on the physical core
3161 * along with this one.
3163 init_core_info(&core_info, vc);
3164 pcpu = smp_processor_id();
3165 target_threads = controlled_threads;
3166 if (target_smt_mode && target_smt_mode < target_threads)
3167 target_threads = target_smt_mode;
3168 if (vc->num_threads < target_threads)
3169 collect_piggybacks(&core_info, target_threads);
3172 * On radix, arrange for TLB flushing if necessary.
3173 * This has to be done before disabling interrupts since
3174 * it uses smp_call_function().
3176 pcpu = smp_processor_id();
3177 if (kvm_is_radix(vc->kvm)) {
3178 for (sub = 0; sub < core_info.n_subcores; ++sub)
3179 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3180 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3184 * Hard-disable interrupts, and check resched flag and signals.
3185 * If we need to reschedule or deliver a signal, clean up
3186 * and return without going into the guest(s).
3187 * If the mmu_ready flag has been cleared, don't go into the
3188 * guest because that means a HPT resize operation is in progress.
3190 local_irq_disable();
3191 hard_irq_disable();
3192 if (lazy_irq_pending() || need_resched() ||
3193 recheck_signals_and_mmu(&core_info)) {
3194 local_irq_enable();
3195 vc->vcore_state = VCORE_INACTIVE;
3196 /* Unlock all except the primary vcore */
3197 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3198 pvc = core_info.vc[sub];
3199 /* Put back on to the preempted vcores list */
3200 kvmppc_vcore_preempt(pvc);
3201 spin_unlock(&pvc->lock);
3203 for (i = 0; i < controlled_threads; ++i)
3204 kvmppc_release_hwthread(pcpu + i);
3205 return;
3208 kvmppc_clear_host_core(pcpu);
3210 /* Decide on micro-threading (split-core) mode */
3211 subcore_size = threads_per_subcore;
3212 cmd_bit = stat_bit = 0;
3213 split = core_info.n_subcores;
3214 sip = NULL;
3215 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3216 && !cpu_has_feature(CPU_FTR_ARCH_300);
3218 if (split > 1 || hpt_on_radix) {
3219 sip = &split_info;
3220 memset(&split_info, 0, sizeof(split_info));
3221 for (sub = 0; sub < core_info.n_subcores; ++sub)
3222 split_info.vc[sub] = core_info.vc[sub];
3224 if (is_power8) {
3225 if (split == 2 && (dynamic_mt_modes & 2)) {
3226 cmd_bit = HID0_POWER8_1TO2LPAR;
3227 stat_bit = HID0_POWER8_2LPARMODE;
3228 } else {
3229 split = 4;
3230 cmd_bit = HID0_POWER8_1TO4LPAR;
3231 stat_bit = HID0_POWER8_4LPARMODE;
3233 subcore_size = MAX_SMT_THREADS / split;
3234 split_info.rpr = mfspr(SPRN_RPR);
3235 split_info.pmmar = mfspr(SPRN_PMMAR);
3236 split_info.ldbar = mfspr(SPRN_LDBAR);
3237 split_info.subcore_size = subcore_size;
3238 } else {
3239 split_info.subcore_size = 1;
3240 if (hpt_on_radix) {
3241 /* Use the split_info for LPCR/LPIDR changes */
3242 split_info.lpcr_req = vc->lpcr;
3243 split_info.lpidr_req = vc->kvm->arch.lpid;
3244 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3245 split_info.do_set = 1;
3249 /* order writes to split_info before kvm_split_mode pointer */
3250 smp_wmb();
3253 for (thr = 0; thr < controlled_threads; ++thr) {
3254 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3256 paca->kvm_hstate.tid = thr;
3257 paca->kvm_hstate.napping = 0;
3258 paca->kvm_hstate.kvm_split_mode = sip;
3261 /* Initiate micro-threading (split-core) on POWER8 if required */
3262 if (cmd_bit) {
3263 unsigned long hid0 = mfspr(SPRN_HID0);
3265 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3266 mb();
3267 mtspr(SPRN_HID0, hid0);
3268 isync();
3269 for (;;) {
3270 hid0 = mfspr(SPRN_HID0);
3271 if (hid0 & stat_bit)
3272 break;
3273 cpu_relax();
3278 * On POWER8, set RWMR register.
3279 * Since it only affects PURR and SPURR, it doesn't affect
3280 * the host, so we don't save/restore the host value.
3282 if (is_power8) {
3283 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3284 int n_online = atomic_read(&vc->online_count);
3287 * Use the 8-thread value if we're doing split-core
3288 * or if the vcore's online count looks bogus.
3290 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3291 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3292 rwmr_val = p8_rwmr_values[n_online];
3293 mtspr(SPRN_RWMR, rwmr_val);
3296 /* Start all the threads */
3297 active = 0;
3298 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3299 thr = is_power8 ? subcore_thread_map[sub] : sub;
3300 thr0_done = false;
3301 active |= 1 << thr;
3302 pvc = core_info.vc[sub];
3303 pvc->pcpu = pcpu + thr;
3304 for_each_runnable_thread(i, vcpu, pvc) {
3305 kvmppc_start_thread(vcpu, pvc);
3306 kvmppc_create_dtl_entry(vcpu, pvc);
3307 trace_kvm_guest_enter(vcpu);
3308 if (!vcpu->arch.ptid)
3309 thr0_done = true;
3310 active |= 1 << (thr + vcpu->arch.ptid);
3313 * We need to start the first thread of each subcore
3314 * even if it doesn't have a vcpu.
3316 if (!thr0_done)
3317 kvmppc_start_thread(NULL, pvc);
3321 * Ensure that split_info.do_nap is set after setting
3322 * the vcore pointer in the PACA of the secondaries.
3324 smp_mb();
3327 * When doing micro-threading, poke the inactive threads as well.
3328 * This gets them to the nap instruction after kvm_do_nap,
3329 * which reduces the time taken to unsplit later.
3330 * For POWER9 HPT guest on radix host, we need all the secondary
3331 * threads woken up so they can do the LPCR/LPIDR change.
3333 if (cmd_bit || hpt_on_radix) {
3334 split_info.do_nap = 1; /* ask secondaries to nap when done */
3335 for (thr = 1; thr < threads_per_subcore; ++thr)
3336 if (!(active & (1 << thr)))
3337 kvmppc_ipi_thread(pcpu + thr);
3340 vc->vcore_state = VCORE_RUNNING;
3341 preempt_disable();
3343 trace_kvmppc_run_core(vc, 0);
3345 for (sub = 0; sub < core_info.n_subcores; ++sub)
3346 spin_unlock(&core_info.vc[sub]->lock);
3348 guest_enter_irqoff();
3350 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3352 this_cpu_disable_ftrace();
3355 * Interrupts will be enabled once we get into the guest,
3356 * so tell lockdep that we're about to enable interrupts.
3358 trace_hardirqs_on();
3360 trap = __kvmppc_vcore_entry();
3362 trace_hardirqs_off();
3364 this_cpu_enable_ftrace();
3366 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3368 set_irq_happened(trap);
3370 spin_lock(&vc->lock);
3371 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3372 vc->vcore_state = VCORE_EXITING;
3374 /* wait for secondary threads to finish writing their state to memory */
3375 kvmppc_wait_for_nap(controlled_threads);
3377 /* Return to whole-core mode if we split the core earlier */
3378 if (cmd_bit) {
3379 unsigned long hid0 = mfspr(SPRN_HID0);
3380 unsigned long loops = 0;
3382 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3383 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3384 mb();
3385 mtspr(SPRN_HID0, hid0);
3386 isync();
3387 for (;;) {
3388 hid0 = mfspr(SPRN_HID0);
3389 if (!(hid0 & stat_bit))
3390 break;
3391 cpu_relax();
3392 ++loops;
3394 } else if (hpt_on_radix) {
3395 /* Wait for all threads to have seen final sync */
3396 for (thr = 1; thr < controlled_threads; ++thr) {
3397 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3399 while (paca->kvm_hstate.kvm_split_mode) {
3400 HMT_low();
3401 barrier();
3403 HMT_medium();
3406 split_info.do_nap = 0;
3408 kvmppc_set_host_core(pcpu);
3410 local_irq_enable();
3411 guest_exit();
3413 /* Let secondaries go back to the offline loop */
3414 for (i = 0; i < controlled_threads; ++i) {
3415 kvmppc_release_hwthread(pcpu + i);
3416 if (sip && sip->napped[i])
3417 kvmppc_ipi_thread(pcpu + i);
3418 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3421 spin_unlock(&vc->lock);
3423 /* make sure updates to secondary vcpu structs are visible now */
3424 smp_mb();
3426 preempt_enable();
3428 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3429 pvc = core_info.vc[sub];
3430 post_guest_process(pvc, pvc == vc);
3433 spin_lock(&vc->lock);
3435 out:
3436 vc->vcore_state = VCORE_INACTIVE;
3437 trace_kvmppc_run_core(vc, 1);
3441 * Load up hypervisor-mode registers on P9.
3443 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3444 unsigned long lpcr)
3446 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3447 s64 hdec;
3448 u64 tb, purr, spurr;
3449 int trap;
3450 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3451 unsigned long host_ciabr = mfspr(SPRN_CIABR);
3452 unsigned long host_dawr = mfspr(SPRN_DAWR0);
3453 unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
3454 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3455 unsigned long host_pidr = mfspr(SPRN_PID);
3458 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3459 * so set HDICE before writing HDEC.
