WIP FPC-III support
[linux/fpc-iii.git] / arch / powerpc / platforms / 85xx / smp.c
blobc6df294054fe90b15086d945702d2a89dcba7d86
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Author: Andy Fleming <afleming@freescale.com>
4 * Kumar Gala <galak@kernel.crashing.org>
6 * Copyright 2006-2008, 2011-2012, 2015 Freescale Semiconductor Inc.
7 */
9 #include <linux/stddef.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/init.h>
13 #include <linux/delay.h>
14 #include <linux/of.h>
15 #include <linux/kexec.h>
16 #include <linux/highmem.h>
17 #include <linux/cpu.h>
18 #include <linux/fsl/guts.h>
19 #include <linux/pgtable.h>
21 #include <asm/machdep.h>
22 #include <asm/page.h>
23 #include <asm/mpic.h>
24 #include <asm/cacheflush.h>
25 #include <asm/dbell.h>
26 #include <asm/code-patching.h>
27 #include <asm/cputhreads.h>
28 #include <asm/fsl_pm.h>
30 #include <sysdev/fsl_soc.h>
31 #include <sysdev/mpic.h>
32 #include "smp.h"
34 struct epapr_spin_table {
35 u32 addr_h;
36 u32 addr_l;
37 u32 r3_h;
38 u32 r3_l;
39 u32 reserved;
40 u32 pir;
43 #ifdef CONFIG_HOTPLUG_CPU
44 static u64 timebase;
45 static int tb_req;
46 static int tb_valid;
48 static void mpc85xx_give_timebase(void)
50 unsigned long flags;
52 local_irq_save(flags);
53 hard_irq_disable();
55 while (!tb_req)
56 barrier();
57 tb_req = 0;
59 qoriq_pm_ops->freeze_time_base(true);
60 #ifdef CONFIG_PPC64
62 * e5500/e6500 have a workaround for erratum A-006958 in place
63 * that will reread the timebase until TBL is non-zero.
64 * That would be a bad thing when the timebase is frozen.
66 * Thus, we read it manually, and instead of checking that
67 * TBL is non-zero, we ensure that TB does not change. We don't
68 * do that for the main mftb implementation, because it requires
69 * a scratch register
72 u64 prev;
74 asm volatile("mfspr %0, %1" : "=r" (timebase) :
75 "i" (SPRN_TBRL));
77 do {
78 prev = timebase;
79 asm volatile("mfspr %0, %1" : "=r" (timebase) :
80 "i" (SPRN_TBRL));
81 } while (prev != timebase);
83 #else
84 timebase = get_tb();
85 #endif
86 mb();
87 tb_valid = 1;
89 while (tb_valid)
90 barrier();
92 qoriq_pm_ops->freeze_time_base(false);
94 local_irq_restore(flags);
97 static void mpc85xx_take_timebase(void)
99 unsigned long flags;
101 local_irq_save(flags);
102 hard_irq_disable();
104 tb_req = 1;
105 while (!tb_valid)
106 barrier();
108 set_tb(timebase >> 32, timebase & 0xffffffff);
109 isync();
110 tb_valid = 0;
112 local_irq_restore(flags);
115 static void smp_85xx_cpu_offline_self(void)
117 unsigned int cpu = smp_processor_id();
119 local_irq_disable();
120 hard_irq_disable();
121 /* mask all irqs to prevent cpu wakeup */
122 qoriq_pm_ops->irq_mask(cpu);
124 idle_task_exit();
126 mtspr(SPRN_TCR, 0);
127 mtspr(SPRN_TSR, mfspr(SPRN_TSR));
129 generic_set_cpu_dead(cpu);
131 cur_cpu_spec->cpu_down_flush();
133 qoriq_pm_ops->cpu_die(cpu);
135 while (1)
139 static void qoriq_cpu_kill(unsigned int cpu)
141 int i;
143 for (i = 0; i < 500; i++) {
144 if (is_cpu_dead(cpu)) {
145 #ifdef CONFIG_PPC64
146 paca_ptrs[cpu]->cpu_start = 0;
147 #endif
148 return;
150 msleep(20);
152 pr_err("CPU%d didn't die...\n", cpu);
154 #endif
157 * To keep it compatible with old boot program which uses
158 * cache-inhibit spin table, we need to flush the cache
159 * before accessing spin table to invalidate any staled data.