3461 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3462 isync();
3464 hdec = time_limit - mftb();
3465 if (hdec < 0) {
3466 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3467 isync();
3468 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3470 mtspr(SPRN_HDEC, hdec);
3472 if (vc->tb_offset) {
3473 u64 new_tb = mftb() + vc->tb_offset;
3474 mtspr(SPRN_TBU40, new_tb);
3475 tb = mftb();
3476 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3477 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3478 vc->tb_offset_applied = vc->tb_offset;
3481 if (vc->pcr)
3482 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3483 mtspr(SPRN_DPDES, vc->dpdes);
3484 mtspr(SPRN_VTB, vc->vtb);
3486 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3487 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3488 mtspr(SPRN_PURR, vcpu->arch.purr);
3489 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3491 if (dawr_enabled()) {
3492 mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3493 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
3495 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3496 mtspr(SPRN_IC, vcpu->arch.ic);
3497 mtspr(SPRN_PID, vcpu->arch.pid);
3499 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3500 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3502 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3504 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3505 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3506 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3507 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3509 mtspr(SPRN_AMOR, ~0UL);
3511 mtspr(SPRN_LPCR, lpcr);
3512 isync();
3514 kvmppc_xive_push_vcpu(vcpu);
3516 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3517 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3519 trap = __kvmhv_vcpu_entry_p9(vcpu);
3521 /* Advance host PURR/SPURR by the amount used by guest */
3522 purr = mfspr(SPRN_PURR);
3523 spurr = mfspr(SPRN_SPURR);
3524 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3525 purr - vcpu->arch.purr);
3526 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3527 spurr - vcpu->arch.spurr);
3528 vcpu->arch.purr = purr;
3529 vcpu->arch.spurr = spurr;
3531 vcpu->arch.ic = mfspr(SPRN_IC);
3532 vcpu->arch.pid = mfspr(SPRN_PID);
3533 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3535 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3536 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3537 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3538 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3540 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3541 mtspr(SPRN_PSSCR, host_psscr |
3542 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3543 mtspr(SPRN_HFSCR, host_hfscr);
3544 mtspr(SPRN_CIABR, host_ciabr);
3545 mtspr(SPRN_DAWR0, host_dawr);
3546 mtspr(SPRN_DAWRX0, host_dawrx);
3547 mtspr(SPRN_PID, host_pidr);
3550 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3551 * case we interrupted the guest between a tlbie and a ptesync.
3553 asm volatile("eieio; tlbsync; ptesync");
3556 * cp_abort is required if the processor supports local copy-paste
3557 * to clear the copy buffer that was under control of the guest.
3559 if (cpu_has_feature(CPU_FTR_ARCH_31))
3560 asm volatile(PPC_CP_ABORT);
3562 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3563 isync();
3565 vc->dpdes = mfspr(SPRN_DPDES);
3566 vc->vtb = mfspr(SPRN_VTB);
3567 mtspr(SPRN_DPDES, 0);
3568 if (vc->pcr)
3569 mtspr(SPRN_PCR, PCR_MASK);
3571 if (vc->tb_offset_applied) {
3572 u64 new_tb = mftb() - vc->tb_offset_applied;
3573 mtspr(SPRN_TBU40, new_tb);
3574 tb = mftb();
3575 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3576 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3577 vc->tb_offset_applied = 0;
3580 mtspr(SPRN_HDEC, 0x7fffffff);
3581 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3583 return trap;
3587 * Virtual-mode guest entry for POWER9 and later when the host and
3588 * guest are both using the radix MMU. The LPIDR has already been set.
3590 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3591 unsigned long lpcr)
3593 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3594 unsigned long host_dscr = mfspr(SPRN_DSCR);
3595 unsigned long host_tidr = mfspr(SPRN_TIDR);
3596 unsigned long host_iamr = mfspr(SPRN_IAMR);
3597 unsigned long host_amr = mfspr(SPRN_AMR);
3598 s64 dec;
3599 u64 tb;
3600 int trap, save_pmu;
3602 dec = mfspr(SPRN_DEC);
3603 tb = mftb();
3604 if (dec < 0)
3605 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3606 local_paca->kvm_hstate.dec_expires = dec + tb;
3607 if (local_paca->kvm_hstate.dec_expires < time_limit)
3608 time_limit = local_paca->kvm_hstate.dec_expires;
3610 vcpu->arch.ceded = 0;
3612 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3614 kvmppc_subcore_enter_guest();
3616 vc->entry_exit_map = 1;
3617 vc->in_guest = 1;
3619 if (vcpu->arch.vpa.pinned_addr) {
3620 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3621 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3622 lp->yield_count = cpu_to_be32(yield_count);
3623 vcpu->arch.vpa.dirty = 1;
3626 if (cpu_has_feature(CPU_FTR_TM) ||
3627 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3628 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3630 kvmhv_load_guest_pmu(vcpu);
3632 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3633 load_fp_state(&vcpu->arch.fp);
3634 #ifdef CONFIG_ALTIVEC
3635 load_vr_state(&vcpu->arch.vr);
3636 #endif
3637 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3639 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3640 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3641 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3642 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3643 mtspr(SPRN_TAR, vcpu->arch.tar);
3644 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3645 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3646 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3647 mtspr(SPRN_WORT, vcpu->arch.wort);
3648 mtspr(SPRN_TIDR, vcpu->arch.tid);
3649 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3650 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3651 mtspr(SPRN_AMR, vcpu->arch.amr);
3652 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3654 if (!(vcpu->arch.ctrl & 1))
3655 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3657 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3659 if (kvmhv_on_pseries()) {
3661 * We need to save and restore the guest visible part of the
3662 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3663 * doesn't do this for us. Note only required if pseries since
3664 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3666 unsigned long host_psscr;
3667 /* call our hypervisor to load up HV regs and go */
3668 struct hv_guest_state hvregs;
3670 host_psscr = mfspr(SPRN_PSSCR_PR);
3671 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3672 kvmhv_save_hv_regs(vcpu, &hvregs);
3673 hvregs.lpcr = lpcr;
3674 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3675 hvregs.version = HV_GUEST_STATE_VERSION;
3676 if (vcpu->arch.nested) {
3677 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3678 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3679 } else {
3680 hvregs.lpid = vcpu->kvm->arch.lpid;
3681 hvregs.vcpu_token = vcpu->vcpu_id;
3683 hvregs.hdec_expiry = time_limit;
3684 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3685 __pa(&vcpu->arch.regs));
3686 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3687 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3688 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3689 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3690 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3691 mtspr(SPRN_PSSCR_PR, host_psscr);
3693 /* H_CEDE has to be handled now, not later */
3694 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3695 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3696 kvmppc_nested_cede(vcpu);
3697 kvmppc_set_gpr(vcpu, 3, 0);
3698 trap = 0;
3700 } else {
3701 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3704 vcpu->arch.slb_max = 0;
3705 dec = mfspr(SPRN_DEC);
3706 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3707 dec = (s32) dec;
3708 tb = mftb();
3709 vcpu->arch.dec_expires = dec + tb;
3710 vcpu->cpu = -1;
3711 vcpu->arch.thread_cpu = -1;
3712 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3714 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3715 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3716 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3717 vcpu->arch.tar = mfspr(SPRN_TAR);
3718 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3719 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3720 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3721 vcpu->arch.wort = mfspr(SPRN_WORT);
3722 vcpu->arch.tid = mfspr(SPRN_TIDR);
3723 vcpu->arch.amr = mfspr(SPRN_AMR);
3724 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3725 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3727 mtspr(SPRN_PSPB, 0);
3728 mtspr(SPRN_WORT, 0);
3729 mtspr(SPRN_UAMOR, 0);
3730 mtspr(SPRN_DSCR, host_dscr);
3731 mtspr(SPRN_TIDR, host_tidr);
3732 mtspr(SPRN_IAMR, host_iamr);
3733 mtspr(SPRN_PSPB, 0);
3735 if (host_amr != vcpu->arch.amr)
3736 mtspr(SPRN_AMR, host_amr);
3738 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3739 store_fp_state(&vcpu->arch.fp);
3740 #ifdef CONFIG_ALTIVEC
3741 store_vr_state(&vcpu->arch.vr);
3742 #endif
3743 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3745 if (cpu_has_feature(CPU_FTR_TM) ||
3746 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3747 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3749 save_pmu = 1;
3750 if (vcpu->arch.vpa.pinned_addr) {
3751 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3752 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3753 lp->yield_count = cpu_to_be32(yield_count);
3754 vcpu->arch.vpa.dirty = 1;
3755 save_pmu = lp->pmcregs_in_use;
3757 /* Must save pmu if this guest is capable of running nested guests */
3758 save_pmu |= nesting_enabled(vcpu->kvm);
3760 kvmhv_save_guest_pmu(vcpu, save_pmu);
3762 vc->entry_exit_map = 0x101;
3763 vc->in_guest = 0;
3765 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3766 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3768 kvmhv_load_host_pmu();
3770 kvmppc_subcore_exit_guest();
3772 return trap;
3776 * Wait for some other vcpu thread to execute us, and
3777 * wake us up when we need to handle something in the host.
3779 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3780 struct kvm_vcpu *vcpu, int wait_state)
3782 DEFINE_WAIT(wait);
3784 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3785 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3786 spin_unlock(&vc->lock);
3787 schedule();
3788 spin_lock(&vc->lock);
3790 finish_wait(&vcpu->arch.cpu_run, &wait);
3793 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3795 if (!halt_poll_ns_grow)
3796 return;
3798 vc->halt_poll_ns *= halt_poll_ns_grow;
3799 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3800 vc->halt_poll_ns = halt_poll_ns_grow_start;
3803 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3805 if (halt_poll_ns_shrink == 0)
3806 vc->halt_poll_ns = 0;
3807 else
3808 vc->halt_poll_ns /= halt_poll_ns_shrink;
3811 #ifdef CONFIG_KVM_XICS
3812 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3814 if (!xics_on_xive())
3815 return false;
3816 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3817 vcpu->arch.xive_saved_state.cppr;
3819 #else
3820 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3822 return false;
3824 #endif /* CONFIG_KVM_XICS */
3826 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3828 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3829 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3830 return true;
3832 return false;
3836 * Check to see if any of the runnable vcpus on the vcore have pending
3837 * exceptions or are no longer ceded
3839 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3841 struct kvm_vcpu *vcpu;
3842 int i;
3844 for_each_runnable_thread(i, vcpu, vc) {
3845 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3846 return 1;
3849 return 0;
3853 * All the vcpus in this vcore are idle, so wait for a decrementer
3854 * or external interrupt to one of the vcpus. vc->lock is held.
3856 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3858 ktime_t cur, start_poll, start_wait;
3859 int do_sleep = 1;
3860 u64 block_ns;
3862 /* Poll for pending exceptions and ceded state */
3863 cur = start_poll = ktime_get();
3864 if (vc->halt_poll_ns) {
3865 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3866 ++vc->runner->stat.halt_attempted_poll;
3868 vc->vcore_state = VCORE_POLLING;
3869 spin_unlock(&vc->lock);
3871 do {
3872 if (kvmppc_vcore_check_block(vc)) {
3873 do_sleep = 0;
3874 break;
3876 cur = ktime_get();
3877 } while (single_task_running() && ktime_before(cur, stop));
3879 spin_lock(&vc->lock);
3880 vc->vcore_state = VCORE_INACTIVE;
3882 if (!do_sleep) {
3883 ++vc->runner->stat.halt_successful_poll;
3884 goto out;
3888 prepare_to_rcuwait(&vc->wait);
3889 set_current_state(TASK_INTERRUPTIBLE);
3890 if (kvmppc_vcore_check_block(vc)) {
3891 finish_rcuwait(&vc->wait);
3892 do_sleep = 0;
3893 /* If we polled, count this as a successful poll */
3894 if (vc->halt_poll_ns)
3895 ++vc->runner->stat.halt_successful_poll;
3896 goto out;
3899 start_wait = ktime_get();
3901 vc->vcore_state = VCORE_SLEEPING;
3902 trace_kvmppc_vcore_blocked(vc, 0);
3903 spin_unlock(&vc->lock);
3904 schedule();
3905 finish_rcuwait(&vc->wait);
3906 spin_lock(&vc->lock);
3907 vc->vcore_state = VCORE_INACTIVE;
3908 trace_kvmppc_vcore_blocked(vc, 1);
3909 ++vc->runner->stat.halt_successful_wait;
3911 cur = ktime_get();
3913 out:
3914 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3916 /* Attribute wait time */
3917 if (do_sleep) {
3918 vc->runner->stat.halt_wait_ns +=
3919 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3920 /* Attribute failed poll time */
3921 if (vc->halt_poll_ns)
3922 vc->runner->stat.halt_poll_fail_ns +=
3923 ktime_to_ns(start_wait) -
3924 ktime_to_ns(start_poll);
3925 } else {
3926 /* Attribute successful poll time */
3927 if (vc->halt_poll_ns)
3928 vc->runner->stat.halt_poll_success_ns +=
3929 ktime_to_ns(cur) -
3930 ktime_to_ns(start_poll);
3933 /* Adjust poll time */
3934 if (halt_poll_ns) {
3935 if (block_ns <= vc->halt_poll_ns)
3937 /* We slept and blocked for longer than the max halt time */
3938 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3939 shrink_halt_poll_ns(vc);
3940 /* We slept and our poll time is too small */
3941 else if (vc->halt_poll_ns < halt_poll_ns &&
3942 block_ns < halt_poll_ns)
3943 grow_halt_poll_ns(vc);
3944 if (vc->halt_poll_ns > halt_poll_ns)
3945 vc->halt_poll_ns = halt_poll_ns;
3946 } else
3947 vc->halt_poll_ns = 0;
3949 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3953 * This never fails for a radix guest, as none of the operations it does
3954 * for a radix guest can fail or have a way to report failure.
3955 * kvmhv_run_single_vcpu() relies on this fact.
3957 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3959 int r = 0;
3960 struct kvm *kvm = vcpu->kvm;
3962 mutex_lock(&kvm->arch.mmu_setup_lock);
3963 if (!kvm->arch.mmu_ready) {
3964 if (!kvm_is_radix(kvm))
3965 r = kvmppc_hv_setup_htab_rma(vcpu);
3966 if (!r) {
3967 if (cpu_has_feature(CPU_FTR_ARCH_300))
3968 kvmppc_setup_partition_table(kvm);
3969 kvm->arch.mmu_ready = 1;
3972 mutex_unlock(&kvm->arch.mmu_setup_lock);
3973 return r;
3976 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
3978 struct kvm_run *run = vcpu->run;
3979 int n_ceded, i, r;
3980 struct kvmppc_vcore *vc;
3981 struct kvm_vcpu *v;
3983 trace_kvmppc_run_vcpu_enter(vcpu);
3985 run->exit_reason = 0;
3986 vcpu->arch.ret = RESUME_GUEST;
3987 vcpu->arch.trap = 0;
3988 kvmppc_update_vpas(vcpu);
3991 * Synchronize with other threads in this virtual core
3993 vc = vcpu->arch.vcore;
3994 spin_lock(&vc->lock);
3995 vcpu->arch.ceded = 0;
3996 vcpu->arch.run_task = current;
3997 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3998 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3999 vcpu->arch.busy_preempt = TB_NIL;
4000 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4001 ++vc->n_runnable;
4004 * This happens the first time this is called for a vcpu.
4005 * If the vcore is already running, we may be able to start
4006 * this thread straight away and have it join in.
4008 if (!signal_pending(current)) {
4009 if ((vc->vcore_state == VCORE_PIGGYBACK ||
4010 vc->vcore_state == VCORE_RUNNING) &&
4011 !VCORE_IS_EXITING(vc)) {
4012 kvmppc_create_dtl_entry(vcpu, vc);
4013 kvmppc_start_thread(vcpu, vc);
4014 trace_kvm_guest_enter(vcpu);
4015 } else if (vc->vcore_state == VCORE_SLEEPING) {
4016 rcuwait_wake_up(&vc->wait);
4021 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4022 !signal_pending(current)) {
4023 /* See if the MMU is ready to go */
4024 if (!vcpu->kvm->arch.mmu_ready) {
4025 spin_unlock(&vc->lock);
4026 r = kvmhv_setup_mmu(vcpu);
4027 spin_lock(&vc->lock);
4028 if (r) {
4029 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4030 run->fail_entry.