160 * We also need to flush the cache after writing to spin
161 * table to push data out.
163 static inline void flush_spin_table(void *spin_table)
165 flush_dcache_range((ulong)spin_table,
166 (ulong)spin_table + sizeof(struct epapr_spin_table));
169 static inline u32 read_spin_table_addr_l(void *spin_table)
171 flush_dcache_range((ulong)spin_table,
172 (ulong)spin_table + sizeof(struct epapr_spin_table));
173 return in_be32(&((struct epapr_spin_table *)spin_table)->addr_l);
176 #ifdef CONFIG_PPC64
177 static void wake_hw_thread(void *info)
179 void fsl_secondary_thread_init(void);
180 unsigned long inia;
181 int cpu = *(const int *)info;
183 inia = *(unsigned long *)fsl_secondary_thread_init;
184 book3e_start_thread(cpu_thread_in_core(cpu), inia);
186 #endif
188 static int smp_85xx_start_cpu(int cpu)
190 int ret = 0;
191 struct device_node *np;
192 const u64 *cpu_rel_addr;
193 unsigned long flags;
194 int ioremappable;
195 int hw_cpu = get_hard_smp_processor_id(cpu);
196 struct epapr_spin_table __iomem *spin_table;
198 np = of_get_cpu_node(cpu, NULL);
199 cpu_rel_addr = of_get_property(np, "cpu-release-addr", NULL);
200 if (!cpu_rel_addr) {
201 pr_err("No cpu-release-addr for cpu %d\n", cpu);
202 return -ENOENT;
206 * A secondary core could be in a spinloop in the bootpage
207 * (0xfffff000), somewhere in highmem, or somewhere in lowmem.
208 * The bootpage and highmem can be accessed via ioremap(), but
209 * we need to directly access the spinloop if its in lowmem.
211 ioremappable = *cpu_rel_addr > virt_to_phys(high_memory);
213 /* Map the spin table */
214 if (ioremappable)
215 spin_table = ioremap_coherent(*cpu_rel_addr,
216 sizeof(struct epapr_spin_table));
217 else
218 spin_table = phys_to_virt(*cpu_rel_addr);
220 local_irq_save(flags);
221 hard_irq_disable();
223 if (qoriq_pm_ops)
224 qoriq_pm_ops->cpu_up_prepare(cpu);
226 /* if cpu is not spinning, reset it */
227 if (read_spin_table_addr_l(spin_table) != 1) {
229 * We don't set the BPTR register here since it already points
230 * to the boot page properly.
232 mpic_reset_core(cpu);
235 * wait until core is ready...
236 * We need to invalidate the stale data, in case the boot
237 * loader uses a cache-inhibited spin table.
239 if (!spin_event_timeout(
240 read_spin_table_addr_l(spin_table) == 1,
241 10000, 100)) {
242 pr_err("timeout waiting for cpu %d to reset\n",
243 hw_cpu);
244 ret = -EAGAIN;
245 goto err;
249 flush_spin_table(spin_table);
250 out_be32(&spin_table->pir, hw_cpu);
251 #ifdef CONFIG_PPC64
252 out_be64((u64 *)(&spin_table->addr_h),
253 __pa(ppc_function_entry(generic_secondary_smp_init)));
254 #else
255 #ifdef CONFIG_PHYS_ADDR_T_64BIT
257 * We need also to write addr_h to spin table for systems
258 * in which their physical memory start address was configured
259 * to above 4G, otherwise the secondary core can not get
260 * correct entry to start from.