4031 hardware_entry_failure_reason = 0;
4032 vcpu->arch.ret = r;
4033 break;
4037 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4038 kvmppc_vcore_end_preempt(vc);
4040 if (vc->vcore_state != VCORE_INACTIVE) {
4041 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4042 continue;
4044 for_each_runnable_thread(i, v, vc) {
4045 kvmppc_core_prepare_to_enter(v);
4046 if (signal_pending(v->arch.run_task)) {
4047 kvmppc_remove_runnable(vc, v);
4048 v->stat.signal_exits++;
4049 v->run->exit_reason = KVM_EXIT_INTR;
4050 v->arch.ret = -EINTR;
4051 wake_up(&v->arch.cpu_run);
4054 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4055 break;
4056 n_ceded = 0;
4057 for_each_runnable_thread(i, v, vc) {
4058 if (!kvmppc_vcpu_woken(v))
4059 n_ceded += v->arch.ceded;
4060 else
4061 v->arch.ceded = 0;
4063 vc->runner = vcpu;
4064 if (n_ceded == vc->n_runnable) {
4065 kvmppc_vcore_blocked(vc);
4066 } else if (need_resched()) {
4067 kvmppc_vcore_preempt(vc);
4068 /* Let something else run */
4069 cond_resched_lock(&vc->lock);
4070 if (vc->vcore_state == VCORE_PREEMPT)
4071 kvmppc_vcore_end_preempt(vc);
4072 } else {
4073 kvmppc_run_core(vc);
4075 vc->runner = NULL;
4078 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4079 (vc->vcore_state == VCORE_RUNNING ||
4080 vc->vcore_state == VCORE_EXITING ||
4081 vc->vcore_state == VCORE_PIGGYBACK))
4082 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4084 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4085 kvmppc_vcore_end_preempt(vc);
4087 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4088 kvmppc_remove_runnable(vc, vcpu);
4089 vcpu->stat.signal_exits++;
4090 run->exit_reason = KVM_EXIT_INTR;
4091 vcpu->arch.ret = -EINTR;
4094 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4095 /* Wake up some vcpu to run the core */
4096 i = -1;
4097 v = next_runnable_thread(vc, &i);
4098 wake_up(&v->arch.cpu_run);
4101 trace_kvmppc_run_vcpu_exit(vcpu);
4102 spin_unlock(&vc->lock);
4103 return vcpu->arch.ret;
4106 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4107 unsigned long lpcr)
4109 struct kvm_run *run = vcpu->run;
4110 int trap, r, pcpu;
4111 int srcu_idx, lpid;
4112 struct kvmppc_vcore *vc;
4113 struct kvm *kvm = vcpu->kvm;
4114 struct kvm_nested_guest *nested = vcpu->arch.nested;
4116 trace_kvmppc_run_vcpu_enter(vcpu);
4118 run->exit_reason = 0;
4119 vcpu->arch.ret = RESUME_GUEST;
4120 vcpu->arch.trap = 0;
4122 vc = vcpu->arch.vcore;
4123 vcpu->arch.ceded = 0;
4124 vcpu->arch.run_task = current;
4125 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4126 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4127 vcpu->arch.busy_preempt = TB_NIL;
4128 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4129 vc->runnable_threads[0] = vcpu;
4130 vc->n_runnable = 1;
4131 vc->runner = vcpu;
4133 /* See if the MMU is ready to go */
4134 if (!kvm->arch.mmu_ready)
4135 kvmhv_setup_mmu(vcpu);
4137 if (need_resched())
4138 cond_resched();
4140 kvmppc_update_vpas(vcpu);
4142 init_vcore_to_run(vc);
4143 vc->preempt_tb = TB_NIL;
4145 preempt_disable();
4146 pcpu = smp_processor_id();
4147 vc->pcpu = pcpu;
4148 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4150 local_irq_disable();
4151 hard_irq_disable();
4152 if (signal_pending(current))
4153 goto sigpend;
4154 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4155 goto out;
4157 if (!nested) {
4158 kvmppc_core_prepare_to_enter(vcpu);
4159 if (vcpu->arch.doorbell_request) {
4160 vc->dpdes = 1;
4161 smp_wmb();
4162 vcpu->arch.doorbell_request = 0;
4164 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4165 &vcpu->arch.pending_exceptions))
4166 lpcr |= LPCR_MER;
4167 } else if (vcpu->arch.pending_exceptions ||
4168 vcpu->arch.doorbell_request ||
4169 xive_interrupt_pending(vcpu)) {
4170 vcpu->arch.ret = RESUME_HOST;
4171 goto out;
4174 kvmppc_clear_host_core(pcpu);
4176 local_paca->kvm_hstate.tid = 0;
4177 local_paca->kvm_hstate.napping = 0;
4178 local_paca->kvm_hstate.kvm_split_mode = NULL;
4179 kvmppc_start_thread(vcpu, vc);
4180 kvmppc_create_dtl_entry(vcpu, vc);
4181 trace_kvm_guest_enter(vcpu);
4183 vc->vcore_state = VCORE_RUNNING;
4184 trace_kvmppc_run_core(vc, 0);
4186 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4187 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4188 mtspr(SPRN_LPID, lpid);
4189 isync();
4190 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4193 guest_enter_irqoff();
4195 srcu_idx = srcu_read_lock(&kvm->srcu);
4197 this_cpu_disable_ftrace();
4199 /* Tell lockdep that we're about to enable interrupts */
4200 trace_hardirqs_on();
4202 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4203 vcpu->arch.trap = trap;
4205 trace_hardirqs_off();
4207 this_cpu_enable_ftrace();
4209 srcu_read_unlock(&kvm->srcu, srcu_idx);
4211 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4212 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4213 isync();
4216 set_irq_happened(trap);
4218 kvmppc_set_host_core(pcpu);
4220 local_irq_enable();
4221 guest_exit();
4223 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4225 preempt_enable();
4228 * cancel pending decrementer exception if DEC is now positive, or if
4229 * entering a nested guest in which case the decrementer is now owned
4230 * by L2 and the L1 decrementer is provided in hdec_expires
4232 if (kvmppc_core_pending_dec(vcpu) &&
4233 ((get_tb() < vcpu->arch.dec_expires) ||
4234 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4235 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4236 kvmppc_core_dequeue_dec(vcpu);
4238 trace_kvm_guest_exit(vcpu);
4239 r = RESUME_GUEST;
4240 if (trap) {
4241 if (!nested)
4242 r = kvmppc_handle_exit_hv(vcpu, current);
4243 else
4244 r = kvmppc_handle_nested_exit(vcpu);
4246 vcpu->arch.ret = r;
4248 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4249 !kvmppc_vcpu_woken(vcpu)) {
4250 kvmppc_set_timer(vcpu);
4251 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4252 if (signal_pending(current)) {
4253 vcpu->stat.signal_exits++;
4254 run->exit_reason = KVM_EXIT_INTR;
4255 vcpu->arch.ret = -EINTR;
4256 break;
4258 spin_lock(&vc->lock);
4259 kvmppc_vcore_blocked(vc);
4260 spin_unlock(&vc->lock);
4263 vcpu->arch.ceded = 0;
4265 vc->vcore_state = VCORE_INACTIVE;
4266 trace_kvmppc_run_core(vc, 1);
4268 done:
4269 kvmppc_remove_runnable(vc, vcpu);
4270 trace_kvmppc_run_vcpu_exit(vcpu);
4272 return vcpu->arch.ret;
4274 sigpend:
4275 vcpu->stat.signal_exits++;
4276 run->exit_reason = KVM_EXIT_INTR;
4277 vcpu->arch.ret = -EINTR;
4278 out:
4279 local_irq_enable();
4280 preempt_enable();
4281 goto done;
4284 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4286 struct kvm_run *run = vcpu->run;
4287 int r;
4288 int srcu_idx;
4289 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4290 unsigned long user_tar = 0;
4291 unsigned int user_vrsave;
4292 struct kvm *kvm;
4294 if (!vcpu->arch.sane) {
4295 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4296 return -EINVAL;
4300 * Don't allow entry with a suspended transaction, because
4301 * the guest entry/exit code will lose it.
4302 * If the guest has TM enabled, save away their TM-related SPRs
4303 * (they will get restored by the TM unavailable interrupt).
4305 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4306 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4307 (current->thread.regs->msr & MSR_TM)) {
4308 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4309 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4310 run->fail_entry.hardware_entry_failure_reason = 0;
4311 return -EINVAL;
4313 /* Enable TM so we can read the TM SPRs */
4314 mtmsr(mfmsr() | MSR_TM);
4315 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4316 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4317 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4318 current->thread.regs->msr &= ~MSR_TM;
4320 #endif
4323 * Force online to 1 for the sake of old userspace which doesn't
4324 * set it.
4326 if (!vcpu->arch.online) {
4327 atomic_inc(&vcpu->arch.vcore->online_count);
4328 vcpu->arch.online = 1;
4331 kvmppc_core_prepare_to_enter(vcpu);
4333 /* No need to go into the guest when all we'll do is come back out */
4334 if (signal_pending(current)) {
4335 run->exit_reason = KVM_EXIT_INTR;
4336 return -EINTR;
4339 kvm = vcpu->kvm;
4340 atomic_inc(&kvm->arch.vcpus_running);
4341 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4342 smp_mb();
4344 flush_all_to_thread(current);
4346 /* Save userspace EBB and other register values */
4347 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4348 ebb_regs[0] = mfspr(SPRN_EBBHR);
4349 ebb_regs[1] = mfspr(SPRN_EBBRR);
4350 ebb_regs[2] = mfspr(SPRN_BESCR);
4351 user_tar = mfspr(SPRN_TAR);
4353 user_vrsave = mfspr(SPRN_VRSAVE);
4355 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4356 vcpu->arch.pgdir = kvm->mm->pgd;
4357 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4359 do {
4361 * The early POWER9 chips that can't mix radix and HPT threads
4362 * on the same core also need the workaround for the problem
4363 * where the TLB would prefetch entries in the guest exit path
4364 * for radix guests using the guest PIDR value and LPID 0.
4365 * The workaround is in the old path (kvmppc_run_vcpu())
4366 * but not the new path (kvmhv_run_single_vcpu()).
4368 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4369 !no_mixing_hpt_and_radix)
4370 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4371 vcpu->arch.vcore->lpcr);
4372 else
4373 r = kvmppc_run_vcpu(vcpu);
4375 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4376 !(vcpu->arch.shregs.msr & MSR_PR)) {
4377 trace_kvm_hcall_enter(vcpu);
4378 r = kvmppc_pseries_do_hcall(vcpu);
4379 trace_kvm_hcall_exit(vcpu, r);
4380 kvmppc_core_prepare_to_enter(vcpu);
4381 } else if (r == RESUME_PAGE_FAULT) {
4382 srcu_idx = srcu_read_lock(&kvm->srcu);
4383 r = kvmppc_book3s_hv_page_fault(vcpu,
4384 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4385 srcu_read_unlock(&kvm->srcu, srcu_idx);
4386 } else if (r == RESUME_PASSTHROUGH) {
4387 if (WARN_ON(xics_on_xive()))
4388 r = H_SUCCESS;
4389 else
4390 r = kvmppc_xics_rm_complete(vcpu, 0);
4392 } while (is_kvmppc_resume_guest(r));
4394 /* Restore userspace EBB and other register values */
4395 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4396 mtspr(SPRN_EBBHR, ebb_regs[0]);
4397 mtspr(SPRN_EBBRR, ebb_regs[1]);
4398 mtspr(SPRN_BESCR, ebb_regs[2]);
4399 mtspr(SPRN_TAR, user_tar);
4400 mtspr(SPRN_FSCR, current->thread.fscr);
4402 mtspr(SPRN_VRSAVE, user_vrsave);
4404 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4405 atomic_dec(&kvm->arch.vcpus_running);
4406 return r;
4409 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4410 int shift, int sllp)
4412 (*sps)->page_shift = shift;
4413 (*sps)->slb_enc = sllp;
4414 (*sps)->enc[0].page_shift = shift;
4415 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4417 * Add 16MB MPSS support (may get filtered out by userspace)
4419 if (shift != 24) {
4420 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4421 if (penc != -1) {
4422 (*sps)->enc[1].page_shift = 24;
4423 (*sps)->enc[1].pte_enc = penc;
4426 (*sps)++;
4429 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4430 struct kvm_ppc_smmu_info *info)
4432 struct kvm_ppc_one_seg_page_size *sps;
4435 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4436 * POWER7 doesn't support keys for instruction accesses,
4437 * POWER8 and POWER9 do.
4439 info->data_keys = 32;
4440 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4442 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4443 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4444 info->slb_size = 32;
4446 /* We only support these sizes for now, and no muti-size segments */
4447 sps = &info->sps[0];
4448 kvmppc_add_seg_page_size(&sps, 12, 0);
4449 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4450 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4452 /* If running as a nested hypervisor, we don't support HPT guests */
4453 if (kvmhv_on_pseries())
4454 info->flags |= KVM_PPC_NO_HASH;
4456 return 0;
4460 * Get (and clear) the dirty memory log for a memory slot.
4462 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4463 struct kvm_dirty_log *log)
4465 struct kvm_memslots *slots;
4466 struct kvm_memory_slot *memslot;
4467 int i, r;
4468 unsigned long n;
4469 unsigned long *buf, *p;
4470 struct kvm_vcpu *vcpu;
4472 mutex_lock(&kvm->slots_lock);
4474 r = -EINVAL;
4475 if (log->slot >= KVM_USER_MEM_SLOTS)
4476 goto out;
4478 slots = kvm_memslots(kvm);
4479 memslot = id_to_memslot(slots, log->slot);
4480 r = -ENOENT;
4481 if (!memslot || !memslot->dirty_bitmap)
4482 goto out;
4485 * Use second half of bitmap area because both HPT and radix
4486 * accumulate bits in the first half.
4488 n = kvm_dirty_bitmap_bytes(memslot);
4489 buf = memslot->dirty_bitmap + n / sizeof(long);
4490 memset(buf, 0, n);
4492 if (kvm_is_radix(kvm))
4493 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4494 else
4495 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4496 if (r)
4497 goto out;
4500 * We accumulate dirty bits in the first half of the
4501 * memslot's dirty_bitmap area, for when pages are paged
4502 * out or modified by the host directly. Pick up these
4503 * bits and add them to the map.
4505 p = memslot->dirty_bitmap;
4506 for (i = 0; i < n / sizeof(long); ++i)
4507 buf[i] |= xchg(&p[i], 0);
4509 /* Harvest dirty bits from VPA and DTL updates */
4510 /* Note: we never modify the SLB shadow buffer areas */
4511 kvm_for_each_vcpu(i, vcpu, kvm) {
4512 spin_lock(&vcpu->arch.vpa_update_lock);
4513 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4514 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4515 spin_unlock(&vcpu->arch.vpa_update_lock);
4518 r = -EFAULT;
4519 if (copy_to_user(log->dirty_bitmap, buf, n))
4520 goto out;
4522 r = 0;
4523 out:
4524 mutex_unlock(&kvm->slots_lock);
4525 return r;
4528 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4530 vfree(slot->arch.rmap);
4531 slot->arch.rmap = NULL;
4534 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4535 struct kvm_memory_slot *slot,
4536 const struct kvm_userspace_memory_region *mem,
4537 enum kvm_mr_change change)
4539 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4541 if (change == KVM_MR_CREATE) {
4542 slot->arch.rmap = vzalloc(array_size(npages,
4543 sizeof(*slot->arch.rmap)));
4544 if (!slot->arch.rmap)
4545 return -ENOMEM;
4548 return 0;
4551 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4552 const struct kvm_userspace_memory_region *mem,
4553 const struct kvm_memory_slot *old,
4554 const struct kvm_memory_slot *new,
4555 enum kvm_mr_change change)
4557 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4560 * If we are making a new memslot, it might make
4561 * some address that was previously cached as emulated
4562 * MMIO be no longer emulated MMIO, so invalidate
4563 * all the caches of emulated MMIO translations.
4565 if (npages)
4566 atomic64_inc(&kvm->arch.mmio_update);
4569 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4570 * have already called kvm_arch_flush_shadow_memslot() to
4571 * flush shadow mappings. For KVM_MR_CREATE we have no
4572 * previous mappings. So the only case to handle is
4573 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4574 * has been changed.
4575 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4576 * to get rid of any THP PTEs in the partition-scoped page tables
4577 * so we can track dirtiness at the page level; we flush when
4578 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4579 * using THP PTEs.
4581 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4582 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4583 kvmppc_radix_flush_memslot(kvm, old);
4585 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4587 if (!kvm->arch.secure_guest)
4588 return;
4590 switch (change) {
4591 case KVM_MR_CREATE:
4593 * @TODO kvmppc_uvmem_memslot_create() can fail and
4594 * return error. Fix this.
4596 kvmppc_uvmem_memslot_create(kvm, new);
4597 break;
4598 case KVM_MR_DELETE:
4599 kvmppc_uvmem_memslot_delete(kvm, old);
4600 break;
4601 default:
4602 /* TODO: Handle KVM_MR_MOVE */
4603 break;
4608 * Update LPCR values in kvm->arch and in vcores.
4609 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4610 * of kvm->arch.lpcr update).
4612 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4614 long int i;
4615 u32 cores_done = 0;
4617 if ((kvm->arch.lpcr & mask) == lpcr)
4618 return;
4620 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4622 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4623 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4624 if (!vc)
4625 continue;
4626 spin_lock(&vc->lock);
4627 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4628 spin_unlock(&vc->lock);
4629 if (++cores_done >= kvm->arch.online_vcores)
4630 break;
4634 void kvmppc_setup_partition_table(struct kvm *kvm)
4636 unsigned long dw0, dw1;
4638 if (!kvm_is_radix(kvm)) {
4639 /* PS field - page size for VRMA */
4640 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4641 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4642 /* HTABSIZE and HTABORG fields */
4643 dw0 |= kvm->arch.sdr1;
4645 /* Second dword as set by userspace */
4646 dw1 = kvm->arch.process_table;
4647 } else {
4648 dw0 = PATB_HR | radix__get_tree_size() |
4649 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4650 dw1 = PATB_GR | kvm->arch.process_table;
4652 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4656 * Set up HPT (hashed page table) and RMA (real-mode area).
4657 * Must be called with kvm->arch.mmu_setup_lock held.
4659 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4661 int err = 0;
4662 struct kvm *kvm = vcpu->kvm;
4663 unsigned long hva;
4664 struct kvm_memory_slot *memslot;
4665 struct vm_area_struct *vma;
4666 unsigned long lpcr = 0, senc;
4667 unsigned long psize, porder;
4668 int srcu_idx;
4670 /* Allocate hashed page table (if not done already) and reset it */
4671 if (!kvm->arch.hpt.virt) {
4672 int order = KVM_DEFAULT_HPT_ORDER;
4673 struct kvm_hpt_info info;
4675 err = kvmppc_allocate_hpt(&info, order);
4676 /* If we get here, it means userspace didn't specify a
4677 * size explicitly. So, try successively smaller
4678 * sizes if the default failed. */
4679 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4680 err = kvmppc_allocate_hpt(&info, order);
4682 if (err < 0) {
4683 pr_err("KVM: Couldn't alloc HPT\n");
4684 goto out;
4687 kvmppc_set_hpt(kvm, &info);
4690 /* Look up the memslot for guest physical address 0 */
4691 srcu_idx = srcu_read_lock(&kvm->srcu);
4692 memslot = gfn_to_memslot(kvm, 0);
4694 /* We must have some memory at 0 by now */
4695 err = -EINVAL;
4696 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4697 goto out_srcu;
4699 /* Look up the VMA for the start of this memory slot */
4700 hva = memslot->userspace_addr;
4701 mmap_read_lock(kvm->mm);
4702 vma = find_vma(kvm->mm, hva);
4703 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4704 goto up_out;
4706 psize = vma_kernel_pagesize(vma);
4708 mmap_read_unlock(kvm->mm);
4710 /* We can handle 4k, 64k or 16M pages in the VRMA */
4711 if (psize >= 0x1000000)
4712 psize = 0x1000000;
4713 else if (psize >= 0x10000)
4714 psize = 0x10000;
4715 else
4716 psize = 0x1000;
4717 porder = __ilog2(psize);
4719 senc = slb_pgsize_encoding(psize);
4720 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4721 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4722 /* Create HPTEs in the hash page table for the VRMA */
4723 kvmppc_map_vrma(vcpu, memslot, porder);
4725 /* Update VRMASD field in the LPCR */
4726 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4727 /* the -4 is to account for senc values starting at 0x10 */
4728 lpcr = senc << (LPCR_VRMASD_SH - 4);
4729 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4732 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4733 smp_wmb();
4734 err = 0;
4735 out_srcu:
4736 srcu_read_unlock(&kvm->srcu, srcu_idx);
4737 out:
4738 return err;
4740 up_out:
4741 mmap_read_unlock(kvm->mm);
4742 goto out_srcu;
4746 * Must be called with kvm->arch.mmu_setup_lock held and
4747 * mmu_ready = 0 and no vcpus running.