262 out_be32(&spin_table->addr_h, __pa(__early_start) >> 32);
263 #endif
264 out_be32(&spin_table->addr_l, __pa(__early_start));
265 #endif
266 flush_spin_table(spin_table);
267 err:
268 local_irq_restore(flags);
270 if (ioremappable)
271 iounmap(spin_table);
273 return ret;
276 static int smp_85xx_kick_cpu(int nr)
278 int ret = 0;
279 #ifdef CONFIG_PPC64
280 int primary = nr;
281 #endif
283 WARN_ON(nr < 0 || nr >= num_possible_cpus());
285 pr_debug("kick CPU #%d\n", nr);
287 #ifdef CONFIG_PPC64
288 if (threads_per_core == 2) {
289 if (WARN_ON_ONCE(!cpu_has_feature(CPU_FTR_SMT)))
290 return -ENOENT;
292 booting_thread_hwid = cpu_thread_in_core(nr);
293 primary = cpu_first_thread_sibling(nr);
295 if (qoriq_pm_ops)
296 qoriq_pm_ops->cpu_up_prepare(nr);
299 * If either thread in the core is online, use it to start
300 * the other.
302 if (cpu_online(primary)) {
303 smp_call_function_single(primary,
304 wake_hw_thread, &nr, 1);
305 goto done;
306 } else if (cpu_online(primary + 1)) {
307 smp_call_function_single(primary + 1,
308 wake_hw_thread, &nr, 1);
309 goto done;
313 * If getting here, it means both threads in the core are
314 * offline. So start the primary thread, then it will start
315 * the thread specified in booting_thread_hwid, the one
316 * corresponding to nr.
319 } else if (threads_per_core == 1) {
321 * If one core has only one thread, set booting_thread_hwid to
322 * an invalid value.
324 booting_thread_hwid = INVALID_THREAD_HWID;
326 } else if (threads_per_core > 2) {
327 pr_err("Do not support more than 2 threads per CPU.");
328 return -EINVAL;
331 ret = smp_85xx_start_cpu(primary);
332 if (ret)
333 return ret;
335 done:
336 paca_ptrs[nr]->cpu_start = 1;
337 generic_set_cpu_up(nr);
339 return ret;
340 #else
341 ret = smp_85xx_start_cpu(nr);
342 if (ret)
343 return ret;
345 generic_set_cpu_up(nr);
347 return ret;
348 #endif
351 struct smp_ops_t smp_85xx_ops = {
352 .cause_nmi_ipi = NULL,
353 .kick_cpu = smp_85xx_kick_cpu,
354 .cpu_bootable = smp_generic_cpu_bootable,
355 #ifdef CONFIG_HOTPLUG_CPU
356 .cpu_disable = generic_cpu_disable,
357 .cpu_die = generic_cpu_die,
358 #endif
359 #if defined(CONFIG_KEXEC_CORE) && !defined(CONFIG_PPC64)
360 .give_timebase = smp_generic_give_timebase,
361 .take_timebase = smp_generic_take_timebase,
362 #endif
365 #ifdef CONFIG_KEXEC_CORE
366 #ifdef CONFIG_PPC32
367 atomic_t kexec_down_cpus = ATOMIC_INIT(0);
369 void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
371 local_irq_disable();
373 if (secondary) {
374 cur_cpu_spec->cpu_down_flush();
375 atomic_inc(&kexec_down_cpus);
376 /* loop forever */
377 while (1);
381 static void mpc85xx_smp_kexec_down(void *arg)
383 if (ppc_md.kexec_cpu_down)
384 ppc_md.kexec_cpu_down(0,1);
386 #else
387 void mpc85xx_smp_kexec_cpu_down(int crash_shutdown, int secondary)
389 int cpu = smp_processor_id();
390 int sibling = cpu_last_thread_sibling(cpu);
391 bool notified = false;
392 int disable_cpu;
393 int disable_threadbit = 0;
394 long start = mftb();
395 long now;
397 local_irq_disable();
398 hard_irq_disable();
399 mpic_teardown_this_cpu(secondary);
401 if (cpu == crashing_cpu && cpu_thread_in_core(cpu) != 0) {
403 * We enter the crash kernel on whatever cpu crashed,
404 * even if it's a secondary thread. If that's the case,
405 * disable the corresponding primary thread.