4749 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4751 if (nesting_enabled(kvm))
4752 kvmhv_release_all_nested(kvm);
4753 kvmppc_rmap_reset(kvm);
4754 kvm->arch.process_table = 0;
4755 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4756 spin_lock(&kvm->mmu_lock);
4757 kvm->arch.radix = 0;
4758 spin_unlock(&kvm->mmu_lock);
4759 kvmppc_free_radix(kvm);
4760 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4761 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4762 return 0;
4766 * Must be called with kvm->arch.mmu_setup_lock held and
4767 * mmu_ready = 0 and no vcpus running.
4769 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4771 int err;
4773 err = kvmppc_init_vm_radix(kvm);
4774 if (err)
4775 return err;
4776 kvmppc_rmap_reset(kvm);
4777 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4778 spin_lock(&kvm->mmu_lock);
4779 kvm->arch.radix = 1;
4780 spin_unlock(&kvm->mmu_lock);
4781 kvmppc_free_hpt(&kvm->arch.hpt);
4782 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4783 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4784 return 0;
4787 #ifdef CONFIG_KVM_XICS
4789 * Allocate a per-core structure for managing state about which cores are
4790 * running in the host versus the guest and for exchanging data between
4791 * real mode KVM and CPU running in the host.
4792 * This is only done for the first VM.
4793 * The allocated structure stays even if all VMs have stopped.
4794 * It is only freed when the kvm-hv module is unloaded.
4795 * It's OK for this routine to fail, we just don't support host
4796 * core operations like redirecting H_IPI wakeups.
4798 void kvmppc_alloc_host_rm_ops(void)
4800 struct kvmppc_host_rm_ops *ops;
4801 unsigned long l_ops;
4802 int cpu, core;
4803 int size;
4805 /* Not the first time here ? */
4806 if (kvmppc_host_rm_ops_hv != NULL)
4807 return;
4809 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4810 if (!ops)
4811 return;
4813 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4814 ops->rm_core = kzalloc(size, GFP_KERNEL);
4816 if (!ops->rm_core) {
4817 kfree(ops);
4818 return;
4821 cpus_read_lock();
4823 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4824 if (!cpu_online(cpu))
4825 continue;
4827 core = cpu >> threads_shift;
4828 ops->rm_core[core].rm_state.in_host = 1;
4831 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4834 * Make the contents of the kvmppc_host_rm_ops structure visible
4835 * to other CPUs before we assign it to the global variable.
4836 * Do an atomic assignment (no locks used here), but if someone
4837 * beats us to it, just free our copy and return.
4839 smp_wmb();
4840 l_ops = (unsigned long) ops;
4842 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4843 cpus_read_unlock();
4844 kfree(ops->rm_core);
4845 kfree(ops);
4846 return;
4849 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4850 "ppc/kvm_book3s:prepare",
4851 kvmppc_set_host_core,
4852 kvmppc_clear_host_core);
4853 cpus_read_unlock();
4856 void kvmppc_free_host_rm_ops(void)
4858 if (kvmppc_host_rm_ops_hv) {
4859 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4860 kfree(kvmppc_host_rm_ops_hv->rm_core);
4861 kfree(kvmppc_host_rm_ops_hv);
4862 kvmppc_host_rm_ops_hv = NULL;
4865 #endif
4867 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4869 unsigned long lpcr, lpid;
4870 char buf[32];
4871 int ret;
4873 mutex_init(&kvm->arch.uvmem_lock);
4874 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4875 mutex_init(&kvm->arch.mmu_setup_lock);
4877 /* Allocate the guest's logical partition ID */
4879 lpid = kvmppc_alloc_lpid();
4880 if ((long)lpid < 0)
4881 return -ENOMEM;
4882 kvm->arch.lpid = lpid;
4884 kvmppc_alloc_host_rm_ops();
4886 kvmhv_vm_nested_init(kvm);
4889 * Since we don't flush the TLB when tearing down a VM,
4890 * and this lpid might have previously been used,
4891 * make sure we flush on each core before running the new VM.
4892 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4893 * does this flush for us.
4895 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4896 cpumask_setall(&kvm->arch.need_tlb_flush);
4898 /* Start out with the default set of hcalls enabled */
4899 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4900 sizeof(kvm->arch.enabled_hcalls));
4902 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4903 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4905 /* Init LPCR for virtual RMA mode */
4906 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4907 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4908 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4909 lpcr &= LPCR_PECE | LPCR_LPES;
4910 } else {
4911 lpcr = 0;
4913 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4914 LPCR_VPM0 | LPCR_VPM1;
4915 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4916 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4917 /* On POWER8 turn on online bit to enable PURR/SPURR */
4918 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4919 lpcr |= LPCR_ONL;
4921 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4922 * Set HVICE bit to enable hypervisor virtualization interrupts.
4923 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4924 * be unnecessary but better safe than sorry in case we re-enable
4925 * EE in HV mode with this LPCR still set)
4927 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4928 lpcr &= ~LPCR_VPM0;
4929 lpcr |= LPCR_HVICE | LPCR_HEIC;
4932 * If xive is enabled, we route 0x500 interrupts directly
4933 * to the guest.
4935 if (xics_on_xive())
4936 lpcr |= LPCR_LPES;
4940 * If the host uses radix, the guest starts out as radix.
4942 if (radix_enabled()) {
4943 kvm->arch.radix = 1;
4944 kvm->arch.mmu_ready = 1;
4945 lpcr &= ~LPCR_VPM1;
4946 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4947 ret = kvmppc_init_vm_radix(kvm);
4948 if (ret) {
4949 kvmppc_free_lpid(kvm->arch.lpid);
4950 return ret;
4952 kvmppc_setup_partition_table(kvm);
4955 kvm->arch.lpcr = lpcr;
4957 /* Initialization for future HPT resizes */
4958 kvm->arch.resize_hpt = NULL;
4961 * Work out how many sets the TLB has, for the use of
4962 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4964 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
4966 * P10 will flush all the congruence class with a single tlbiel
4968 kvm->arch.tlb_sets = 1;
4969 } else if (radix_enabled())
4970 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4971 else if (cpu_has_feature(CPU_FTR_ARCH_300))
4972 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4973 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4974 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4975 else
4976 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4979 * Track that we now have a HV mode VM active. This blocks secondary
4980 * CPU threads from coming online.
4981 * On POWER9, we only need to do this if the "indep_threads_mode"
4982 * module parameter has been set to N.
4984 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4985 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4986 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4987 kvm->arch.threads_indep = true;
4988 } else {
4989 kvm->arch.threads_indep = indep_threads_mode;
4992 if (!kvm->arch.threads_indep)
4993 kvm_hv_vm_activated();
4996 * Initialize smt_mode depending on processor.
4997 * POWER8 and earlier have to use "strict" threading, where
4998 * all vCPUs in a vcore have to run on the same (sub)core,
4999 * whereas on POWER9 the threads can each run a different
5000 * guest.
5002 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5003 kvm->arch.smt_mode = threads_per_subcore;
5004 else
5005 kvm->arch.smt_mode = 1;
5006 kvm->arch.emul_smt_mode = 1;
5009 * Create a debugfs directory for the VM
5011 snprintf(buf, sizeof(buf), "vm%d", current->pid);
5012 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5013 kvmppc_mmu_debugfs_init(kvm);
5014 if (radix_enabled())
5015 kvmhv_radix_debugfs_init(kvm);
5017 return 0;
5020 static void kvmppc_free_vcores(struct kvm *kvm)
5022 long int i;
5024 for (i = 0; i < KVM_MAX_VCORES; ++i)
5025 kfree(kvm->arch.vcores[i]);
5026 kvm->arch.online_vcores = 0;
5029 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5031 debugfs_remove_recursive(kvm->arch.debugfs_dir);
5033 if (!kvm->arch.threads_indep)
5034 kvm_hv_vm_deactivated();
5036 kvmppc_free_vcores(kvm);
5039 if (kvm_is_radix(kvm))
5040 kvmppc_free_radix(kvm);
5041 else
5042 kvmppc_free_hpt(&kvm->arch.hpt);
5044 /* Perform global invalidation and return lpid to the pool */
5045 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5046 if (nesting_enabled(kvm))
5047 kvmhv_release_all_nested(kvm);
5048 kvm->arch.process_table = 0;
5049 if (kvm->arch.secure_guest)
5050 uv_svm_terminate(kvm->arch.lpid);
5051 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5054 kvmppc_free_lpid(kvm->arch.lpid);
5056 kvmppc_free_pimap(kvm);
5059 /* We don't need to emulate any privileged instructions or dcbz */
5060 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5061 unsigned int inst, int *advance)
5063 return EMULATE_FAIL;
5066 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5067 ulong spr_val)
5069 return EMULATE_FAIL;
5072 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5073 ulong *spr_val)
5075 return EMULATE_FAIL;
5078 static int kvmppc_core_check_processor_compat_hv(void)
5080 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5081 cpu_has_feature(CPU_FTR_ARCH_206))
5082 return 0;
5084 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5085 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5086 return 0;
5088 return -EIO;
5091 #ifdef CONFIG_KVM_XICS
5093 void kvmppc_free_pimap(struct kvm *kvm)
5095 kfree(kvm->arch.pimap);
5098 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5100 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5103 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5105 struct irq_desc *desc;
5106 struct kvmppc_irq_map *irq_map;
5107 struct kvmppc_passthru_irqmap *pimap;
5108 struct irq_chip *chip;
5109 int i, rc = 0;
5111 if (!kvm_irq_bypass)
5112 return 1;
5114 desc = irq_to_desc(host_irq);
5115 if (!desc)
5116 return -EIO;
5118 mutex_lock(&kvm->lock);
5120 pimap = kvm->arch.pimap;
5121 if (pimap == NULL) {
5122 /* First call, allocate structure to hold IRQ map */
5123 pimap = kvmppc_alloc_pimap();
5124 if (pimap == NULL) {
5125 mutex_unlock(&kvm->lock);
5126 return -ENOMEM;
5128 kvm->arch.pimap = pimap;
5132 * For now, we only support interrupts for which the EOI operation
5133 * is an OPAL call followed by a write to XIRR, since that's
5134 * what our real-mode EOI code does, or a XIVE interrupt
5136 chip = irq_data_get_irq_chip(&desc->irq_data);
5137 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5138 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5139 host_irq, guest_gsi);
5140 mutex_unlock(&kvm->lock);
5141 return -ENOENT;
5145 * See if we already have an entry for this guest IRQ number.
5146 * If it's mapped to a hardware IRQ number, that's an error,
5147 * otherwise re-use this entry.
5149 for (i = 0; i < pimap->n_mapped; i++) {
5150 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5151 if (pimap->mapped[i].r_hwirq) {
5152 mutex_unlock(&kvm->lock);
5153 return -EINVAL;
5155 break;
5159 if (i == KVMPPC_PIRQ_MAPPED) {
5160 mutex_unlock(&kvm->lock);
5161 return -EAGAIN; /* table is full */
5164 irq_map = &pimap->mapped[i];
5166 irq_map->v_hwirq = guest_gsi;
5167 irq_map->desc = desc;
5170 * Order the above two stores before the next to serialize with
5171 * the KVM real mode handler.
5173 smp_wmb();
5174 irq_map->r_hwirq = desc->irq_data.hwirq;
5176 if (i == pimap->n_mapped)
5177 pimap->n_mapped++;
5179 if (xics_on_xive())
5180 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5181 else
5182 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5183 if (rc)
5184 irq_map->r_hwirq = 0;
5186 mutex_unlock(&kvm->lock);
5188 return 0;
5191 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5193 struct irq_desc *desc;
5194 struct kvmppc_passthru_irqmap *pimap;
5195 int i, rc = 0;
5197 if (!kvm_irq_bypass)
5198 return 0;
5200 desc = irq_to_desc(host_irq);
5201 if (!desc)
5202 return -EIO;
5204 mutex_lock(&kvm->lock);
5205 if (!kvm->arch.pimap)
5206 goto unlock;
5208 pimap = kvm->arch.pimap;
5210 for (i = 0; i < pimap->n_mapped; i++) {
5211 if (guest_gsi == pimap->mapped[i].v_hwirq)
5212 break;
5215 if (i == pimap->n_mapped) {
5216 mutex_unlock(&kvm->lock);
5217 return -ENODEV;
5220 if (xics_on_xive())
5221 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5222 else
5223 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5225 /* invalidate the entry (what do do on error from the above ?) */
5226 pimap->mapped[i].r_hwirq = 0;
5229 * We don't free this structure even when the count goes to
5230 * zero. The structure is freed when we destroy the VM.
5232 unlock:
5233 mutex_unlock(&kvm->lock);
5234 return rc;
5237 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5238 struct irq_bypass_producer *prod)
5240 int ret = 0;
5241 struct kvm_kernel_irqfd *irqfd =
5242 container_of(cons, struct kvm_kernel_irqfd, consumer);
5244 irqfd->producer = prod;
5246 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5247 if (ret)
5248 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5249 prod->irq, irqfd->gsi, ret);
5251 return ret;
5254 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5255 struct irq_bypass_producer *prod)
5257 int ret;
5258 struct kvm_kernel_irqfd *irqfd =
5259 container_of(cons, struct kvm_kernel_irqfd, consumer);
5261 irqfd->producer = NULL;
5264 * When producer of consumer is unregistered, we change back to
5265 * default external interrupt handling mode - KVM real mode
5266 * will switch back to host.
5268 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5269 if (ret)
5270 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5271 prod->irq, irqfd->gsi, ret);
5273 #endif
5275 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5276 unsigned int ioctl, unsigned long arg)
5278 struct kvm *kvm __maybe_unused = filp->private_data;
5279 void __user *argp = (void __user *)arg;
5280 long r;
5282 switch (ioctl) {
5284 case KVM_PPC_ALLOCATE_HTAB: {
5285 u32 htab_order;
5287 /* If we're a nested hypervisor, we currently only support radix */
5288 if (kvmhv_on_pseries()) {
5289 r = -EOPNOTSUPP;
5290 break;
5293 r = -EFAULT;
5294 if (get_user(htab_order, (u32 __user *)argp))
5295 break;
5296 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5297 if (r)
5298 break;
5299 r = 0;
5300 break;
5303 case KVM_PPC_GET_HTAB_FD: {
5304 struct kvm_get_htab_fd ghf;
5306 r = -EFAULT;
5307 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5308 break;
5309 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5310 break;
5313 case KVM_PPC_RESIZE_HPT_PREPARE: {
5314 struct kvm_ppc_resize_hpt rhpt;
5316 r = -EFAULT;
5317 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5318 break;
5320 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5321 break;
5324 case KVM_PPC_RESIZE_HPT_COMMIT: {
5325 struct kvm_ppc_resize_hpt rhpt;
5327 r = -EFAULT;
5328 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5329 break;
5331 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5332 break;
5335 default:
5336 r = -ENOTTY;
5339 return r;
5343 * List of hcall numbers to enable by default.
5344 * For compatibility with old userspace, we enable by default
5345 * all hcalls that were implemented before the hcall-enabling
5346 * facility was added. Note this list should not include H_RTAS.
5348 static unsigned int default_hcall_list[] = {
5349 H_REMOVE,
5350 H_ENTER,
5351 H_READ,
5352 H_PROTECT,
5353 H_BULK_REMOVE,
5354 H_GET_TCE,
5355 H_PUT_TCE,
5356 H_SET_DABR,
5357 H_SET_XDABR,
5358 H_CEDE,
5359 H_PROD,
5360 H_CONFER,
5361 H_REGISTER_VPA,
5362 #ifdef CONFIG_KVM_XICS
5363 H_EOI,
5364 H_CPPR,
5365 H_IPI,
5366 H_IPOLL,
5367 H_XIRR,
5368 H_XIRR_X,
5369 #endif
5373 static void init_default_hcalls(void)
5375 int i;
5376 unsigned int hcall;
5378 for (i = 0; default_hcall_list[i]; ++i) {
5379 hcall = default_hcall_list[i];
5380 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5381 __set_bit(hcall / 4, default_enabled_hcalls);
5385 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5387 unsigned long lpcr;
5388 int radix;
5389 int err;
5391 /* If not on a POWER9, reject it */
5392 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5393 return -ENODEV;
5395 /* If any unknown flags set, reject it */
5396 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5397 return -EINVAL;
5399 /* GR (guest radix) bit in process_table field must match */
5400 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5401 if (!!(cfg->process_table & PATB_GR) != radix)
5402 return -EINVAL;
5404 /* Process table size field must be reasonable, i.e. <= 24 */
5405 if ((cfg->process_table & PRTS_MASK) > 24)
5406 return -EINVAL;
5408 /* We can change a guest to/from radix now, if the host is radix */
5409 if (radix && !radix_enabled())
5410 return -EINVAL;
5412 /* If we're a nested hypervisor, we currently only support radix */
5413 if (kvmhv_on_pseries() && !radix)
5414 return -EINVAL;
5416 mutex_lock(&kvm->arch.mmu_setup_lock);
5417 if (radix != kvm_is_radix(kvm)) {
5418 if (kvm->arch.mmu_ready) {
5419 kvm->arch.mmu_ready = 0;
5420 /* order mmu_ready vs. vcpus_running */
5421 smp_mb();
5422 if (atomic_read(&kvm->arch.vcpus_running)) {
5423 kvm->arch.mmu_ready = 1;
5424 err = -EBUSY;
5425 goto out_unlock;
5428 if (radix)
5429 err = kvmppc_switch_mmu_to_radix(kvm);
5430 else
5431 err = kvmppc_switch_mmu_to_hpt(kvm);
5432 if (err)
5433 goto out_unlock;
5436 kvm->arch.process_table = cfg->process_table;
5437 kvmppc_setup_partition_table(kvm);
5439 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5440 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5441 err = 0;
5443 out_unlock:
5444 mutex_unlock(&kvm->arch.mmu_setup_lock);
5445 return err;
5448 static int kvmhv_enable_nested(struct kvm *kvm)
5450 if (!nested)
5451 return -EPERM;
5452 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5453 return -ENODEV;
5455 /* kvm == NULL means the caller is testing if the capability exists */
5456 if (kvm)
5457 kvm->arch.nested_enable = true;
5458 return 0;
5461 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5462 int size)
5464 int rc = -EINVAL;
5466 if (kvmhv_vcpu_is_radix(vcpu)) {
5467 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5469 if (rc > 0)
5470 rc = -EINVAL;
5473 /* For now quadrants are the only way to access nested guest memory */
5474 if (rc && vcpu->arch.nested)
5475 rc = -EAGAIN;
5477 return rc;
5480 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5481 int size)
5483 int rc = -EINVAL;
5485 if (kvmhv_vcpu_is_radix(vcpu)) {
5486 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5488 if (rc > 0)
5489 rc = -EINVAL;
5492 /* For now quadrants are the only way to access nested guest memory */
5493 if (rc && vcpu->arch.nested)
5494 rc = -EAGAIN;
5496 return rc;
5499 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5501 unpin_vpa(kvm, vpa);
5502 vpa->gpa = 0;
5503 vpa->pinned_addr = NULL;
5504 vpa->dirty = false;
5505 vpa->update_pending = 0;
5509 * Enable a guest to become a secure VM, or test whether
5510 * that could be enabled.