407 disable_threadbit = 1;
408 disable_cpu = cpu_first_thread_sibling(cpu);
409 } else if (sibling != crashing_cpu &&
410 cpu_thread_in_core(cpu) == 0 &&
411 cpu_thread_in_core(sibling) != 0) {
412 disable_threadbit = 2;
413 disable_cpu = sibling;
416 if (disable_threadbit) {
417 while (paca_ptrs[disable_cpu]->kexec_state < KEXEC_STATE_REAL_MODE) {
418 barrier();
419 now = mftb();
420 if (!notified && now - start > 1000000) {
421 pr_info("%s/%d: waiting for cpu %d to enter KEXEC_STATE_REAL_MODE (%d)\n",
422 __func__, smp_processor_id(),
423 disable_cpu,
424 paca_ptrs[disable_cpu]->kexec_state);
425 notified = true;
429 if (notified) {
430 pr_info("%s: cpu %d done waiting\n",
431 __func__, disable_cpu);
434 mtspr(SPRN_TENC, disable_threadbit);
435 while (mfspr(SPRN_TENSR) & disable_threadbit)
436 cpu_relax();
439 #endif
441 static void mpc85xx_smp_machine_kexec(struct kimage *image)
443 #ifdef CONFIG_PPC32
444 int timeout = INT_MAX;
445 int i, num_cpus = num_present_cpus();
447 if (image->type == KEXEC_TYPE_DEFAULT)
448 smp_call_function(mpc85xx_smp_kexec_down, NULL, 0);
450 while ( (atomic_read(&kexec_down_cpus) != (num_cpus - 1)) &&
451 ( timeout > 0 ) )
453 timeout--;
456 if ( !timeout )
457 printk(KERN_ERR "Unable to bring down secondary cpu(s)");
459 for_each_online_cpu(i)
461 if ( i == smp_processor_id() ) continue;
462 mpic_reset_core(i);
464 #endif
466 default_machine_kexec(image);
468 #endif /* CONFIG_KEXEC_CORE */
470 static void smp_85xx_setup_cpu(int cpu_nr)
472 mpic_setup_this_cpu();
475 void __init mpc85xx_smp_init(void)
477 struct device_node *np;
480 np = of_find_node_by_type(NULL, "open-pic");
481 if (np) {
482 smp_85xx_ops.probe = smp_mpic_probe;
483 smp_85xx_ops.setup_cpu = smp_85xx_setup_cpu;
484 smp_85xx_ops.message_pass = smp_mpic_message_pass;
485 } else
486 smp_85xx_ops.setup_cpu = NULL;
488 if (cpu_has_feature(CPU_FTR_DBELL)) {
490 * If left NULL, .message_pass defaults to
491 * smp_muxed_ipi_message_pass
493 smp_85xx_ops.message_pass = NULL;
494 smp_85xx_ops.cause_ipi = doorbell_global_ipi;
495 smp_85xx_ops.probe = NULL;
498 #ifdef CONFIG_HOTPLUG_CPU
499 #ifdef CONFIG_FSL_CORENET_RCPM
500 fsl_rcpm_init();
501 #endif
503 #ifdef CONFIG_FSL_PMC
504 mpc85xx_setup_pmc();
505 #endif
506 if (qoriq_pm_ops) {
507 smp_85xx_ops.give_timebase = mpc85xx_give_timebase;
508 smp_85xx_ops.take_timebase = mpc85xx_take_timebase;
509 smp_85xx_ops.cpu_offline_self = smp_85xx_cpu_offline_self;
510 smp_85xx_ops.cpu_die = qoriq_cpu_kill;
512 #endif
513 smp_ops = &smp_85xx_ops;
515 #ifdef CONFIG_KEXEC_CORE
516 ppc_md.kexec_cpu_down = mpc85xx_smp_kexec_cpu_down;
517 ppc_md.machine_kexec = mpc85xx_smp_machine_kexec;
518 #endif