5511 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5512 * tested (kvm == NULL) or enabled (kvm != NULL).
5514 static int kvmhv_enable_svm(struct kvm *kvm)
5516 if (!kvmppc_uvmem_available())
5517 return -EINVAL;
5518 if (kvm)
5519 kvm->arch.svm_enabled = 1;
5520 return 0;
5524 * IOCTL handler to turn off secure mode of guest
5526 * - Release all device pages
5527 * - Issue ucall to terminate the guest on the UV side
5528 * - Unpin the VPA pages.
5529 * - Reinit the partition scoped page tables
5531 static int kvmhv_svm_off(struct kvm *kvm)
5533 struct kvm_vcpu *vcpu;
5534 int mmu_was_ready;
5535 int srcu_idx;
5536 int ret = 0;
5537 int i;
5539 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5540 return ret;
5542 mutex_lock(&kvm->arch.mmu_setup_lock);
5543 mmu_was_ready = kvm->arch.mmu_ready;
5544 if (kvm->arch.mmu_ready) {
5545 kvm->arch.mmu_ready = 0;
5546 /* order mmu_ready vs. vcpus_running */
5547 smp_mb();
5548 if (atomic_read(&kvm->arch.vcpus_running)) {
5549 kvm->arch.mmu_ready = 1;
5550 ret = -EBUSY;
5551 goto out;
5555 srcu_idx = srcu_read_lock(&kvm->srcu);
5556 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5557 struct kvm_memory_slot *memslot;
5558 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5560 if (!slots)
5561 continue;
5563 kvm_for_each_memslot(memslot, slots) {
5564 kvmppc_uvmem_drop_pages(memslot, kvm, true);
5565 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5568 srcu_read_unlock(&kvm->srcu, srcu_idx);
5570 ret = uv_svm_terminate(kvm->arch.lpid);
5571 if (ret != U_SUCCESS) {
5572 ret = -EINVAL;
5573 goto out;
5577 * When secure guest is reset, all the guest pages are sent
5578 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5579 * chance to run and unpin their VPA pages. Unpinning of all
5580 * VPA pages is done here explicitly so that VPA pages
5581 * can be migrated to the secure side.
5583 * This is required to for the secure SMP guest to reboot
5584 * correctly.
5586 kvm_for_each_vcpu(i, vcpu, kvm) {
5587 spin_lock(&vcpu->arch.vpa_update_lock);
5588 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5589 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5590 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5591 spin_unlock(&vcpu->arch.vpa_update_lock);
5594 kvmppc_setup_partition_table(kvm);
5595 kvm->arch.secure_guest = 0;
5596 kvm->arch.mmu_ready = mmu_was_ready;
5597 out:
5598 mutex_unlock(&kvm->arch.mmu_setup_lock);
5599 return ret;
5602 static struct kvmppc_ops kvm_ops_hv = {
5603 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5604 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5605 .get_one_reg = kvmppc_get_one_reg_hv,
5606 .set_one_reg = kvmppc_set_one_reg_hv,
5607 .vcpu_load = kvmppc_core_vcpu_load_hv,
5608 .vcpu_put = kvmppc_core_vcpu_put_hv,
5609 .inject_interrupt = kvmppc_inject_interrupt_hv,
5610 .set_msr = kvmppc_set_msr_hv,
5611 .vcpu_run = kvmppc_vcpu_run_hv,
5612 .vcpu_create = kvmppc_core_vcpu_create_hv,
5613 .vcpu_free = kvmppc_core_vcpu_free_hv,
5614 .check_requests = kvmppc_core_check_requests_hv,
5615 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5616 .flush_memslot = kvmppc_core_flush_memslot_hv,
5617 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5618 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
5619 .unmap_hva_range = kvm_unmap_hva_range_hv,
5620 .age_hva = kvm_age_hva_hv,
5621 .test_age_hva = kvm_test_age_hva_hv,
5622 .set_spte_hva = kvm_set_spte_hva_hv,
5623 .free_memslot = kvmppc_core_free_memslot_hv,
5624 .init_vm = kvmppc_core_init_vm_hv,
5625 .destroy_vm = kvmppc_core_destroy_vm_hv,
5626 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5627 .emulate_op = kvmppc_core_emulate_op_hv,
5628 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5629 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5630 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5631 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
5632 .hcall_implemented = kvmppc_hcall_impl_hv,
5633 #ifdef CONFIG_KVM_XICS
5634 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5635 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5636 #endif
5637 .configure_mmu = kvmhv_configure_mmu,
5638 .get_rmmu_info = kvmhv_get_rmmu_info,
5639 .set_smt_mode = kvmhv_set_smt_mode,
5640 .enable_nested = kvmhv_enable_nested,
5641 .load_from_eaddr = kvmhv_load_from_eaddr,
5642 .store_to_eaddr = kvmhv_store_to_eaddr,
5643 .enable_svm = kvmhv_enable_svm,
5644 .svm_off = kvmhv_svm_off,
5647 static int kvm_init_subcore_bitmap(void)
5649 int i, j;
5650 int nr_cores = cpu_nr_cores();
5651 struct sibling_subcore_state *sibling_subcore_state;
5653 for (i = 0; i < nr_cores; i++) {
5654 int first_cpu = i * threads_per_core;
5655 int node = cpu_to_node(first_cpu);
5657 /* Ignore if it is already allocated. */
5658 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5659 continue;
5661 sibling_subcore_state =
5662 kzalloc_node(sizeof(struct sibling_subcore_state),
5663 GFP_KERNEL, node);
5664 if (!sibling_subcore_state)
5665 return -ENOMEM;
5668 for (j = 0; j < threads_per_core; j++) {
5669 int cpu = first_cpu + j;
5671 paca_ptrs[cpu]->sibling_subcore_state =
5672 sibling_subcore_state;
5675 return 0;
5678 static int kvmppc_radix_possible(void)
5680 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5683 static int kvmppc_book3s_init_hv(void)
5685 int r;
5687 if (!tlbie_capable) {
5688 pr_err("KVM-HV: Host does not support TLBIE\n");
5689 return -ENODEV;
5693 * FIXME!! Do we need to check on all cpus ?
5695 r = kvmppc_core_check_processor_compat_hv();
5696 if (r < 0)
5697 return -ENODEV;
5699 r = kvmhv_nested_init();
5700 if (r)
5701 return r;
5703 r = kvm_init_subcore_bitmap();
5704 if (r)
5705 return r;
5708 * We need a way of accessing the XICS interrupt controller,
5709 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5710 * indirectly, via OPAL.
5712 #ifdef CONFIG_SMP
5713 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5714 !local_paca->kvm_hstate.xics_phys) {
5715 struct device_node *np;
5717 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5718 if (!np) {
5719 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5720 return -ENODEV;
5722 /* presence of intc confirmed - node can be dropped again */
5723 of_node_put(np);
5725 #endif
5727 kvm_ops_hv.owner = THIS_MODULE;
5728 kvmppc_hv_ops = &kvm_ops_hv;
5730 init_default_hcalls();
5732 init_vcore_lists();
5734 r = kvmppc_mmu_hv_init();
5735 if (r)
5736 return r;
5738 if (kvmppc_radix_possible())
5739 r = kvmppc_radix_init();
5742 * POWER9 chips before version 2.02 can't have some threads in
5743 * HPT mode and some in radix mode on the same core.
5745 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5746 unsigned int pvr = mfspr(SPRN_PVR);
5747 if ((pvr >> 16) == PVR_POWER9 &&
5748 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5749 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5750 no_mixing_hpt_and_radix = true;
5753 r = kvmppc_uvmem_init();
5754 if (r < 0)
5755 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5757 return r;
5760 static void kvmppc_book3s_exit_hv(void)
5762 kvmppc_uvmem_free();
5763 kvmppc_free_host_rm_ops();
5764 if (kvmppc_radix_possible())
5765 kvmppc_radix_exit();
5766 kvmppc_hv_ops = NULL;
5767 kvmhv_nested_exit();
5770 module_init(kvmppc_book3s_init_hv);
5771 module_exit(kvmppc_book3s_exit_hv);
5772 MODULE_LICENSE("GPL");
5773 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5774 MODULE_ALIAS("devname:kvm");